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©" Abstract

In this paper we replicate and advance Macy and Flache's (2002; Proc. Natl. Acad. Sci. USA,
99, 7229-7236) work on the dynamics of reinforcement learning in 2x2 (2-player 2-strategy)
social dilemmas. In particular, we provide further insight into the solution concepts that they
describe, illustrate some recent analytical results on the dynamics of their model, and discuss
the robustness of such results to occasional mistakes made by players in choosing their
actions (i.e. trembling hands). It is shown here that the dynamics of their model are strongly
dependent on the speed at which players learn. With high learning rates the system quickly
reaches its asymptotic behaviour; on the other hand, when learning rates are low, two
distinctively different transient regimes can be clearly observed. It is shown that the inclusion
of small quantities of randomness in players' decisions can change the dynamics of the model
dramatically.
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%" Introduction

1.1
In two recent papers, Macy and Flache (2002; Flache and Macy 2002) explored the dynamics
observed in 2x2 (2-player 2-strategy) social dilemma games when these are played by
artificial agents using a particular type of reinforcement learning algorithm. Macy and Flache's
work was subsequently advanced by Izquierdo et al. (2007), who formalised the solution
concepts Macy and Flache had discovered, and used them to characterise the dynamics of
their model for any 2x2 game. The present paper is also a continuation of Macy and Flache's
work: we replicate Macy and Flache's (2002) model, summarise and illustrate some of the
theoretical results derived by lzquierdo et al. (2007) and discuss the robustness of such
analytical results to the inclusion of small quantities of noise in the agents' behaviour —i.e.
we model players who occasionally make mistakes in choosing their actions—.

1.2
The method we use to advance our understanding of Macy and Flache's model is a
combination of computer simulation experiments and theoretical analysis. The following two
subsections provide some background on social dilemmas and reinforcement learning
respectively. The introduction ends with an outline of the paper.

Social dilemmas

1.3
Social dilemmas are social interactions where everyone enjoys the benefits of collective action,
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but any individual would gain even more without contributing to the common good (provided
that the others do not follow her defection). The problem of how to promote cooperation in
these situations without having to resort to central authority has been fascinating scientists
from a broad range of disciplines for decades. Such widespread interest is not at all surprising
since, as Dawes (1980) wrote, the fundamental tensions that generate social dilemmas are
present in the three crucial problems of the modern world: resource depletion, pollution, and
overpopulation. Furthermore social dilemmas are by no means exclusive to human
interactions: in many social contexts, regardless of the nature of their component units, we
find that individual interests lead to collectively undesirable outcomes for which there is a
feasible alternative that every individual would prefer.

At the most elementary level, social dilemmas can be formalised as two-person games where
each player can either cooperate or defect. For each player /, the payoff when they both
cooperate (R;, for Reward) is greater than the payoff obtained when they both defect (P;, for

Punishment); when one cooperates and the other defects, the cooperator obtains S; (Sucker),
whereas the defector receives T; (Temptation). Assuming no two payoffs are equal, the

essence of a social dilemma is captured by the fact that both players prefer any outcome in
which the opponent cooperates to any outcome in which the opponent defects (min(7;, R)) >

max(P;, Sj)), but they both can find reasons to defect. In particular, the temptation to cheat (if
T; > R)) or the fear of being cheated (if S; < Pj) can put cooperation at risk. There are three

well-known social dilemma games: Chicken, Stag Hunt, and the Prisoner's Dilemma. In
Chicken the problem is greed but not fear (T; > R; > S;> P;; i = 1, 2); in Stag Hunt, the

problem is fear but not greed (R; > T;> P;> S;; i = 1, 2); and finally, both problems coincide
in the paradigmatic Prisoner's Dilemma (7; > R; > P;> S;; i = 1, 2). Macy and Flache (2002)
consider the symmetric versions of these three social dilemma games (Tj= T; Rj=R; Pi= P;
Si=S;i=1, 2), butall the results in this paper are valid for any 2x2 game.

Reinforcement learning

Macy and Flache (2002) study a variant of Bush and Mosteller's (1955) linear stochastic model
of reinforcement learning; this variant is a particular type of a wider class of aspiration-based
reinforcement learning models (Bendor, Mookherjee and Ray 2001a). Reinforcement learners
interact with their environment and use their experience to choose or avoid certain actions
based on their consequences. Actions that led to satisfactory outcomes (i.e. outcomes that
met or exceeded aspirations) in the past tend to be repeated in the future, whereas choices
that led to unsatisfactory experiences are avoided.

