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Abstract 
This article studies the dynamics in the formation processes of a mutual consent network 
in game theory setting: the Co-Author Model. In this article, a limited observation is 
applied and analytical results are derived.  Then, 2 parameters are varied: the number of 
individuals in the network and the initial probability of the links in the network in its 
initial state. A simulation result shows a finding that is consistent with an analytical result 
for a state of equilibrium while it also shows different possible equilibria.   
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Introduction 

1.1 
Game theoretical network has grown into a distinctive research field (Back and Flache 
2006; Bala and Goyal 2000; Belleflamme and Bloch 2004; Currarini and Morelli 2000; 
Dutta and Mutuswami 1997; Dutta, van den Nouweland; and Tijs 1998; Kranton and 
Minehart 2001; Skyrms and Pemantle 2000).  To study the strategic aspect of cooperative 
game theoretic network, Jackson and Wolinsky (1996) introduce the Co-Author Model 
and analyze it analytically.  The Co-Author Model has interesting simultaneous 
maximum and minimum optimization in its game theoretic setting, making it plausible 
for many applications.1  While originally aimed to study the behaviors of research 
collaborations, any network structures that reward direct links while penalizing indirect 
links under a condition that requires a sharing of limited resources can be studied using 
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this model.  For examples, one can adjust this model to fit anything from a network of 
activity partners, a trade zone, to a defense pact. 
  

1.2 
Despite the usefulness of the previous analytical results, there is still room for 
improvements.  First, the assumptions are often too strong.  In the Co-Author Model, 
there is a strong assumption that each individual in the network is capable of global-
observation, which allows her to observe other individuals' utilities and network 
configurations accurately.  Yet, this assumption about complete information has been 
considered as too strong in sociology literatures (Friedkin 1983; Kumbasar; Romney, and 
Batchelder 1994; Wu, Huberman, Adamic, and Tyler 2004).  Yaari and Bar-Hillel (1983) 
found that different individuals' beliefs, as a result of observational limitations, could 
yield different equilibria that will affect the social utility.  Hence, a refinement by 
limiting individuals' observations such that there exists a profile of beliefs, in which each 
individual does not receive a message that contradicts to her own beliefs, makes the 
network models become more realistic (McBride 2006a).  Second, due to the complexity 
of combinatorial possibilities, analytical models often prove only an existence of a certain 
equilibrium starting from certain initial states of the network, leaving the dynamics of the 
models unexplored.  While one can argue that many variations can be made to the Co-
Author Model, there are certain variations that are essential to explain the applicability of 
the network in reality. 
 

1.3 
This paper progresses as follows: first, I will present a proof of existence of an efficient 
network that is also stable, along with its necessary condition, to show the effects of 
limited observation in the Co-Author Model.  Second, I will present the dynamical 
processes of the network formation and equilibrium in the Co-Author Model using two 
parameters, the number of individuals in the network and the probability of the links in 
the network in its initial state, under limited observation that allows a change in the 
individuals' beliefs. 

Game and Concepts 

2.1 
N is the number of individuals i in a network.  A complete network, denoted gN, consists 
of all subsets of two distinct elements in the set N(g) = {1, ..., N} of nodes in gN.  The set 
of all possible graphs on N is then {g | Ngg ⊆ }.  Let ij denote the 2 element subset of N 
in g containing i and j and referred to as the link ij, ,Lij or g,ij∈ which means that i and j 
are directly connected.  If i and j are not connected, then .gij∉ Links are bi-directional, 
so .gjigij ∈⇔∈   Let g + ij means adding a new link ij to the existing network g and g – 
ij means detaching ij from the existing network g.  The effective number of links, ,Le is 
the sum of all links ij, .g,ijΣLij ∈   A path in g is a set of distinct nodes 

( )gN}i,,i,{i n ⊂...21  connecting ni andi1 such that .... 13221 g}ii,,ii,i{i nn ⊂−   A graph g is 

 



connected if there exists a path between every pair of nodes.  A property P on a graph g is 
maximal (minimal) if there is no graph gg'⊃ ( gg'⊂ ) that is, larger (smaller) than g, 
for which property P holds.  A component gg'⊆ is a maximal connected subgraph of g 
such that, if for all ( )g'Ni∈ and ( ),g'Nj∈ j,i ≠ there exists a path in g' connecting i and j.  
A graph gg'⊆ is a clique if it is a maximal complete subgraph of g with 2 or more 
nodes.2   A clique that consists only of 2 nodes and 1 link is a dyad.  Average number of 
links Ng

