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Abstract

This paper suggests a model of the process through which a set of symbols, initially without any
intrinsic meaning, acquires endogenously a conventional and socially shared meaning. This
model has two related aspects. The first is the cognitive aspect, represented by the process
through which each agent processes the information gathered during the interactions with
other agents. In this paper, the agents are endowed with the cognitive skills necessary to
categorize the input in a lexicographic way, a categorization process that is implemented by the
means of data mining techniques. The second aspect is the social one, represented by the
process of reiterate interactions among the agents who compose a population. The framework
of this social process is that of evolutionary game theory, with a population of agents who are
randomly matched in each period in order to play a game that, in this paper, is a kind of
signaling game. The simulations show that the emergence of a socially shared meaning
associated to a combination of symbols is, under the assumptions of this model, a statistically
inevitable occurrence.
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 Introduction

1.1
This paper suggests a process for the emergence of a socially shared meaning in a population of
agents, that is, the emergence of the convention by means of which all the agents of the
population associate the same meaning to the same combination of symbols.

1.2
The emergence of the meaning of words is a topic that has attracted the interest of researchers
both in the linguistic and social science fields. The main questions tackled are: how is it
possible that all the agents in a population adopt the same convention without the help of any
central authority? Who decides what the meaning of every word is? If the meaning of words is
not decided by any central authority, how does it emerge? Answering these questions is of
crucial importance in order to increase our understanding of the process through which one of
the most peculiar and relevant skills that characterize human beings, language, has emerged.

1.3
The model presented in this paper has been developed through the combination of two
connected but conceptually separated spheres: the cognitive sphere and the social sphere. The
cognitive aspect of the model describes the internal process through which the agent computes
the information it gathers from its environment in order to make a decision. The social part
describes the way the agents in the population interact with each other and the structure of the
strategic relations, that is, what each agent has, or wants, to do relatively to what the other
agents have, or want, to do.

1.4
The last ten years have seen the proposal of many models that simulate the process through
which language, and especially lexicon, emerge spontaneously from the random interaction
among a population of agents (Yanco and Stain 1993;Steels 1996;Steels and Vogt
1997;Oliphant and Batali 1997;Oliphant 1999;Smith 2001;Vogt 2001;Steels and Kaplan
2002;Vogt and Coumans 2003).

1.5
These models differ from each other both for the structure of the game the agents play and for
the cognitive process that take place inside the agents. While the first aspect determines the
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information the agents gather from the interaction, the second one concerns the algorithm
through which the agents compute the information at their disposal in order to develop
connections between symbols and meanings.

1.6
Regarding the structure of the interaction the models proposed so far adopt the general
structure of the language game introduced by Steels (1996) in which there is an agent, the
speaker, who produces a signal in order to communicate a certain meaning, and an agent, the
hearer, who receives the signal and tries to assign a meaning to it. The game is successful when
the meaning intended by the speaker matches the meaning understood by the hearer.

1.7
From this general model, two variants can be distinguished:

a. the models where the hearer can observe the meaning the speaker refers to with its signal
(Oliphant 1999);

b. the models where the information about the meaning is not available to the hearer and
where speaker and hearer can only assess the success of the interaction (Steels and
Kaplan 2002).

1.8
Concerning the cognitive process through which the information is computed, there are many
algorithms suggested by the literature on this subject. Among others, we can mention:

a. corrective feedback. Each agent is endowed with a vector of association scores that
contains the weights of the connections between word-meaning pairs and that allows the
speaker to associate, when facing a given meaning, a particular word and the hearer to
associate a particular meaning to a given word. After every interaction these scores are
updated: if the game has been successful the weight w between the meaning and the
word observed in that game is strengthened by adding to it the value v, if the game has
not been successful it is weakened by subtracting from it the value v, where v = w* p,
with p being generally a real number between 0 and 1 (Yanco and Stain 1993;Vogt
2001;Vogt 2002;Steels and Kaplan 2002).

b. hebbian networks (Oliphant 1999). A network consists of two elements: a set of signals
and a set of meanings. Each pair word-meaning is characterized by a connection with a
certain weight. When the agent observes, during an interaction, a particular pair word-
meaning it increases the weight of that connection by 1 and, at the same time, decreases
by 1 the weights of:

1. the connections between the observed word and the other (not observed) meanings;
2. the connections between the observed meaning with the other (not observed) words;

All the other weights are left unchanged.
c. Bayesian learning. According to this learning process, the weight of the connection

between a word w and a meaning m is given by the conditional probability that given the
meaning mj we can expect the word wi. If we have a number of words W and a number of
meanings M, we will have a W × M matrix of conditional probabilities P(w/m), with the
generic element pij representing the conditional probability that given the meaning mj we
can expect the word wi. This conditional probability, that represents the weight of the
connection between the pair wi - mj, is given by the formula (1):

(1)

However, with the same set of words and meanings, we can build a M x W matrix of
conditional probabilities P(m/w) each element of which represents the conditional
probability that given a word wi we can expect the meaning mj. The generic element of
this matrix pji is given by the formula (2):

(2)

A speaker who uses this second conditional probability matrix, in a certain way, adopts
the point of view of the hearer, asking itself what is the meaning that the hearer would
expect to be associated to the word sent by the speaker. It is the so-called obverter
learning introduced by Oliphant and Batali (1997).

1.9
Regarding the structure of the interaction, in this paper the speaker can show the meaning to
the hearer with a certain cost, so it will do so only if the hearer does not understand correctly its
signal. By communicating the real meaning, the speaker increases the chances that the next
encounter among the two players will have a successful outcome. Concerning the cognitive
process of the agents, an algorithm based on data mining techniques will be proposed, an
induction process that allows the agents to develop decision trees through which they can
associate a certain meaning to the signal they receive.