The empirical study of reinforcement learning dates back to Thorndike's animal experiments
on instrumental learning at the end of the 19th century (Thorndike 1898). The results of these
experiments were formalized in the well known 'Law of Effect’, which is nowadays one of the
most robust properties of learning in the experimental psychology literature:

Of several responses made to the same situation those which are accompanied or
closely followed by satisfaction to the animal will, other things being equal, be
more firmly connected with the situation, so that, when it recurs, they will be
more likely to recur; those which are accompanied or closely followed by
discomfort to the animal will, other things being equal, have their connections to
the situation weakened, so that, when it recurs, they will be less likely to occur.
The greater the satisfaction or discomfort, the greater the strengthening or
weakening of the bond. (Thorndike 1911, p. 244)

Nowadays there is little doubt that reinforcement learning is an important aspect of much
learning in most animal species. In strategic contexts in general, empirical evidence suggests
that reinforcement learning is most plausible in animals with imperfect reasoning abilities or
in human subjects who have no information beyond the payoff they receive and may not even
be aware of the strategic nature of the situation (Duffy 2006; Camerer 2003; Bendor,
Mookherjee and Ray 2001a; Roth and Erev 1995; Mookherjee and Sopher 1994). In the
context of experimental game theory with human subjects, several authors have used simple
models of reinforcement learning to successfully explain and predict behaviour in a wide
range of games (McAllister 1991; Roth and Erev 1995; Mookherjee and Sopher 1994;
Mookherjee and Sopher 1997; Chen and Tang 1998; Erev and Roth 1998; Erev, Bereby-Meyer
and Roth 1999). None of those games, however, were social dilemma games where, as in the
three 2x2 games presented above, players could easily coordinate and benefit from mutual
cooperation. The performance of reinforcement learning models to explain human behaviour
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in games that facilitate reciprocation, like the Prisoner's Dilemma, had not been as successful
as in other types of games (e.g. zero-sum games and games with unique mixed strategy
equilibria) until recently (Erev and Roth 2001). Contrary to the predictions of most models of
reinforcement learning used in experimental game theory, many people do learn to cooperate
in the repeated Prisoner's Dilemma. Erev and Roth (2001) have recently shown that such a
result does not reflect a limitation of the reinforcement learning approach but derives from
the fact that previous models used to fit experimental data assumed that players can only
learn over immediate actions (i.e. stage-game strategies) but not over a strategy set including
repeated-game strategies (like e.g. tit-for-tat).

In any case, the collection of models used to understand experimental evidence from the
laboratory is only a small sample of all the reinforcement learning models that have been
studied. Theoretical work (Karandikar et al. 1998; Pazgal 1997; Kim 1999; Palomino and
Vega-Redondo 1999; Bendor, Mookherjee and Ray 2001a; Bendor, Mookherjee and Ray
2001b) has shown that mutual cooperation is a common long-run outcome in the three
social dilemma games explained above for a broad family of models of reinforcement learning
over immediate actions; furthermore, in certain settings it is the unique long-term outcome.
The theoretical implications of aspiration-based reinforcement learning in strategic contexts
have been studied thoroughly by Karandikar et al. (1998) and Bendor, Mookherjee and Ray
(2001b). This theoretical line of work has focused on the long-run behaviour of
reinforcement models in 2-player repeated games, for which sharp predictions for a wide
range of reinforcement rules are now available (see Bendor, Mookherjee and Ray 2001a for an
excellent overview). Importantly, the models analysed by this theoretical work assume players
have a positive bias in favour of the most recently selected action —a feature called inertia
(Bendor, Mookherjee and Ray 2001a; Bendor, Mookherjee and Ray 2001b)—. In contrast, the
model that Macy and Flache (2002) investigate lacks inertia, so the mentioned theoretical
results cannot be applied. A special case of Macy and Flache's model where all stimuli are
necessarily positive was originally considered by Cross (1973) and analysed by Bérgers and
Sarin (1997), who showed the relation between this model and the replicator dynamics
(Weibull 1995). This work was subsequently advanced by Izquierdo et al. (2007) who —using
the theory of distance-diminishing models (Norman 1968, 1972)— provide theoretical
results for the general case, where negative stimuli are also possible.