A is a ratio the effective number of links, ,Le over the number of individuals N,  

and is formulated with .gij,
N
L

=A e
Ng

∈ 3  A state tS is a configuration of a network g in 

time t.  The initial probability P(i) assigns the occurrence likelihood of links in the initial 
state of network, .0S   Let ℜ⇒gvgv :),( be the value function that assigns a real number 
value to network g and v be the set of all value functions.  Network g is efficient iff 
( ) ( )g'vgv ≥  for all .Ngg'⊂   The efficiency is in the notion of more sum of utility v(g) 

rather than in paretian sense.  Let ℜ⇒gxv:Yi assigns a utility function for each 
individual i in network g.  Social utility sY  is the sum of all individual utilities iY in the 
network g , .iΣ

gij:is Y=Y
∈

   Average individual utility is the arithmetic average of social 

utility with respect to each individual i in the network g, .
N
Y=

N
Y=Y iΣ

gij:j
s

a ∈
   

 
2.2 

In the Co-Author Model, two nodes represent individuals and a link between them 
represents their collaboration.  The fundamental utility function is 
( ) ( ) ( ).ncnj,,nw=gY ijiiΣ

gij:ji −
∈

 ( )jiiΣ
gij:j

nj,,nw
∈

 is the rewards derived from the direct 

links, ,ni and the penalty derived from one collaborators' indirect links, .n j
4  The cost of 

maintaining the direct links is ( ).nc i   Specifically, the fundamental utility function of each 
individual, i, in network g, as a function of the inverse of the path that  link her and her 
collaborators directly or indirectly, is given by 
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for 0,>ni and ( ) 0=gYi for 0.=ni  

Since the model derives utility only from the inverse of links, a non-collaborated 
individual does not gain utility.  The focus of this model is in the collaborations.  Hence, 
this condition forces all individuals to be linked.  Further, the model implies that (i) if 

,n=n ji then g;ij∈ any individuals with the same number of links will connect.  This 
implies that a component will consist of individuals with the same number of links, 
making it a clique.  In addition, it also implies that (ii) if g},ij|Max{nn jk ∈≤ then i 
wants to link to k; an individual will want to link to another individual outside her clique 
if that outside individual has a lesser number of links than each of the individual's current 
collaborators' number of links, or an individual will not want to link to another individual 

 



who has more number of links than she has.   
 

2.3 
For an example of (i), consider a network of 4 individuals in the configuration of 2 dyads 

(figure 1).  Each individual has a utility of 3.
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individuals who form a dyad and 6 individuals who form a 6-individual clique (figure 2).  
Similar to the previous example, the individuals in the dyad have a utility of 3.  The 

individuals in the clique have a utility of .
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individual in the clique will want to form a new link with an individual in the dyad since 

her new utility will be .
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Figure 1.  A network of 2 pairs with 2 individuals from each component deviate 

 



Figure 2. A network of 1 pair and a clique of with 2 individuals from each component 
deviate 

 

Analytical Model and Results 

3.1 
Jackson and Wolinsky (1996) also introduce the concept of Pairwise Stability for such a 
network. 
 
Definition 1: A network g is Pairwise Stable with respect to v and Yi if: 

(i)   for all g,ij∈ ( ) ( )vij,gYvg,Y ii −≥ and ( ) ( )vij,gYvg,Y jj −≥ and 
(ii)  for all g,ik∉ if ( ) ( ),vik,+gY<vg,Y ii then ( ) ( )vik,+gY>vg,Y kk  

  
Condition (i) states that no individual in a Pairwise Stable network is willing to detach 
from any of her existing links.  Condition (ii) implies that a new link between 2 
individuals that are not in the same clique can be formed if one individual strictly prefers 
the new link while the other individual is indifferent.  Notice that in this concept, every 
individual is assumed to be fully aware of the number of links for all individuals. 
  

3.2 
In their findings, an efficient network for this model is a pairwise network; an efficient 
network consists of individuals in pairs as dyads.  This network configuration yields the 
highest social utility, .sY 5   However, the Pairwise Stability concept shows that an 
efficient network is not necessarily stable.  In Jackson & Wolinsky's finding, individuals 
in an efficient network can make a single bilateral deviation to make a personal gain, Yi , 
while decreasing the social utility sY of the network.  They show that a stable network 
must consist of cliques.  The largest clique is Ci=1 and the next largest clique is Ci=2 .   The 
relation of the cliques is as described by c.,=,iC>C + ii 1,2,...2

1  

 



3.3 
To weaken the strong global-observation assumption, I will use concepts developed by 
McBride to analyze the Co-Author Model under limited observations.  In x-link 
observation (McBride 2006b), each individual observes other individuals within x-links 
in her network such that a path of length x-steps exists between them.  It implies that each 
individual only possibly observes other individuals that are in the same component as her 
regardless of the steps.  For Conjectural Pairwise Stability, McBride (2006a) combines 
Conjectural Equilibrium (Battigalli, Gilli, and Morinari 1992) with Pairwise Stability.  
Conjectural Equilibrium is when each individual chooses a best response based on her 
belief if it is not contradicted by her observation although the belief does not necessarily 
match the reality.   
 

3.4 
For this concept, another notation needs to be introduced.  First, let iΠ be i's beliefs, 

( ,GxVΔΠi ∈ ) a probability distribution of possible states of network (g,v).  Second, Let 

ii MGxV:m ⇒ be i's signal function such that each state of the network gives a signal mi 
in message space Mi . 
 