1.10
Compared to the existing literature on the argument, this paper not only proposes a new
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lexicon formation process but considers a much larger population, with 200 agents that are
randomly matched in every period, while previous works on the subject consider much smaller
populations. Even with this relatively large number of agents, the population reaches perfect
coordination with a number of periods that is very low compared to the results that are typically
obtained in this kind of models.

 Theoretical framework

2.1
In this paper, the social aspect of the model is based on the framework of evolutionary game
theory, where in each period every agent is randomly matched with another agent of the
population in order to play a particular game. From the interaction each player gets a pay-off
specified by the game's pay-off matrix. While in the classical evolutionary game theory each
agent is associated with a strategy and its reproductive success depends on its cumulated pay-
off, in this paper every agent can choose a strategy among a set of strategies and, so, every
agent has to decide, in each match, what to do.

2.2
In a game, the best action for a player depends on the action of its partner. So, the problem an
agent faces in each match is to forecast somehow its partner's move. The agent's forecast
depends on the information it could get from the previous games (its experience), on the
information it can get from the current game and on the decision process through which the
agent computes this information.

2.3
One example is the decision process called fictitious play: the agent is endowed with a vector of
frequency indexes (one for every strategy) that it updates after every match according to the
strategy the agent's opponent played. This vector summarizes the historic information about the
choices the agent's opponents made in the past matches, giving the agent a probability
distribution over its opponent's choice. On the basis of this information, the agent can choose
the strategy with the best expected pay-off.

2.4
Generally speaking, every model where the agents have to make a decision among a set of
actions has to include assumptions about the information the agent can gather and the
cognitive mechanism, or algorithm, through which the agent processes the information at its
disposal.

2.5
The cognitive aspect of the model presented in this paper is based on the Fast and Frugal
Heuristics Theory (FFHT) introduced by Gigerenzer and Goldstein (1996). In the decision
process model suggested by the FFHT, the agent classifies a situation by means of a mental
model built from its experience. The main point of the FFHT is that the agents classify the
situations in a lexicographical way, that is, considering sequentially a certain number of
attributes on the basis of their relevance in discriminating different situations. The mental
model through which the agent classifies the situations can be represented by a decision tree
where each node is an attribute and the branches that depart from it represent the possible
attributes' states. For instance, considering situations characterized by three attributes
(Attribute 0, Attribute 1 and Attribute 2) that can be in each period in one of two states (0 or 1)
and an agent that is endowed with two possible actions (A or B), we can have the mental model
illustrated in Figure 1.

2.6
The numbers in the ovals are the attributes' indexes, the numbers besides the arrows are the
possible attributes' values and the letters in the rectangular shapes, the tree's leaves, are the
agent's possible actions. The decision tree in Figure 1 shows that the agent looks first at
Attribute 2's value and, if this value is 0, its decision process does not proceed further: it
chooses action B. If, however, the value of Attribute 2 is 1, the agent considers Attribute 0's
value: if it is 0 it will choose action A, otherwise it will consider the last attribute, Attribute 1.
For example, given the mental model shown in Figure 1, facing the situation 011 the agent will
choose action A. The mental model allows the agent to associate an action to every situation it
can encounter.

2.7
The FFHT, however, does not tell us anything about the process through which the agent builds
its mental model. Indeed, the purpose of the authors of this theory is to show that this
lexicographic decision process is in many cases as successful as other classical classificatory
techniques, such as the multiple linear regression.

2.8
In this paper I have tried to suggest a model of decision tree's formation and evolution based on
an inductive process that the agents perform on the database of their experiences. In particular,
the model of the induction process presented here is based on data mining techniques.
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Figure 1. A mental model

 Data Mining

3.1
Data mining techniques are used to look for regularity or patterns in a database composed by
vectors of historical values of a certain number of variables and have been used in this paper to
develop the model of the induction process that allows the agents to detect regularities, and so
to make generalizations, from their experiences' database.

3.2
Data mining techniques differ from other forecasting techniques, like the multiple linear
regression, for two characteristics that make these techniques particularly suitable for the
construction of a model of the decision making process in this paper's context. First of all, the
variables that compose the database on which the data mining techniques are applied are
discrete. Also when the variables are continuous, they have to be transformed in discrete
variables through the introduction of appropriate ranges. In the context of this paper, where
social interaction takes the form of a game, this is an advantage because in a game, typically,
the agent's strategy space is discrete.

3.3
Second, and most important, the regression techniques are compensatory, that is, all the
variables are considered without any particular order: what we do is simply to add all the
variables' values after having multiplied them by appropriate weights. The data mining
techniques, instead, are lexicographic: they classify the different variables according to their
relevance in the classification process. Indeed, while the output of a regression analysis is a
linear equation, the outcome of the data mining analysis can be represented as a decision tree
that orders hierarchically the independent variables from the most to the least relevant, with
leaves that represent the outcome of the decision process.

3.4
For example, we can consider the database shown in Figure 2.

Figure 2: A generic database

Var. 1 Var. 2 Var. 3 Var. 4 Dep. Var.
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
... ... .... .... ...
1 0 1 1 1
1 1 0 0 0
1 1 0 1 2
.... .... .... .... ...
2 1 1 1 0
2 0 1 0 0
2 0 0 1 2

3.5
This is a database composed by the values of five binary variables, four independent variables
and one dependent variable. Each line of the database represents an instance: the first line, for
example, represents an instance where Var. 1 is in the state 0, Var. 2 is in the state 0, Var. 3 is
in the state 1 and Var. 4 is in the state 0, while the dependent variable is in the state 0. We can
see that all the variables have discrete values: Var. 1 can be in the states 0, 1 or 2, Var. 2 can be
in the states 0 or 1 and so on. What we want to know is the state of the dependent variable



given the states of the four independent variables.