Outline of the paper

The rest of the paper is structured as follows: Section 2 describes the variant of Bush and
Mosteller's (1955) linear stochastic model of reinforcement learning that Macy and Flache
(2002) investigated. In section 3, following Izquierdo et al. (2007), we formalise Macy and
Flache's concepts of dynamic equilibria (i.e. self-reinforcing equilibrium (SRE) and self-
correcting equilibrium (SCE)). These concepts are not specific to their particular model; Flache
and Macy (2002) demonstrate their generality using their General Reinforcement Learning
model. Section 4 is included to familiarise the reader with the complex dynamics of the model
under investigation. These dynamics are fully characterised in section 5 using the definitions
of SRE and SCE. We then analyse the effect of including small quantities of noise in the model,
and we finish with the conclusions.

The supporting material includes the Mathematica source code used to create every figure in
the paper. For illustration and clarification purposes, we have also included an applet that can
be used to replicate all the experiments presented here, and an interactive trajectory map.

o™
©" BM: An Agent-based Model of Reinforcement Learning

2.1

Macy and Flache (2002) used an elaboration of a conventional Bush-Mosteller (1955)
stochastic learning model for binary choice; hence their model was named BM. In this model,
players decide stochastically whether to cooperate or defect. Each player's strategy is defined
by the probability of undertaking each of the two actions available to them. After every player
has selected an action according to their probabilities, every player receives the
corresponding payoff and revises her strategy. The revision of strategies takes place following
a reinforcement learning approach: players increase their probability of undertaking a certain
action if it led to payoffs above their aspiration level, and decrease this probability otherwise.
When learning, players in the BM model use only information concerning their own past
choices and payoffs, and ignore all the information regarding the payoffs and choices of their
counterparts. More precisely, the updating of a strategy takes place in two steps. First, each

player i calculates her stimulus s’ for the action just chosen a (either Cooperate (C) or Defect
(D)), according to the following formula (where every variable, including payoffs, is indexed in
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s = T,—A
* sup[|T—ALIR-A||P-AlLIS-A]

ae {C,D}

where 175 is the payoff obtained having selected action a, A is the player's aspiration levellll
and T, R, P, S are the possible payoffs the player might receive, as explained above. Hence
the stimulus is always a number in the interval [-1, 1]. Secondly, having calculated their
stimulus s/, each player i updates her probability p,’ of undertaking the selected action a as
follows (where every variable is indexed in J):

;pa:‘: +1 . (1 —pm) if 5,20

] . as{C.D
Lpa:‘: +1 'Sa:»: 'pa:»: lf 'S:l’: <0 { : }

pa:vt—l =

where p, p is the probability of undertaking action ain time-step n, s p is the stimulus
experienced after having selected action ain time-step n, and / is the learning rate (0 < / <
1). Thus the higher the stimulus (or the learning rate), the larger the change in probability.
The updated probability for the action not selected derives from the constraint that
probabilities must add up to one.

It is therefore clear that the state of the game can be fully characterized by a two-
dimensional vector p = [ p1, p2 ], where pj is player i's probability to cooperate. We will refer
to such vector p as a strategy profile, or a state of the system. In the general case, a 2x2 BM
model parameterisation requires specifying both players' payoffs (7;, R;, P;j, Sj), aspiration
level (A)), and learning rate (/;). Macy and Flache (2002) study systems where both players are
parameterised in exactly the same way (homogeneous models), whereas our analysis is based
on the results of Izquierdo et al. (2007), which are valid for any 2x2 game. A certain
parameterization of a homogeneous model will be specified using the template [ T, R, P, S|
A| 112. Homogeneous models will be used here for illustrative purposes, but all the results in
this paper apply in the general case. On the other hand, Macy and Flache (2002) also consider
models where aspiration levels may vary; in this paper we only study the case where
aspiration levels are fixed.