Definition 2: A network is Conjectural Pairwise Stable with respect to v, Yi, mi, 
and iΠ if: 

(i)   for all g,ij∈ ( ) ( ) ( )v'ij,g'Yv',g'ΠΣvg,Y iiGxV)v',(g'i −≥ ∈ and 
( ) ( ) ( )v'ij,g'Yv',g'ΠΣvg,Y jjGxV)v',(g'j −≥ ∈ and 

(ii)  for all g,ik∉ if ( ) ( ) ( )v'g'+ik,Yv',g'ΠΣ<vg,Y iiGxV)v',(g'i ∈ then 
( ) ( ) ( )v'g'+ik,Yv',g'ΠΣ>vg,Y kkGxV)v',(g'k ∈ and 

(iii) for all i, ( ) 0>v',g'Πi for any ( ) GXVv',g' ∈ implies  
mi(g',v')  =  mi(g,v) . 

 
Condition (i) states that each individual will not detach from any of the existing links in 
the network given her beliefs.  Condition (ii) implies that, given their beliefs, a new link 
between 2 individuals that are not in the same component can be formed if one individual 
strictly prefers the new link while the other individual is indifferent.  Condition (iii) states 
that the belief system will sustain as long as each individual's belief system is not 
contradictory to her observation.   
 

3.5 
Proposition 1: Suppose x-link observation and fix .∞<x Consider g with cliques C1, C2, 
..., Cc     and ....21 cCCC ≥≥≥ If 11 CN<C − , then there exists a profile of 
beliefs gii }{Π ∈ such that the network g is Conjectural Pairwise Stable. 
 
Proof: I will construct a profile of belief for i, show that conditions (i), (ii), and (iii) of 
definition 2 are satisfied given those beliefs, then explain it why it will be true for all i. 
 

 



3.6 
Consider a condition for the largest clique ,C1 such that .11 CN<C − There exists beliefs 
of gi,Π i ∈ such that each individual i in network g assigns a probability gi=Π i ∈1, for 
each individual k not in her clique, ,Ck i∉∀ to belong in the largest clique, ,Ck 1∈∀  
implying that .1C=C i~  
 

3.7 
First, to show that condition (i) is satisfied, it is necessary to show that no link will be 
deleted, or ( ) ( ) ( ) .111

1
1 g,ij'-ijgY'gΠG'ΣgY iigi ∈∈≥   This inequality means that detaching 

from any existing link will give i a lower utility.  Recall that, for the Co-Author Model, 
any j such that 1gij∈ has the same number of links as i since they belong to the same 
clique, which is also a component.  Hence, each j can be treated as an i so that they have 

the same utility function of ( ) .1111
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  Therefore, in this model, no i is willing to 

remove a link from such a clique since removing a link will result in a lower utility for 
her. 
 

3.8 
Second, to show that condition (ii) is satisfied, it is necessary to show that no new link 
will be added.   Let i, ,Ci 1∈  has beliefs that assigns probability of 1, 11, Ci=Π i ∈ to ,g1  

where 1g is a network that consists only of cliques 1C and 1~C with .11 CN<C −   Hence, 

,C<C i~1 or .1 i~C<C   In ,g1  let i belongs to .1C   Hence, each individual k who is not 
connected to i, which means that they are not in ,C1 belongs to .1~C   Individual i, ,Ci 1∈ is 
not willing to make a new link to k, 1~Ck ∈ in 1g since .1 i~C<C   For individual i, adding a 
new link to k , whom she believes to have more links than herself, will result in a worse  
utility than not adding the link, or ( ) ( ) ( ) .111

1
1 g,ik'+ikgY'gΠG'ΣgY iigi ∉∈≥   Since  

,CCCc 12 ... ≤≤≤  it implies that .... 12 i~c C<CCC ≤≤≤   Hence, the beliefs of each 
individual ~i that belongs in any clique 231 ... C,C,,C,Ci cc −∈ in network g are the same 
with each individual i who is in the largest clique ,Ci 1∈ such that 

.... 1231 C,iΠ=,C,C,,CCi~,Π i-cci~ ∈∈   Therefore, no new links will be added. 
 

 



3.9 
To show that condition (iii) in definition 2 holds, it is necessary to show that each 1gi,i∈  
does not receive a signal that contradicts her beliefs.  Given that 1g consists only of 

1C and ,C~1  the total number of individuals in the population N in network 1g must be 
equal to the sum of the number of the individuals in 1C and 1~C , or .11 ~C+C=N   
However, because for the largest clique must be larger than the square of the next clique 
and so on (see section 3.1), c,,=,iC>C + ii 1,2,...2

1 it must be true that .2
11 CC~ ≥   Then it 

follows that .1
2

1 C+C>N   Also recall that each i is only capable of monitoring only her 
clique and is not capable of monitoring other cliques given finite x-link observation 
( .∞<x )   Hence, no observation of each 1gi,i∈ contradict the beliefs since 

cc C+C>>C+C>C+C>N 2
2

2
21

2
1 ... for any x-link observation with ,<x ∞ meaning 

that each 1gi,i∈ believes that each individual k not in her clique belongs to a larger clique 
than her own, .1gj,Cj i~ ∈∈∀  
 