3.6
By applying the regression techniques, the outcome will be a linear equation in the following
general form:

Dep. Var. = W1*Var. 1 + W2*Var. 2 + W3*Var. 3 + W4*Var. 4

where W1, W2, W3 and W4 are the weights of the independent variables.

3.7
The purpose of the application of data mining is, instead, to make the structure, or the logic,
that lies behind this list of instances emerge. In other words, through the data mining
techniques we can extract knowledge from the database, discovering not just statistical
relations among variables, but the theoretical or logic structure of the database. Relatively to
the database represented in Figure 2, these techniques would allow us to obtain, for example,
the outcome shown in Figure 3.

3.8
Figure 3 shows a tree like the decision tree introduced as a model of the agent's mental model
by the FFHT. We can see that the most important variable to forecast the value of the dependent
variable is Var. 4: if it has the value 0, we don't need to consider any other variable because we
can already forecast that the dependent variable will be in the state 0. If Var. 4 has the value of
1, instead, we need to consider also Var. 3 : if it has the value 0 we forecast that the dependent
variable will have the value 2, otherwise we have to consider Var. 2. From this tree we can see
that Var. 1 has no impact on the value of the dependent variable.

Figure 3. The decision tree resulting from data mining analysis performed on the database
shown in Figure 2

3.9
While in the case of multiple linear regression we commonly speak of forecasting techniques,
data mining is usually considered a classificatory technique. However, this distinction depends
on the nature of the variables typically considered by the two techniques. In general, if the
independent variables and the dependent variable are variables that belong to different periods
we will normally talk of forecasting analysis. One example could be the analysis of a database
consisting of independent variables that describe the meteorological conditions of a given day
and the dependent variable representing the presence or absence of rain the following day. If,
instead, the variables that compose the database do not have a temporal dimension we then
talk of classificatory analysis. One example would be the analysis of a database where the
independent variables are the attributes of a tree's leaf (dimension, shape, colour, etc.) and the
dependent variable is the tree's kind.

3.10
To summarize, data mining techniques allows us to develop the decision tree by the means of
which, according to the FFHT, the agent analyses the situations it has to react to. But while the
FFHT does not tell us how to build this decision tree, data mining gives us the algorithm we
need to build it from the database of the agent's experiences. In this way, the agent's decision
tree becomes the product of two linked processes: the cognitive process, internal to the agent,
and the social and historic process, represented by the agents' interactions with each other. In
fact, here we have a feed-back process: the interactions among the agents produce their
experiences; these experiences, through the induction process, produce the agents' mental
models; the agents' mental models determine the agents' behaviour and, thus, the experiences
they undergo.

3.11
Now, an example is presented to describe the data mining technique used in the model
presented in this paper. We consider the database of Figure 4. It is formed by three independent
variables ( I1, I2, I3 ) and one dependent variable (V), whose values have been stored for 20



periods. The first and the third independent variables and the dependent variable are binary
variables: they can have values 0 or 1. The second independent variable can have the values 0,
1 or 2.

3.12
The first task of data mining is to find out the first independent variable of the decision tree. In
order to do so, we have to compute the average information value of each independent variable.

3.13
According to the information theory, the information value of a database is 1 minus the entropy
of the database. The database entropy is defined as the number of bits required to specify the
class of an instance given that it belongs to the database. The entropy value can go from 0, if
the information that an instance belongs to the database is all we need to classify the instance,
to 1, if the fact that the instance belongs to the database does not gives us any useful
information about its class.

3.14
If we call N the total number of instances in a database composed by an dependent variable that
can have r values, n0 the number of instances whose value is 0 and n1 the number of instances
whose value is 1, the entropy E of a database is given by (3):

E = - ( n 0/ N)log r ( n 0/ N) - ( n 1/ N)log r ( n 1/ N) (3)

For example, if we look at the dependent variable column of the database of Figure 10, we see
that there are 8 instances that have value 0 and 12 instances that have value 1. The entropy of
this database is given by:

E(D) = - (8/20)log2 (8/20) - (12/20) log2 (12/20)

3.15
Therefore, the entropy of the database is 0.971. It represents the additional number of bits we
need in order to classify an instance given that it belongs to the database. The information value
of the database info(D) is:

info(D) = 1- 0.971 = 0.029

3.16
If the database was composed by an equal number of 0's and 1's, the entropy would be 1 and
the information value of the database 0: the fact that an instance belongs to the database, in
this case, would not give us any useful information regarding its class. Conversely, if the
database was composed, for example, by twenty 1s, the database's entropy would be 0 and the
information value 1. The fact that an instance belongs to the database would give us all the
information we need to classify the instance: it has to belong necessarily to class 1.

Figure 4 A database

I1 I2 I3 V
1 0 2 1 1
2 0 1 0 1
3 0 2 0 1
4 1 2 1 0
5 0 1 1 0
6 1 0 1 0
7 1 2 1 1
8 0 0 0 1
9 0 0 0 0
10 1 0 1 1
11 1 1 0 0
12 1 1 1 0
13 1 1 0 0
14 1 2 0 1
15 0 1 0 1
16 1 1 1 0
17 0 1 0 1
18 0 1 0 1
19 0 2 0 1
20 1 0 1 1

3.17
With these basic information theory concepts we are now able to compute the average
information value of each independent variable. For each independent variable we can identify
as many subsets of the dependent variable vector as the values the variable can have. For



example, let's consider variable I1. It can have value 0 or value 1, so we can build two subsets
from the initial database of Figure 4: the subsets of instances where I1 is 0, that we call V(I1=0),
and the subset of instances where I1 is 1, V(I1=1) (Figure 5 and Figure 6). Now we can calculate
the entropy of each database.