The following notation will be useful: A parameterised model will be denoted S, for System.
Let P,(S) be the state of a system Sin time-step n. Note that P,(S) is a random variable and p

is a particular value of that variable. Note also that the sequence of random variables
{Pn(9)} >0 constitutes a discrete-time Markov process with an infinite number of (potentially

transient) states.

o . .
@ Attractors in the Dynamics of the System

3.1

3.2

3.3

Using the homogeneous BM model, Macy and Flache (2002) describe two types of attractors
that govern the dynamics of their simulations: self-reinforcing equilibria (SRE) and self-
correcting equilibria (SCE). These two concepts are not equilibria in the static sense of the
word, but strategy profiles which act as attractors that pull the dynamics of the simulation
towards them. Here, we formalize these two concepts.

Following Izquierdo et al. (2007), we define an SRE as an absorbing state of the system (i.e. a

state p that cannot be abandoned) where both players receive a positive stimulus2l, An SRE
corresponds to a pair of pure strategies (p;is either 0 or 1) such that its certain associated
outcome gives a strictly positive stimulus to both players (henceforth a mutually satisfactory
outcome). For example, the strategy profile [ 1, 1] is an SRE if both players' aspiration levels
are below their respective R,. Escape from an SRE is impossible since no player will change her
strategy. More importantly, SREs act as attractors: near an SRE, there is a high chance that the
system will move towards it, because there is a high probability that its associated mutually
satisfactory outcome will occur, and this brings the system even closer to the SRE. The
number of SREs in a system is the number of outcomes where both players obtain payoffs
above their respective aspiration levels.

Flache and Macy (2002, p. 634) define SCEs in the following way: "The SCE obtains when the
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expected change of probabilities is zero and there is a positive probability of punishment as
well as reward". In this context, punishment means negative stimulus while reward means
positive stimulus; the expected change of probability for one player is defined as the sum of
the possible changes in probability the player might experience weighted by the likelihood of
such changes actually happening. As we show below, SCEs defined in this way are not
necessarily attractors, but may be unstable saddle points where small perturbations can cause
expected probabilities to move away from them. Figure 1 represents the expected movement
after one time-step for different states of the system in a Stag Hunt game. The Expected
Motion (EM) of a system Sin state p for the following iteration is given by a function vector
EM3(p) whose components are the expected change in the probabilities to cooperate for each
player. Mathematically,

EM*(p) =[EM; (p), EM: (p) | =E(AP,(S) | P,(S) = p)

EM; (p) =Pr{CC} - Ap,| . +Pr{CD}-Ap,|. +Pr{DC} -Ap,|  +Pr{DD}-Ap,|

where {CC, CD, DC, DD} represent the four possible outcomes that may occur. Note that in
general the expected change will not reflect the actual change in a simulation run, and to
make this explicit we have included the trace of a simulation run starting in state [ 0.5, 0.5 ]
in figure 1. The expected change —represented by the arrows in figure 1— is calculated
considering the four possible changes that could occur (see equation above), whereas the
actual change in a simulation run —represented by the numbered balls in figure 1— is only
one of the four possible changes (e.g. Ap;/cc, if both agents happen to cooperate).
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Figure 1. Expected motion of the system in a Stag Hunt game parameterisedas[3,4,1,0 | 0.5] 0.5

12, together with a sample simulation run (40 iterations). The arrows represent the expected motion for
various states of the system; the numbered balls show the state of the system after the indicated
number of iterations in the sample run. The background is coloured using the norm of the expected
motion. For any other learning rate the size of the arrows would vary but their direction would be
preserved. The source code used to create this figure is available in the Supporting Material.
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The state [ 0.5, 0.5 ] in Figure 1 is an example of a strategy profile that satisfies Flache and
Macy's requirements for SCE, but where small deviations tend to lead the system away from it
(saddle point). To avoid such undesirable situations where an SCE is not self-correcting,
Izquierdo et al. (2007) redefine the concept of SCE in a more restrictive way: an SCE of a
system Sis an asymptotically stable critical point (Mohler 1991) of differential equation [1]
(the continuous time limit approximation of the system's expected motion).

f=EM’(f) @
or, equivalently,
2O _ex: sy
t

an@) _ s
g EM; (f ()

Roughly speaking this means that all trajectories in the phase plane of Eg. [1] that at some
instant are sufficiently close to the SCE will approach the SCE as the parameter ¢ (time)
approaches infinity and remain close to it at all future times. Note that, with this definition,
there could be a state of the system that is an SRE and an SCE at the same time.