3.10 
Further, by similar logic, the aforementioned conditions apply for each individual j in the 
same clique with i since the conditions for i in a clique will extend to .11 gij,Cj ∈∈∀   
Hence, g,ijCj ∈∈∀ 1 will have the same properties in the Co-Author Model.  Extending 
the logic further, these conditions apply not only to each i in C1 of ,g1 but also to each i in 
C1   of any g.   As long as ,CN<C 11 − there could exists beliefs of iΠ such that each i in 
network g assigns a probability gi=Π i ∈1, for other individuals j not in her clique Ci  to 
belong in the largest clique C1, or g,j,Cj ∈∈∀ 1 since each individual's observation is 
limited to her own clique by x-link observation.  Extending the similar logic, the 
conditions also apply for 1Ci∉∀ for any g because 1C is the largest clique of 

c.,=i,Ci 1,2,...   Recall that it is necessary that ,C>C 2
21 ,C>C 2

32 ... , .2
1 c-c C>C   Hence, it 

is also true that ....21 cCCC ≥≥≥ Also recall that .1
2

1 C+C>N   From the conditions 
above, then it is also true that c.,=i,C+C>N ii 2,3,...2   Therefore, the proof also extends 
to 1Ci∉∀ in any g and there exists a profile of beliefs gii }{Π ∈ that is not contradicted by 
observations. □ 
  

3.11 
The proof above shows that the observational limitation causes the Co-Author network to 
have a different stability property than in a full observation situation.  Thus, information 
control could affect the profile of beliefs and cause the network to have different 
properties.  Any configuration of the Co-Author Model whose cliques have a property 
of c,=c,C+C>N ii 2,3,...2 is conjectural pairwise stable. 
 

 

 



3.12 
Next, recall Jackson and Wolinksy's findings that the efficient network of the Co-Author 
Model, consisting of dyads consisting only 2 individuals working together (pairwise), 
cannot be stable.  However, an efficient network can also be a stable network under 
limited observation if there are enough individuals in the network. 
 
Corollary 1: Suppose x-link observation and fix .∞<x   If 6,>N then for any efficient 
network g, there exists a profile of beliefs gii }{Π ∈ that sustains g as Conjectural Pairwise 
Stable. 
 
Proof:  I will construct a profile of belief for i, show that conditions (i), (ii), and (iii) of 
definition 2 are satisfied given those beliefs, then explain why it will be true for all i. 
 

3.13 
Consider 6>N and each i belongs to a dyad.  There exist beliefs of gi,Π i ∈ such that 
each i in network g assigns gi=Π i ∈1, for each individual k not in her clique, Ci, to 
belong in a larger clique .i~Ck∈∀  
 

3.14 
First, I will show that condition (i) in definition 2 is true, that no links will be deleted.  
The smallest possible number of individuals in a clique is in a dyad, 2.=Cc  If such 
clique is also the largest clique in the network, then it is true that 2,...21 =C==C=C c  
making it a pairwise (dyad) network.   Suppose that i is an individual in ,C1 the largest 
clique.  Then, i will not want to detach from her only existing link because her utility, ,Yi  
will be reduced to zero, which is strictly worse than any utility she possibly has by having 
any number of links to another individuals.   
 

3.15 
Second, I will show that the condition (ii) in definition 2 is true, that no new links will be 
added.  By proposition 1, i will not want to add a new link if 

,CN<C 11 − or .1
2

1 C+C>N   So, it must follow that if 2,22 +>N or 6,>N then i is 
not willing to add a new link.   
 

3.16 
Third, each individual's beliefs will not be contradicted by her observations since it is 
limited only to her own clique by x-link observation.   
 

3.17 
By similar logic, the conditions above also apply for g,ijCj ∈∈∀ 1 in the same clique 
since j=i in a dyad.  Moreover, the conditions also apply for 1Ci∉∀ since all cliques are 
identical that 2....21 =C==C=C c   Therefore, there exists there a profile of beliefs 

 



gii }{Π ∈ that is not contradicted by observations when 6.>N □ 
 

3.18 
Similar to the conditions in proposition 1, the conditions above show that a pairwise 
network g can be Conjectural Pairwise Stable when 6.>N   Recall that Jackson and 
Wolinsky (1996) describe a pairwise network as an efficient network.  The probability for 
the beliefs for all individuals in the network is the same: gi=Π i ∈1, in which each 
individual believes that every other individual not in her clique belongs to a clique where 
the potential collaborator has more links than herself such that adding a new link will 
yield to a worse utility for her.   Therefore, an efficient network g can also be stable under 
Conjectural Pairwise Stability conditions, which means that the efficient network of the 
Co-Author Model can be stable under observational limitations.   
 

3.19 
When 6,≤N the network will not be stable since each individual will have the incentive 
to make a new link.  In this situation, the only stable configuration is when every 
individual is a member of the only clique in the network. 

. 