E[V(I1=0)] = - (2/10)log2 (2/10) - (8/10) log2 (8/10) = 0.722

E[V(I1=1)] = - (6/10)log2 (6/10) - (4/10) log2 (4/10) = 0.971

Figure 5: Figure 5: V(I1=0)

V(I1=0)
1
1
1
0
1
0
1
1
1
1

Figure 6: Figure 6: V(I1=1)

V(I1=1)
0
0
1
1
0
0
0
1
0
1

3.18
Being the dimension of both the subsets 10, the average entropy of variable I1, that we call
E(I1), is:

E(I1) = (10/20) * 0.722 + (10/20) * 0.971 = 0.846

3.19
For the information theory, it means that if we know the value variable I1 has in a particular
instance, to correctly classify that instance we need, on average, 0.846 additional bits. The
average information value of I1, info(I1), is, consequently:

info(I1) = 1- 0.846 = 0.154

3.20
We now repeat the procedure for the second independent variable I2. First, we have to build the
subsets of the original database. Being I2 a variable that can have three values, we will identify
three subsets, that are represented below (Figure 7, Fig 8 and Figure 9).

3.21
The first database contains the class of instances where I2 has value 0, the second database
contains the class of instances where I2 has value 1 and the third database contains the class of
instances where I2 has value 2. We calculate the databases' entropies:

E[V(I2=0)] = - (2/5)log2 (2/5) - (3/5) log2 (3/5) = 0.971

E[V(I2=1)] = - (5/9)log2 (5/9) - (4/9) log2 (4/9) = 0.994

E[V(I2=2)] = - (1/6)log2 (1/6) - (5/6) log2 (5/6) = 0.649

Figure 7: V(I2=0)



V(I2=0)
0
1
0
1
1

Figure 8: V(I2=1)

V(I2=1)
1
0
0
0
0
1
0
1
1

Figure 9: V(I2=2)

V(I2=2)
1
1
0
1
1
1

3.22
Given the databases' dimensions (respectively 5, 9 and 6), the average entropy of variable I2 is:

E(I2) = (5/20) * 0.971 + (9/20) * 0.994 + (6/20) * 0.649 = 0.885

3.23
The average information value of I2 is:

info(I2) = 1- 0.885 = 0.115

3.24
Following the same procedure, we find the average information value of variable I3:

info(I3) = 1- 0.912 = 0.088

3.25
So, the most informative variable, that is the variable with the highest average information
value, is variable I1 and so this is the first variable of the decision tree. Being variable I1 a
binary variable, the root of the decision tree will have two branches, one for each possible value
of variable I1 (Figure 10).

Figure 10. First node

3.26
The next step is to find out the variable with the highest average information value for each
branch, excluding variable I1 that has already been chosen as root of the decision tree. This
means building a database for each branch: a database of instances where I1 has value 0 and a
database where I1 has value 1 (Figure 11 and Figure 12).

Figure 11: D(I1 = 0)



I2 I3 V
1 2 1 1
2 1 0 1
3 2 0 1
4 1 1 0
5 0 0 1
6 0 0 0
7 1 0 1
8 1 0 1
9 1 0 1
10 2 0 1

Figure 12: D(I1 = 1)

I2 I3 V
1 2 1 0
2 0 1 0
3 2 1 1
4 0 1 1
5 1 0 0
6 1 1 0
7 1 0 0
8 2 0 1
9 1 1 0
10 0 1 1

3.27
For each of them we will calculate the average information value of I2 and I3 and we will choose
for each node the variable with the highest average information value, determining in this way
the two second best variables of the decision tree.

 The Model

4.1
The model presented in this paper is an agent-based computational model and, as such, it has
to be described at two different levels: the agent's level and the population level. At the first
level we have to describe the agent, with its characteristics and skills, while, at the second level,
we have to describe the way the agents who compose a population interact with each other.

4.2
In this model, each agent is endowed with a string of three attributes, or symbols. Each of them
can be freely set by the agent in state A or B. The agents, therefore, can set the state of the
whole string to one of eight possible states (AAA, AAB, etc.). Moreover, each agent can see the
state of the string of other agents with whom it interacts, so the string becomes a way the
agents can send messages to their partners in each game.

4.3
The agents are endowed with a memory where they store the messages observed in the past.
The size of the memory, that is the number of instances in the agent's database, is a parameter
of the model. New experiences enter the agent's database with a FIFO system: when the agent's
memory is full the oldest experience in the database is discarded to make room for the most
recent experience.

4.4
The agents are endowed with the cognitive capacity to perform data mining algorithms on their
memory's database, a capacity that allows them to draw deductive inferences from their
experiences. To see the use the agents make of these gathering, storing and processing skills,
we have to describe the second level of the model, the social process of reiterate interactions
among the agents of the population.

4.5
The game can be defined as a common-interest signaling game: one of the two players, Player S
(the sender) draws a number from an urn containing the eight integers from 0 to 7 and, after
having seen the number, sends a message to its partner, Player R (the receiver). The information
about which number has been drawn by Player S is not available to Player R, who can observe
only the message sent to it by Player S. Player S can send one of the eight possible messages by
combining the three binary attributes it is endowed with. The fact that one of the players sends
a message to the other player makes the game a signaling game.

4.6
The pay-off the two players get from the interaction depends on the capacity of Player R to



guess correctly which number has been drawn by Player S: if Player R guesses correctly both
players get a pay-off of 1, while if it guesses wrongly both get a pay-off of 0. The fact that it is
in the interest of both players that Player R guesses correctly makes the game a common-
interest game.

4.7
At the end of the game, if Player R's guess is wrong, Player S discloses the number it meant with
its message. This information exchange does not increase the players' pay-off in the current
game but, given the positive likelihood that the two players will meet again in subsequent
games, it is in the interest of Player S to disclose this information in order to increase the
chance that the two players will coordinate in the future. Therefore, we can say that in the game
proposed in this paper, the sender has the role of the teacher and the receiver the role of the
learner.