Figure 2 shows several trajectories for the differential equation corresponding to the Stag
Hunt game used in Figure 1. It can be clearly seen that state [0.5, 0.5] is not an SCE
according to lzquierdo et al.'s definition, since there are trajectories that get arbitrarily close
to it, but they then escape from its neighbourhood.

l N
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Figure 2. Trajectories in the phase plane of the differential equation corresponding to a Stag Hunt

game parameterisedas[3,4,1,0] 0.5| 0.5 ]2, together with a sample simulation run (40
iterations). The background is coloured using the norm of the expected motion. The source code used
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to create this figure is available in the Supporting Material.

3.7
Figure 3 shows some trajectories of the differential equation corresponding to the Prisoner's

Dilemma parameterised as [4, 3, 1, 0| 2 | /12. This system exhibits a unique SCE at [ 0.37,
0.37] and a unique SREat[ 1, 1]. The function EM(p) for this system is

A-p)/2 (A-py)/2
- b - P
- P - P
(-p)/2 (A-py)/2

[EM,(p).EMy(p)|=1[pp: n(-p)) (-p)p: (1-p)(1-py)]

And the associated differential equation is

(A-£)/2 (- £)/2]
- - £
- -f
(A-£)/2 (-£)/2]

[dfl df,

5 dt]:z[flf2 LA=1) A=Rf A=£)01=1)]
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Figure 3. Trajectories in the phase plane of the differential equation corresponding to the Prisoner's

Dilemma game parameterised as[ 4,3, 1,0 | 2 | /12, together with a sample simulation run (/= 2"4).
This system has an SCE at[ 0.37 , 0.37 ]. The background is coloured using the norm of the expected
motion. The source code used to create this figure is available in the Supporting Material.

3.8
The expected motion at any point p in the phase plane is a vector tangent to the unique
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trajectory to which that point belongs. The use of expected motion (or mean-field)
approximations to understand simulation models and to design interesting experiments has
already proven to be very useful in the literature (e.g. Huet et al. 2007; Galan and lzquierdo
2005; Edwards et al. 2003; Castellano, Marsili, and Vespignani 2000). Note, however, that
such approaches are approximations whose validity may be constrained to specific
conditions: as we can see in Figure 3, simulation runs and trajectories will not coincide in
general. In this paper we show that trajectories and SCEs are especially relevant for the
transient dynamics of the system, particularly with small learning rates. On the other hand,
we also show that the mean-field approximation can be misleading when studying the
asymptotic behaviour of the model. From now on we will use Izquierdo et al.'s definitions of
SRE and SCE.

o Complex Dynamics

4.1

The work reported in this paper originated after observing a puzzling phenomenon in Macy
and Flache's experiments with the BM model. A significant part of their analysis consisted in
studying for various parameter settings the proportion of simulation runs that "locked" into
mutual cooperation. Such "lock-in rates" were as high as 1 in some experiments. However, in
Macy and Flache's experiments, the BM model specifications guarantee that after any finite

number of iterations any outcome has a positive probability of occurringﬁl. To investigate
this apparent contradiction we conducted some qualitative analyses that we present here to
familiarise the reader with the complex dynamics of this model. Our first qualitative analysis
consisted in studying the expected dynamics of the model. Figure 4 illustrates the expected
motion of a system extensively studied by Macy and Flache: the Prisoner's Dilemma game
parameterisedas[4,3,1,0|2]0.5 1%. As we saw before, this system features a unique
SCEat[0.37,0.37 ] and a unique SREat[ 1, 1]. Figure 4 also includes the trace of a sample
simulation run.
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Figure 4. Expected motion of the system in a Prisoner's Dilemma game parameterisedas[4,3,1,0

| 2 | 0.5 ]2, with a sample simulation run. The background is coloured using the norm of the expected
motion. The source code used to create this figure is available in the Supporting Material.



http://jasss.soc.surrey.ac.uk/11/2/1.html#edwards2003
http://jasss.soc.surrey.ac.uk/11/2/1.html#gal%E1n2005
http://jasss.soc.surrey.ac.uk/11/2/1.html#castellano2000
http://jasss.soc.surrey.ac.uk/11/2/1.html#huet2007
http://jasss.soc.surrey.ac.uk/11/2/1.html#fn3
http://jasss.soc.surrey.ac.uk/11/2/1/SupportingMaterial/figures.html#fig4