Simulation Model and Results 

4.1 
The analytical results show that the efficient network can also be stable under 
Conjectural Pairwise Stability.  However, the analytical results do not prove that such 
condition will be the mode of the Co-Author Model's network configuration.  To analyze 
how such network behaves, a simulation is conducted with 2 varying parameters, the 
initial probability P(i) that represents the possible initial configurations of the network, 
and the number of individual N in the network.  Our interests are to see if the properties 
of the Co-Author Model change as these 2 parameters vary. 
 

4.2 
A random number generator assigns links according to initial probability P(i)={0.0, 
1.0}with increment of 0.1 at state 0S to generate a complete network gN .6   Initial 
probability is P(i)=0.0  when no individuals are connected, whereas P(i)=1.0 is when 
network gN consists only of one clique at .0S The utility function Yi for each individual is 
assigned according to definition in section 2.1.  Next, each individual considers a 
deviation.  For all g,ij∈ if ( ) ( ) ( ),v'ij,g'Yv',g'ΠΣvg,Y iiGxV)v',(g'i −≥ ∈ then i will delete her 
link with j.   For all g,ik∉ if ( ) ( ) ( )v'g'+ik,Yv',g'ΠΣ<vg,Y iiGxV)v',(g'i ∈ then i will add link 
to k.  Note that both of the second conditions, which define mutual response, in (i) and 
(ii) of Conjectural Pairwise Stability do not apply in this model due to the sequential 
process of the interactions that maintain the non-global x-link observation.  However, this 
model allows a change in the profile of beliefs gii }{Π ∈ in condition (iii) by allowing each 

 



individual to initiate a new link when the sum of her links
2
N>ΣLij .7  Yet, this initiated 

link will be severed by the recipient individual sequentially if it yields a lower utility for 
the recipient.  This network formation process is sequentially iterated until an equilibrium 
state, ,Se is reached, that is .1−tt S=S   In addition to a variation in P(i),  the number of 
individuals in the network N is also varied.   Hence, there are two varying parameters: 
P(i)={0.0,1.0} and N={8, 20000}.8  From these iterations, the subsequent values 
of Ngeas andD,L,Y,Y are derived accordingly. 

 
4.3 

To further describe and analyze the behaviors of the model, I use Newman's finding (in 
press) of the tipping-point of information diffusion, where there is a transition in network 
from no diffusion of information to diffusion of information.  An independent probability 
r assigns the likelihood for each individual i in network g to communicate information to 

other individuals .gi~i,~ ∈  When ,
ΣLΣL

ΣL
>r

ijij

ij

−2 the diffusion of information occurs.   

This analysis is important to see if the observational limitation affects the information 
diffusion in the Co-Author Model.  In addition, Newman also defined the attraction factor 
for a link to attract another link.  It is defined by the number of additional links, m, that 
each ijL will attract.  The number of m is calculated from 

( ) ( )( )( )
( ) .

/

2/1//
12m 3NL

+NL+NLNL
=+m

ij

ijijij   This analysis is important to confirm that the 

Co-Author Model is a homogeneous model with no preferential attachment, which means 
that the larger components do not have the cumulative advantage to attract more links. 
 

4.4 
Figure 3 shows different layers of social utility, Ys, as N increases.  It clearly shows that 
Ys is highest at all equilibrium states eS regardless of the value of N when P(i) =0.0 at .0S   
The corresponding equilibrium states eS (for each value of N) are in form of a pairwise 
network, which is also the efficient state.   For connected networks, that occurs when 

( ) 1.00.0 ≤iP< at ,S0 the higher initial probabilities ( ) 0.8,0.5 ≤iP< yield to higher Ys 
than the lower initial probability, ( ) 0.5.0.0 <iP<   However, there is a slight decrease in 
the value of all Ys at ( ) 1.00.8 ≤iP< Hence, the result shows that P(i) consistently affects 

eS across the values of N.  Further, figure 4 gives the global picture of average individual 
utilities, Ya, as a function of number of individual, N, while figure 5 specifically shows 
that the average individual utilities, Ya, stabilize at 500,≥N except when P(i)=1.0.  
Figure 6 reveals that the decrease of average individual utilities, Ya,  for  P(i)=1.0 fits a 
power-law at 100.≥N The 3-section power-law fitting has elbows at N=1000 and 
N=4000. 
 

 



4.5 
Figure 7 shows the plot of P(i) versus Ng

A for N={8, 20000}.  A further observation in 

figure 8, which is a more exploded view of figure 7, shows that the values of Ng
A across 

P(i) converge to lesser deviations at 200.≥N Specifically, figure 9, a more exploded 
view of figure 7 and 8, shows that  the values of Ng

A across P(i) become relatively 

uniform at 2000.≥N  There is a dichotomy with ( ) 0.50.00.50 <iP,A Ng
≤≈  and 

( ) 1.0.0.50.39 ≤≈ iP<,A Ng
The deviations of Ng

A corresponds to the volatility of the 

values of r and m when 200<N as shown by figure10 and 11.   When 200,≥N m=0.37, 
while 0.0001.<rc  
 