4.8
To summarize, in each match Player S draws a number and sends a message to Player R, who
observes the message and guesses which number has been drawn by Player S. After Player R's
guess, if the guess is wrong Player S will show its partner which number it actually meant by its
message.

4.9
At the beginning of the simulation there is no socially shared convention that associates a
number to a message, so the only thing Player S can do is to send Player R a message chosen
randomly among the eight possible messages. At the same time, Player R can only make a
random guess among the eight integers Player S can draw. Of course at the beginning Player R's
guesses will be right, on average, one every eight matches.

4.10
After every match, the players will update their database with the information they could get
from the interaction: a message and a number associated to the message. Both players will
memorize the message sent by Player S with the number it drew. In the database of the two
players, each one of the three attributes of the message represent an independent variable and
the number associated to the message represents the dependent variable. For instance, the
database of a generic agent, who we call agent Tom, could be the one shown in Figure 13.

4.11
The last row tells us the input coming from agent Tom's last experience. In this last game agent
Tom could be the sender or the receiver. In the first case, 2 is the number it drew and AAB is
the message it sent to its partner. If agent Tom was, instead, the receiver, then 2 is the number
drew by its partner and AAB is the message it was sent by Player S.

4.12
In every period, new couples are randomly formed, so that in every game each agent is likely to
meet a different agent from the one it met in the previous game. Moreover, in every game the
roles are randomly assigned, so that each player will find itself to be, on average, the sender in
half of the games and receiver in the other half.

Figure 13: Agent Tom experiences' database

Symbol 0 Symbol 1 Symbol 2 Number
A B A 5
B A A 0
B B A 7
... .... .... ...
B A B 2
B B A 6
A A A 6
.... .... .... ...
A B B 4
A B B 3
A A B 2

4.13
As said before, for the first matches the players will choose random messages and will make
random guesses. However, after a certain number of matches, a number that is a parameter of
the model and that in the simulations presented below has been set equal to the agent's
memory size, the agents will begin to draw inductive inferences from their experiences. These
inferences will allow each player to develop expectations regarding the meaning a particular
message has for the other players: Player S will use these expectations to send the right
message given the number it has drawn and Player R will use them to guess the right number
given the message it has been sent. In other words, Player S will send the message that it
believes Player R will associate to the number Player S has drawn, and Player R will choose the
number it believes Player S associates to the message Player S sent.

4.14
The tool the agents use to draw inductive inferences from the database of their experiences is



the data mining technique described above. So, their expectations about other agents'
messages meaning will take the form of a decision tree. The agent's expectations will be
referred to as the agent's mental model. For example, let's consider a match with two players
having developed the mental models shown below in Figure 14 and Figure 15.

Figure 14. Player S Mental Model

Figure 15. Player R Mental Model

4.15
Player S draws the number 7. Its mental model (Figure 14) tells it that the message the other
player is likely to associate to the number 7 is AAB, because the number 7 is at the end of the
path where the second symbol of the message (Sym 1) is A, the first symbol (Sym 0) is A and the
last symbol (Sym 2) is B. So, it sends the message AAB to Player R. Player R gets this message
and reads it through its mental model (Figure 15). It tells the agent that with the message AAB
the other player probably meant the number 3 because this is the number we find following the
path (Sym0=A)-(Sym2=B)-(Sym1=A). Therefore, the number 3 is its guess. In this match, Player
B's guess is wrong so both players get a pay-off of 0. At this point, Player S communicate to
Player R the right number and both players will update their database with this last experience,
memorizing the message AAB associated to the number 7. The updated database will cause
both players to draw new inductive inferences and, thus, to change their mental model.

4.16
The number of experiences after which the mental model gets updated, that we will call the
mental model updating lag, represents the third parameter of the model: its value can go from
1, if the agent makes new inductive inferences after every match, to the agent's memory size.

4.17
What has been described above is a feed-back process where the experiences the agents make
determine their mental models and their mental models, in turn, determine their behaviour and,
so, their experiences. The question we try to answer with the simulation that will be presented
below is: what will be the outcome of this process? Will the population ever reach an equilibrium
where the agents' mental models get confirmed by their experiences? That is, will the system
develop a socially shared lexicon, a convention where the agents associate the same numbers to
the same messages?

 Simulation Results

5.1
The aim of the simulations is to show if a population of agents having the cognitive skills
specified above will ever develop a common understanding of the messages they can produce,
that is, if the agents will develop a socially shared convention that makes them mean the same
thing with the same combination of symbols. In this case, the agents will reach a perfect



coordination equilibrium, a situation where in every match that takes place in every period,
Player R can always guess, by reading the message it gets from Player S, the number drawn by
the latter.

5.2
To run the simulations the following parameters are set:

number of agents: 200
number of words: 8
length of memory (periods): 60
mental model updating lag (periods): 1

5.3
The number of agents who successfully coordinate with their partner is the variable we want to
track. Considering a population of 200 agents, this number can vary from 0, when in all the 100
games the players failed to coordinate, to 200, when in all the games the players coordinated
successfully. Of course, at the beginning, when all the receivers guess randomly, the value of
coordination degree will fluctuate around the value of 25 because in only one every eight games
Player R will guess the number Player S actually drew.

Figure 16. Number of agents who coordinate successfully

5.4
A typical result of the simulations is shown in Figure 16. As the graph shows, after the first
stage, lasting approximately 400 periods, the number of agents who coordinate successfully
begins a quite rapid growth that ends after about 900 periods, when a social convention gets
established that allows a perfect coordination among the agents. The simulation shows that the
population as a whole converges quite rapidly towards an equilibrium represented by a situation
where the same message means the same thing for all the agents of the population. The
emergence of a socially shared lexicon looks like a transition phase.