4.2

4.3

4.4

Figure 4 shows that the expected movement from any state is towards the SCE, except for the
only SRE, which is an absorbing state. In particular, near the SRE, where both probabilities are
high but different from 1, the distribution of possible movements is very peculiar: there is a
very high chance that both agents will cooperate and consequently move a small distance
towards the SRE, but there is also a positive chance, tiny as it may be, that one of the agents
will defect, causing both agents to jump away from the SRE towards the SCE. The improbable
—vyet possible— leap away from the SRE is of such magnitude that the resulting expected
movement is biased towards the SCE despite the unlikelihood of such an event actually
occurring. The dynamics of the system can be further explored analysing the most likely
movement from any given state, which is represented in Figure 5.
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Figure 5. Figure showing the most likely movements at some states of the system in a Prisoner's
Dilemma game parameterisedas[4,3,1,0| 2] 0.5 ]2, with a sample simulation run. The
background is coloured using the norm of the expected motion. The source code used to create this
figure is available in the Supporting Material.

Figure 5 differs significantly from Figure 4; it shows that the most likely movement in the
upper-right quadrant of the state space is towards the SRE. Thus the walk towards the SRE is
characterized by a fascinating puzzle: on the one hand, the most likely movement leads the
system towards the SRE, which is even more likely to be approached the closer we get to it; on
the other hand, the SRE cannot be reached in any finite number of steps and the expected
movement as defined above is to walk away from it.

It is also interesting to note in this game that, starting from any mixed (interior) state, both
players have a positive probability of selecting action D in any future time-step, but there is
also a positive probability of both players engaging in an infinite chain of the mutually
satisfactory event CC forever, i.e., that neither player will ever take action D from then
onwards. This latter probability can be calculated using a result that we present in the
Appendix.
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4.5
The probability of starting an infinite chain of CC events depends largely on the value of the
learning rate /. Figure 6 shows the probability of starting an infinite chain of the mutually
satisfactory outcome CC in a Prisoner's Dilemma game parameterisedas[4,3,1,0[2]/

]2, for different learning rates /, and different initial probabilities to cooperate xg (the same

probability for both players). For some values, the probability of immediately starting an
infinite chain of mutual cooperation can be surprisingly high (e.g. for / = 0.5 and initial
conditions [ xg , xg]1 =[0.9, 0.9 ] such probability is approximately 44%).
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Figure 6. Probability of starting an infinite chain of the Mutually Satisfactory (MS) outcome CC in a
Prisoner's Dilemma game parameterised as[ 4,3, 1,0 | 2 | /]2. The 5 different (coloured) series
correspond to different learning rates /. The variable xg, represented in the horizontal axis, is the
initial probability of cooperating for both players. The source code used to create this figure is
available in the Supporting Material.

o™ . . .
@' Different Regimes in the Dynamics of the System

5.1
This section illustrates the dynamics of the BM model for different learning rates. The analysis
is presented here in a somewhat qualitative fashion for the sake of clarity and
comprehensibility, and illustrates the behaviour of the model that we are replicating in some
social dilemmas. Most of the theoretical results that we apply and summarise in this section
are valid for any 2x2 game and can be found in Izquierdo et al. (2007).

5.2
In the general case, the dynamics of the BM model may exhibit three different regimes:
medium run, long run, and ultralong run. The terminology we use here is borrowed from
Binmore and Samuelson (1993) and Binmore, Samuelson and Vaughan (1995), who reserve
the term short run for the initial conditions.

By the ultralong run, we mean a period of time long enough for the asymptotic
distribution to be a good description of the behavior of the system. The long run
refers to the time span needed for the system to reach the vicinity of the first
equilibrium in whose neighborhood it will linger for some time. We speak of the
medium run as the time intermediate between the short run [i.e. initial conditions]
and the long run, during which the adjustment to equilibrium is occurring.
(Binmore, Samuelson and Vaughan 1995, p. 10)

5.3
Binmore et al.'s terminology is particularly useful for our analysis because it is often the case
in the BM model that the long run, which is characterised by the "first equilibrium in whose
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5.4

5.5

5.6

neighborhood it [the system] will linger for some time" is significantly different from the
asymptotic dynamics of the system, i.e. the ultralong run. Whether the three different regimes
are clearly distinguishable in the BM model strongly depends on the players' learning rates.
For high learning rates the system quickly approaches its asymptotic behaviour (the ultralong
run) and the distinction between the different regimes is not particularly useful. For small
learning rates, however, the three different regimes can be clearly observed. Since the
ultralong run is the only regime that (sooner or later) is observed in every system, we start
our description of the dynamics of the BM model characterising such regime.