4.6 
Moreover, figure 12 and 13 show a different perspective on the dichotomy.  The cutline 
of ( ) 0.50.00.50 <iP,A Ng

≤≈  and ( ) 1.00.50.39 ≤≈ iP<,A Ng
is clearly divisible and 

stable at 200.≥N Using only visual observation, it seems that the values of Ng
A across 

P(i) follow constant lines as N increases.  However, for ( ) 0.5,<iP the best fits are power-
law functions with ∞⇒N  yields to an asymptote of 0.50.≈Ng

A   On the other hand, 

for ( ) 0.5,>iP neither the power-law function nor the constant line do not yield to good 
fits although power-law functions still fit better than the constant lines.   When ,N ∞⇒  
the power-law functions yield to an asymptote of 0.39.≈Ng

A  In addition, it is also 

shown in figure 13 that a network in Conjectural Pairwise Stability equilibrium state, as 
represented by P(i) =0.0, yields to 0.50.=A Ng

 

 

 



Figure 3. Social utility versus initial probability 
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Figure 4. Average individual utility versus number of individuals (global) 

 



Figure 5. Average individual utility versus number of individuals, N≥100 
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Figure 6. Average individual utility versus number of individuals, P(i)=1.0 
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Figure 7.  Average number of link versus initial probability (global) 
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Figure 8. Average number of link versus initial probability, N≥200 
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Figure 9. Average number of link versus initial probability, N≥2000 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Initial Probability P(i)

A
ve

ra
ge

 N
um

be
r o

f L
in

k 
A

g

Figure 10. Additional links versus initial probability 
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Figure 11. Critical tipping point versus initial probability 
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Figure 12.  Average number of link versus number of individuals 
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Figure 13. Average number of link versus number of individuals 
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Simulation Model and Results 

5.1 
While Jackson and Wolinsky found that the Co-Author Model network cannot be 
efficient and stable under full observation, I found the reverse under limited observation: 
the model can be both efficient and stable.  This finding is in agreement with what 
McBride (2006a) found in a different network setting that some of the networks might be 
efficient under Conjectural Pairwise Stability conditions.  Moreover, my results for the 
Co-Author Model show exactly under what conditions the network will be both stable 
and efficient.  Specifically, the stable and efficient conditions could hold when the 
population is more than six individuals and none of the all individuals' beliefs are 
contradicted by their observations.   In these findings, each individual in the network 
could have beliefs that a deviation will not bring her a personal benefit, resulting in 
stability of the network.  However, this condition might not necessarily be the mode of 
equilibrium in an applied situation. 
 

5.2 
The initial probability at P(i)=0.0 yields to the highest social utilities for various number 
of individuals in the network (figure 3).  This can be attributed to the certainty in the 
probability of each individual's beliefs when gi=Π i ∈1,  that prevent her from initiating 

 



a new link if she believes that all other individuals not in her clique belong to a clique 
where the potential collaborator has more links than herself, so that adding that new link 
will yield to a worse utility for her.  This result confirms the analytical result of 
Conjectural Pairwise Stability.   If the processes were linear, a linear function that 
describes the variation in social utility across the initial probability should be expected. 
Yet, for ( ) 0.5,0.0 <iP< the social utilities are lower than for ( ) 1.0,0.5 ≤iP< suggesting 
that there is a dynamic in the network formation processes of the Co-Author Model 
causing the non-linearity.  The initial probability of ( ) 0.80.5 ≤iP<  is the optimum range 
that yields to highest social utilities for ( ) 0>iP regardless of the number of individuals N 
in the network.  It means that individuals who have initially had more links, or belong to 
a large group, will stay in that large group and have a better utility.  This result is 
consistent with what Eaton, Ward, Kumar, and Reingen (1999) found in an empirical 
study that 84% of authors in a co-authorship network belong to one large connected 
network and authors with more links tend to be more productive.  Higher productivity 
consequently yields to a higher utility and makes individuals want to maintain their 
existing links.9 

 
5.3 

The analysis at the average individual utility level (figure 4&5) further shows the 
irregularities in the dynamic of the network formation processes, especially 
for 500.<N For 500,≥N except for P(i)=1.0, the average individual utility for each 
initial probability becomes relatively stable.  The finding that the average individual 
utility decreases according to power-law at P(i)=1.0 in figure 6 shows the other side of 
the dynamic of the network formation process of the Co-Author Model.  While P(i)=0.0 
yields to constant average individual utility of 3 for all N, P(i)=1.0 yields to power-law 
decrease as the number of individuals in the network N increases.   Hence, P(i)=0.0 and 
P(i)=1.0 represent 2 special cases of the network formation of the model.    
 

5.4 
Switching to average number of link analysis (figure 7, 8, and 9), there is another 
irregularity in the picture of the dynamic of the formation processes at 200.<N The 
average number of link of the network across all  initial probabilities becomes more 
predictable at 200,≥N specifically at 2000.≥N  At this level, the average number of link 
of the network becomes dichotomous, suggesting that a higher initial probability yields to 
a less connected network than a lower initial probability.   
 