Figure 17. Number of messages chosen

5.5
Regarding the messages chosen by the agents, Figure 17 shows that all the 8 words are chosen
statistically with the same frequency. This means that the cognitive process proposed is
successful in assigning a word to each number and synonyms do not emerge.

5.6
The following four graphs show the result of simulations run with parameters set at different
values, in order to tackle the issue of scalability of the model. The four main parameters we



focused on are:

the number of agents
the number of words and numbers
the memory's length
the mental model updating lag

5.7
The graphs shown in Figure 18, 19, 20 and 21, show the average number of periods that it took
to reach the perfect coordination over 10 runs with different parameters values. As we can see
from he graph shown in Figure 18, the time it takes to reach equilibrium increases less than
proportionally increasing of the number of agents: doubling the population's size from 200 to
400 (+100%) increases the average time to reach the equilibrium from 900 to 1100 (+22%).

Figure 18. Average Number of Periods to reach equilibrium: the effect of the population's size

5.8
Instead, the graph shown in Figure 19, shows that the complexity of the environment the agents
face, that is the number of objects they have to name and the number of words the agents can
produce, is a crucial factor for the emerge of a shared lexicon: in fact, doubling the number of
words from 8 to 16 increases the number of periods it takes to reach the equilibrium by a factor
of 2.7, from 900 to around 2500 periods. This may suggest that the expansion of a population's
vocabulary is a process that proceeds by stages: once the agents in the population have
succeeded in naming few basic concepts by the means of short set of symbols, they can use
these strings of symbols as building blocks to name other, more complex, concepts.

Figure 19. Average Number of Periods to reach equilibrium: the effect of the words' number



Figure 20. Average Number of Periods to reach equilibrium: the effect of the memory's length

5.9
The graphic of Figure 20, shows the effect of the memory's length on the average time it takes
to reach the equilibrium. It shows that there is an optimal length, that in this case is 60, below
and above which the average number of periods increases. This may suggest that there is a
trade-off between the variability of the mental models, and, so, the variability of the agents'
behaviour, and the rigidity of the mental models relatively to out-of-date experiences. In other
words, the mental models should be stable enough to constitute a reliable basis for other
agents' expectations but should not be so stable not to adapt to new evidence.

5.10
Finally, the graphic of Figure 21 shows the effect of different mental memory updating lags. The
graphic shows that the more often the mental models are updated the better for the emergence
of the social convention, but the effect is less than proportional.

Figure 21. Average Number of Periods to reach equilibrium: the mental model updating lag

 Conclusions

6.1
This paper has proposed a model of the process through which different combinations of
symbols are assigned a socially shared meaning by a population of agents without any central
authority intervention. The simulations have shown that, given certain assumptions about the
agents' cognitive skills, a process of iterated bilateral interactions among randomly paired
agents leads inevitably to the emergence of a social convention that allows the agents to
'understand' each other. The simulations show that, given the induction process presented in
this paper, a social convention can emerge in relatively few periods even with a relatively large
population, a result that distinguishes the results of this paper from the results of previous
studies on the argument, where the emergence of a shared convention takes a very long time
even with few agents.

6.2
Of course, every simulation leads to a different convention. With eight messages available to
describe eight objects, there are 40320 different conventions. Which one of them is actually
adopted by the population depends on a series of random fluctuations, or historical accidents.
However, after a particular convention emerges it is very stable because every agent's behaviour
confirms every other agent's expectation. We can say that the feed-back process experiences-
expectations-experiences reaches a steady state, or equilibrium, where the expectations
produce experiences that confirm the expectations.

6.3



We have to observe that once a convention has emerged, the decision about what message to
send and what to respond to a message that has been received does not need to go through all
the data mining process that allowed the selection of a particular equilibrium: the agents simply
learn to associate a message to a number, in an automatic way.

6.4
This model, not only suggests a possible mechanism for the emergence of the meaning of
words, but supports, indirectly, the cognitive process suggested by the FFHT, that is, the
lexicographic analysis of input by the means of a decision tree. The model presented in this
paper goes a step further because it suggests a possible endogenous process, implemented
using data mining techniques, through which the agents' decision trees form and co-evolve on
the basis of the agents' experiences.
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 Appendix

The code has been written in Java and consists of two classes: the agent and the class
containing the function main() that we called Society.

The Agent class

import java.util.ArrayList;
import java.util.Random;
public class Agent {
private int Address;
private int Object;
private int Age;
private boolean Forecast;
private boolean DT;
private int[] Word;
private int MemoryLenght;
private int Period;
private int[][] Sym;
private int[] Meaning;
private int Root;
private int[] SnNode;
private int[][] TrNode;
private int[][][] TrNodeLeaf;
private int Guess;
private int numberObjects;
private int wordLenght;
private int numberSymbols;
Random rand = new Random();
private int numAgents;
private int LearningPeriod;
public Agent (int i, int no, int wl, int ns, int p, int m) {
 rand.setSeed(Society.get_Seed()*(i+1));
 Address = i;
 numberObjects = no;
 wordLenght = wl;
 numberSymbols = ns;
 numAgents = p;
 Period = 0;
 MemoryLenght = m;
 LearningPeriod = MemoryLenght-2;
 Root = -1;
 DT = false;
 Sym = new int[wordLenght][MemoryLenght];
 Meaning = new int[MemoryLenght];
 Word = new int[wordLenght];
 SnNode = new int[numberSymbols];
 TrNode = new int[numberSymbols][numberSymbols];
 TrNodeLeaf = new int [numberSymbols][numberSymbols][numberSymbols];
}

public void build_DecisionTree() {
 if ( Period > LearningPeriod && rand.nextDouble() < 0.2 ) {
 DT = true;
 double[][] cs = new double[wordLenght][numberSymbols];
 double[][][] csm = new double[wordLenght][numberSymbols][numberObjects];