5.5 
In addition to that, the small number of additional links is m={0.37, 0.70} throughout 
N={8, 20000} and P(i)={0.0, 1.0} confirm that the Co-Author Model as a decentralized 
homogeneous model.  When 200,≥N then m=0.37, meaning that, in average, each 
existing link, ,Lij will only attract an additional 0.37 link.   Yet, figure 10 also shows that 
higher initial probabilities P(i) yield to a higher additional link m, which means that a 
more connected individuals also tend to attract more links.  This is contradictory to the 
utility function of the Co-Author Model (see section 2.2) that disfavors new links to 

 



individuals with more connections.  The difference in the number of additional link m 
between lower and higher initial probabilities P(i) can be attributed more to the aversion 
of individuals in conditions with lower initial probabilities P(i) due to their beliefs that 
adding new links will yield to a worse-off utility than to the possibility that individuals in 
conditions with higher initial probabilities attract more of additional links m.   
 

5.6 
The finding that the tipping-point of the diffusion of information is 0.05<r  throughout 
N={8, 20000} and P(i)={0.0, 1.0}, and 2000.0001, ≥N<r shows that it does not take 
too much of each individual's initiative to diffuse information in the Co-Author Model 
(figure 11).  This finding is consistent with Newman's (in press) finding that the tipping-
point will be smaller as the number of the individuals in the network increases.  Also 
recall that the observation of each individual is limited to her own component.  Hence, it 
is very plausible that the unanimous profile of beliefs gii }{Π ∈ is attributed to the diffusion 
of information from the dynamic interactions of individuals in the sequential network 
formation processes.  Therefore, the results show that observational limitation is not 
necessarily preventing information discussions as long as there are dynamic interactions 
of the individuals in the network. 
 

5.7 
The finding that the densities of the network at ( ) 0.50.0 <iP< and 200≥N are 
approaching the average number of link of the network in the Conjectural Pairwise 
Stability equilibrium state might suggest that the Co-Author Model will reach 
equilibrium state in pairwise format (figure 12 & 13).  However, the average individual 
utility levels, which are asymptotic to the values lower than 2.5, show that such 
equilibriums states are unattainable since the average individual utility for a pairwise 
network is 3.0 regardless of the number of individuals in network.  At ( ) 0.50.0 <iP< and 

200,≥N  the network densities simply mimic the average number of link of Conjectural 
Pairwise Stability.  However, the efficiency level is worse than the equilibrium states 
with lower densities whose initial probabilities are higher at ( ) 1.0.0.5 ≤iP<  

 

Conclusions 

6.1 
These analytical results show the role of observational limitation in creating the profile of 
beliefs, which affects the stability and efficiency of the Co-Author Model.  Although it 
does not show the mode for equilibrium, the proof of existence of a simultaneously 
efficient and stable equilibrium in the Co-Author Model diminishes the notion that an 
informal network cannot be efficient (Cross, Nohria, and Parker 2002).  The dichotomous 
labeling of networks as formal or informal might not explain the behaviors as well as 
other variables such as information control, structure, and initial conditions. 
 

 

 



6.2 
In his book, Schelling (1978) found that micro-level individual motives can lead to a 
different macro-level systems behavior.  In the Co-Author Model, observational 
limitation and low initiative at the individual level do not prevent diffusion of 
information in the network of the Co-Author Model, showing that the less predictable 
micro-level individual behaviors lead to a more predictable macro-level network 
behavior, which also confirms to a well-accepted notion that the increment in population 
diminishes the particular details, making the systems becomes more predictable.  
However, it also raises a question as to a generally accepted belief that a system's 
complexity increases as the number of its elements increases.  Therefore, those who are 
interested in the application of the Co-Author Model need to consider the effects of the 
aforementioned factors on the model.   
 

6.3 
The simulation findings show that the stability and efficiency of the Co-Author Model 
are also affected by the initial conditions: number of individuals in the network and the 
probability of the links in the network in its initial state.   Those two parameters affect the 
dynamic of the network formation processes of the model and yield to various states of 
equilibrium with different tipping-points of the information diffusion, additional links, 
and average individual utilities at the individual level and network densities and social 
utilities at the network level.  The findings in the article show that, although the 
individual utility function favors pairwise format to big components, low critical tipping 
point for diffusion of information and higher propensity for more connected individuals 
to attract new links suggest that the propensity of interactions affects information transfer 
more than the efficiency and stability of the network.  While this analysis advances the 
study of the Co-Author Model by including its formation process, it still does not explain 
the causes and the significance of the points at which the network behavior changes.  
There is also one interesting question left unexplored: the learning process itself, which 
deals with the adaptability of individual's strategy. 
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Notes 
1 See section 2 for the details of the model. 
2 This definition differs from the definition used in Sociology that requires at least 3 

nodes.  This definition also differs in that a dyad is defined as a link ij that is not 
contained in a larger clique. 

3 Another similar alternative measurement is network density.  However, Ng
A is used in 

this model since it describes the properties better.  The equation for network density 

 



would be ( ) .
2/1

gij,
NN

L
=D e

Ng
∈

−
 

4 Assuming that resources are limited, the opportunity cost of one's co-author sharing her 
resources with more people is lesser resources can be given to oneself.  A good 
analogy will be sharing one cake.  The more slices given to somebody else, the lesser 
slice oneself can get. 

5 Recall that social utility is the sum of all individual utilities in the network.   
6 P(i)={0.0, 1.0} covers all initial probability of the state of connectivity for the model.  

Increment of 0.1 is chosen since it exhibits differences in the results due to the change 
in initial probability without showing overt details. 

7 When ,N>ΣLij 2
the individual can assign probability gi=Π i ∈1, for her beliefs that 

every individual not in her clique belongs to a clique smaller than her own component.    
8 Conjectural Pairwise Stability require even number of N>6 for its stability condition 

(see corollary 1 in section 3.2.).  Hence, N starts from 8 in this model.  FORTRAN 90 
seems to have an upper limit to handle only to less than 50,000 individuals.  However, 
I ran the simulation only to N = 20,000 since it has shown a stable result. 

9 The fact that a model with homogeneous agents yield to a similar result to an empirical 
study with implicit heterogeneity among the agents also shows the potential robustness 
for the Co-Author Model. 

10 Department of Economics at University of California, Irvine. 
11 Institute for Mathematical Behavioral Sciences at University of California, Irvine and 

also Santa Fe Institute. 
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Appendix 
 !The code runs on FORTRAN 90 
  

integer*1 edge(20000,20000) 
 integer iterations 
 real cedge(20000), u(20000),soc, sedge(20000),prob,sqr,sqr2,sqr3 
 iterations=50     !number of steps 
 open(2,file=output')      !saving all output files 
 
 do n=8,20000,2    !change the increment of the number of individuals as desired 
 do prob=0.0,1,0.1    !initial probability 
  
 !Assigning adjacency matrix 
 sqr=0 
 sqr2=0 
 sqr3=0 
 do j=1,n 
  do i=1,n 
   edge(i,j)=0 
  enddo 
  cedge(j)=0 
  sedge(j)=0 
 enddo  
 do j=1,n 
  do i=1,n 
   if (edge(i,j).ne.1) then 
    call random_number(z) 
    if (z.lt.prob) edge(j,i)=1             !assigning a random relation for authors 
    if (edge(j,i).eq.1.and.edge(j,i).ne.edge(i,j)) sedge(j)=sedge(j)+1 
    edge(i,j)=edge(j,i)  
   endif   
  enddo !enddo i 
  do i=1,n     !deleting loop  
   if (i.eq.j) then 
    edge(j,i)=0 
    edge(i,j)=0 
   endif 
  enddo  
  do i=1,n     !deleting asymmetries 
   if (edge(j,i).ne.edge(i,j)) then 
   edge(j,i)=0 
   edge(i,j)=0 
   endif 
  enddo  
  do i=1,n 
   if(edge(j,i).eq.1.and.sedge(i).ne.0)then  
   cedge(j)=(1/sedge(i))+cedge(j) 
   endif 
  enddo 
  if(sedge(j).eq.0) then 
  u(j)=0 
  else 
  u(j)=1+(1+1/sedge(j))*cedge(j)   !array for initial utility function 
  endif 
  soc=soc+u(j) 
  sqr=sqr+(sedge(j)**2) 
  sqr2=sqr2+sedge(j) 
 enddo  !enddo j 
 sqr3=0.5*(sqr2**2)/sqr 
  
 do k=1,iterations 
 soc=0 
 sqr=0 
 sqr2=0 
 do j=1,n 
  !reducing links? 
  do i=1,n  
  ut=0 

 



   if(edge(j,i).ne.0.and.sedge(i).gt.1.and.sedge(j).gt.1) then 
    cedge(j)=cedge(j)-(1/sedge(i)) 
    ut=1+(1+1/(sedge(j)-1))*cedge(j) 
    if(ut.gt.u(j)) then 
     u(j)=ut 
     sedge(j)=sedge(j)-1 
     else 
     cedge(j)=cedge(j)+(1/sedge(i)) 
    endif  
   endif 
   ut=0 
   !adding links? 
   if(edge(j,i).eq.0.and.sedge(j).eq.0)then 
    u(j)=3 
    sedge(j)=sedge(j)+1 
    edge(j,i)=1 
   endif 
   
   if(edge(j,i).eq.0.and.sedge(j).gt.n/2.and.sedge(j).lt.n-1)then 
    cedge(j)=cedge(j)+(1/sedge(i)) 
    ut=1+(1+1/(sedge(j)+1))*cedge(j) 
    if(ut.gt.u(j)) then 
     u(j)=ut 
     sedge(j)=sedge(j)+1 
     else 
     cedge(j)=cedge(j)-(1/sedge(i)) 
    endif  
   endif 
  enddo 
  soc=soc+u(j) 
  sqr=sqr+(sedge(j)**2) 
  sqr2=sqr2+sedge(j) 
 enddo  
 enddo 
 sqr3=0.5*(sqr2**2)/sqr 
 write(2,*) n,prob,soc,soc/n,sqr3,sqr3/(n ) 
 enddo 
 enddo 
 end 
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