 double[] infoVal = new double[wordLenght];
int[][][][] countWord = new int[numberSymbols][numberSymbols][numberSymbols][numberObjects];
 for ( int i = 0; i < numberSymbols; i++ ) {
  for ( int j = 0; j < numberSymbols; j++ ) {
   for ( int y = 0; y < numberSymbols; y++ ) {
     for ( int k = 0; k < numberObjects; k++ ) {
     countWord[i][j][y][k] = 0;
     }}}}
 for ( int j = 0; j < wordLenght; j++ ) {
  infoVal[j] = 0;
  for ( int i = 0; i < numberSymbols; i++ ) {
   cs[j][i] = 0;
    for ( int z = 0; z < numberObjects ; z++ ) {
     csm[j][i][z] = 0;
    }}}
 for ( int j = 0; j < wordLenght; j++ ) {
  for ( int y = 0; y < numberSymbols; y++ ) {
  for ( int i = 0; i < Period ; i++ ) {
   if ( Sym[j][i] == y )
    cs[j][y] += 1;
   for ( int z = 0; z < numberObjects ; z++ ) {
    if ( Sym[j][i] == y && Meaning[i] == z )
      csm[j][y][z] += 1;
   }}}}
 for ( int j = 0; j < wordLenght; j++ ) {
  for ( int i = 0; i < numberSymbols; i++ ) {
    for ( int z = 0; z < numberObjects ; z++ ) {
if ( cs[j][i] != 0 && csm[j][i][z] != 0 )
infoVal[j] += 
cs[j][i]*(-1*(csm[j][i][z]/cs[j][i])*Math.log(csm[j][i][z]/cs[j][i]));
   }}}
 double bestIV = infoVal[0];
 for ( int j = 1; j < wordLenght; j++ ) {
  if ( infoVal[j] < bestIV ) { 
   bestIV = infoVal[j];
  }}
 int[] check2 = new int[wordLenght];
 for ( int k = 0; k < wordLenght; k++ ) {
  check2[k] = 0;
 }
 for ( int h = 0; h < wordLenght; h++ ) {
  if ( infoVal[h] == bestIV )
   check2[h] = 1;
 }
 int f;
 do {
  f = rand.nextInt(wordLenght);
 }while (check2[f] == 0);
 Root = f;
 int countSR;
 for ( int q = 0; q < numberSymbols; q++ ) {
  countSR = 0;
  for ( int r = 0; r < Period ; r++ ) {
   if ( Sym[Root][r] == q ) 
    countSR += 1;
  }
 int[][] srSym = new int[wordLenght-1][countSR];
 int[] srMea = new int[countSR];
  for ( int j = 0, y = 0; j < wordLenght-1 && y < wordLenght; ) {
   int p = 0;
   if ( Root == y )
    y += 1;
   for ( int i = 0; i < Period ; i++ ) {
    if ( Sym[Root][i] == q ) {
    srSym[j][p] = Sym[y][i];
    srMea[p] = Meaning[i];
    p += 1;
    }
    }
   j += 1;
   y += 1;
  }
  double[][] sr_cs = new double[wordLenght-1][numberSymbols];
  double[][][] sr_csm = 
            new double[wordLenght-1][numberSymbols][numberObjects];
  double[] sr_infoVal = new double[wordLenght-1];
    for ( int j = 0; j < wordLenght-1; j++ ) {
     sr_infoVal[j] = 0;
     for ( int i = 0; i < numberSymbols; i++ ) {
      sr_cs[j][i] = 0;
     for ( int z = 0; z < numberObjects ; z++ ) {
      sr_csm[j][i][z] = 0;
       }}}
    for ( int j = 0; j < wordLenght-1; j++ ) {
     for ( int y = 0; y < numberSymbols; y++ ) {
     for ( int i = 0; i < countSR ; i++ ) {
      if ( srSym[j][i] == y )
       sr_cs[j][y] += 1;
      for ( int z = 0; z < numberObjects ; z++ ) {
       if ( srSym[j][i] == y && srMea[i] == z )



        sr_csm[j][y][z] += 1;
      }}}}
    for ( int j = 0; j < wordLenght-1; j++ ) {
     for ( int i = 0; i < numberSymbols; i++ ) {
          for ( int z = 0; z < numberObjects ; z++ ) {
   if ( sr_cs[j][i] != 0 && sr_csm[j][i][z] != 0 )
 sr_infoVal[j] += sr_cs[j][i]*
(-1*(sr_csm[j][i][z]/sr_cs[j][i])*Math.log(sr_csm[j][i][z]/sr_cs[j][i]));
      }}}
    double sr_bestIV = sr_infoVal[0];
    for ( int j = 1; j < wordLenght-1; j++ ) {
     if ( sr_infoVal[j] < sr_bestIV )  
      sr_bestIV = sr_infoVal[j];
     }
    for ( int k = 0; k < wordLenght-1; k++ ) {
     check2[k] = 0;
     }
    for ( int h = 0; h < wordLenght-1; h++ ) {
     if ( sr_infoVal[h] == sr_bestIV )
      check2[h] = 1;
     }
    do {
     f = rand.nextInt(wordLenght-1);
    } while (check2[f] == 0);
    SnNode[q] = f;
    if ( Root == 0 ) {
     SnNode[q] += 1;
    }
    if ( Root == 1) {
     if ( SnNode[q] > 0 )
     SnNode[q] += 1;
    }  
        for ( int k = 0; k < numberSymbols; k++ ) {
        for ( int i = 0; i < wordLenght; i++ ) {
    if ( i != Root && i != SnNode[q] )
     TrNode[q][k] = i;
        }
    for ( int v = 0; v < numberSymbols; v++ ) {
    for ( int h = 0; h < numberObjects; h++ ) {
         for ( int t = 0; t < Period; t++ ) {
 if ( Sym[Root][t] == q && Sym[SnNode[q]][t] == k && 
        Sym[TrNode[q][k]][t] == v && Meaning[t] == h )
           countWord[q][k][v][h] += 1;
  }
      int bestMeaning = 0;
 for ( int h = 0; h < numberObjects; h++ ) {
 if ( countWord[q][k][v][h] > bestMeaning )
 bestMeaning = countWord[q][k][v][h];
    }
 int[] countTNL = new int[numberObjects];
for ( int h = 0; h < numberObjects; h++ ) {
countTNL[h] = 0;
}
for ( int h = 0; h < numberObjects; h++ ) {
 if ( countWord[q][k][v][h] == bestMeaning )
 countTNL[h] = 1;
}
 do {
      f = rand.nextInt(numberObjects);
 }while(countTNL[f] == 0 );
 TrNodeLeaf[q][k][v] = f;
}}}}}

public void update_DataSet() {
 for ( int j = 0; j < wordLenght; j++ ) {
 for ( int i = Period-1; i > -1 ; i-- ) {
  Sym[j][i+1] = Sym[j][i];
  }
 }
 for ( int i = Period-1; i > -1 ; i-- ) {
  Meaning[i+1] = Meaning[i];
  }
 for ( int j = 0; j < wordLenght; j++ ) {
 Sym[j][0] = Word[j];
 }
 Meaning[0] = Object;
 if ( Period < MemoryLenght-1 )
  Period += 1;
}

public void think_Word() {
 if ( DT == true ) {
  int c = 0;
  int[][] word = new int[numberSymbols*numberSymbols*numberSymbols][wordLenght];
  for ( int i = 0; i < numberSymbols; i++ ) {
   for ( int j = 0; j < numberSymbols; j++ ) {
     for ( int k = 0; k < numberSymbols; k++ ) {
          if ( TrNodeLeaf[i][j][k] == Object ) {
           word[c][Root] = i;
           word[c][SnNode[i]] = j;



           word[c][TrNode[i][j]] = k;
           c += 1;
          }}}}
  if ( c != 0 ) {
  int f = rand.nextInt(c);
  for ( int j = 0; j < wordLenght; j++ ) {
   Word[j] = word[f][j];
   } }
  else {
   for ( int j = 0; j < wordLenght; j++ ) {
    Word[j] = rand.nextInt(numberSymbols);;
    }}}
  else {
   for ( int j = 0; j < wordLenght; j++ ) {
    Word[j] = rand.nextInt(numberSymbols);;
    }}}

public void draw_Object() {
 Object = rand.nextInt(numberObjects);
}

public void guess_Object() {
 if ( DT == true ) {
  int a = Word[Root];
  int b = Word[SnNode[a]];
  int c = Word[TrNode[a][b]];
  Guess = TrNodeLeaf[a][b][c];
  if (  Guess == -1 )
  Guess = rand.nextInt(numberObjects);
  }
  else {
   Guess = rand.nextInt(numberObjects);
  }
 if ( Guess == Object )
  Forecast = true;
 else
  Forecast = false;
}

public void get_Guess(Agent a) {
 Guess = a.guess();
 if ( Guess == Object )
  Forecast = true;
 else
  Forecast = false;
}

private int guess() {
 return Guess;
}

public int get_Object() {
 return Object;
}

public int[] get_Sig() {
 return Word;
 
}

public void get_Message(Agent a) {
 Object = a.get_Object();
 int[] word = a.get_Sig();
 for ( int j = 0; j < wordLenght; j++ ) {
  Word[j] = word[j];
  }
}

public boolean get_Forecast() {
 return Forecast;
}

public int get_Word0() {
 return Word[0];
}

public int get_Word1() {
 return Word[1];
}

public int get_Word2() {
 return Word[2];
}

}

The Society class



import java.util.LinkedList;
import java.util.Random;
public class Society {
 private static final long Seed = 918273;
 private static int numAgents = 200;
 private static int Memory = 60;
 private static int numberObjects = 8;
 private static int wordLenght = 3;
 private static int numberSymbols = 2;
 private static int TotalPayOff = 0;
 private static int Time = -1;
 static java.util.List<number> urn;
 static Random rand = new Random();
 public static void main(String[] args) {
  rand.setSeed(Seed);
  urn = new LinkedList<number>();
  Agent[] agent = new Agent[numAgents];
  for ( int i = 0; i < numAgents; i++ ) {
   agent[i] = new Agent(i, numberObjects, wordLenght,    numberSymbols, numAgents, Memory);
  }
  for (int t = 0; t < 2000; t++) {
  for (int i = 0; i < numAgents; i++ ) {
   urn.add(new Number(i));
   }
  for (int i = 0; i < numAgents/2; i++ ) {
   int f;
   int r;
   Number n;
   f = rand.nextInt(urn.size());
   n = urn.get(f);
   r = n.draw_Number();
   urn.remove(f);
   Agent a = agent[r];
   f = rand.nextInt(urn.size());
   n = urn.get(f);
   r = n.draw_Number();
   urn.remove(f);
   Agent b = agent[r];
   a.build_DecisionTree();
   b.build_DecisionTree();
   a.draw_Object();
   a.think_Word();
   b.get_Message(a);
   b.guess_Object();
   a.get_Guess(b);
   a.update_DataSet();
   b.update_DataSet();
  }
  int tpo = 0;
  for (int i = 0; i < numAgents; i++ ) {
   Agent a = agent[i];
   if ( a.get_Forecast() == true ) 
    tpo += 1;
  }
  }
 }
 public static long get_Seed() {
  return Seed;
 }
 public static int get_Time() {
  return Time;
 }
}
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