Izquierdo et al. (2007) prove that most BM systems —in particular all the systems studied by
Macy and Flace (2002) with fixed aspirations— converge to an SRE if there exits at least one
SRE, confirming an insight already provided by Macy and Flache (2002) and Flache and Macy
(2002). The probability of the process converging to one particular SRE depends on the initial
state. If the initial state is completely mixed, then every SRE can be (asymptotically) reached
with positive probability. If there are no SREs, the system converges to a distribution which is
independent of the initial conditions. In the context of the social dilemma games described

above, this implies that if players' aspirations are above their respective maximinl4l, then the
ultralong run is independent of the initial state. Under such conditions, there is an SRE if and
only if mutual cooperation is satisfactory for both players and, if that is the case, the process
converges to certain mutual cooperation (i.e. the unique SRE) with probability 1. As an
example, note that the asymptotic behaviour of the systems shown in figures 3, 4 and 5 is
certain mutual cooperation.

Learning by Large Steps (Fast Adaptation)

As mentioned above, when learning takes place by large steps, the system quickly reaches its
ultralong run behaviour. To explain why this is the case we distinguish between two possible
classes of systems:

e |n systems where there is at least one SRE, the asymptotic behaviour is quickly
approached because SREs are powerful attractors. The reason for this is that, if an SRE
exists, the chances of a mutually satisfactory outcome not occurring for a long time are
low, since players update their strategies to a large extent to avoid unsatisfactory
outcomes. Whenever a mutually satisfactory outcome occurs, players update their
strategy so the chances of repeating such a mutually satisfactory outcome increase.
Since learning rates are high, the movement towards the SRE associated with such a
mutually satisfactory outcome takes place by large steps, so only a few coordinated
moves are sufficient to approach the SRE so much that escape from its neighbourhood
becomes very unlikely. In other words, with fast learning the system quickly approaches
an SRE, and is likely to keep approaching that SRE forever. As an example, consider
Figure 6 again: starting from any initial probability to cooperate xg, the occurrence of a

mutually satisfactory outcome CC would increase both players' probability to cooperate
(the updated probability can be seen as the following period's xq), which in turn would
increase the probability of never defecting (i.e., the probability of starting an infinite
chain of CC). Thus, if the learning rate is large, a few CC events are enough to take the
state of the system into areas where the probability of never defecting again is large.

e |n the absence of SREs, the fact that any outcome is unsatisfactory for at least one of the

players[2l and the fact that strategy changes are substantial, together imply that at least
one player will switch between actions very frequently —i.e. the system will indefinitely
move rapidly and widely around a large area of the state space—.

Learning by Small Steps (Slow Adaptation)

Flache and Macy (2002), and Macy and Flache (2002), referring to earlier results by Macy
(1989; 1991), show how lowering learning rates increases the time that the system spends
close to the SCE before leaving for the SRE. Here, following theoretical results by lzquierdo et
al. (2007, Proposition 1) we show how:

e for low enough learning rates, the BM process tends to follow a specific trajectory in the
phase plane of Eq. [1] (which trajectory in particular depends on the initial conditions).

e for low enough learning rates, the BM process in time-step n tends to be concentrated
around a particular point in the trajectory (this point depends on the particular values of
nand /).

e if trajectories get close to an SCE (as t grows), then, for low learning rates, the BM
process will tend to approach and linger around the SCE; the lower the learning rate, the
greater the number of periods that the process will tend to stay around the SCE.
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5.7

5.8

5.9

5.10

When learning takes place by small steps the other two regimes (i.e. the medium and the
long run) can be clearly observed, and these transient dynamics can be substantially different
from the ultralong run behaviour of the system. For sufficiently small learning rates and
number of iterations n not too large (n-/ bounded), the medium run dynamics of the system
are best characterised by the trajectories in the phase plane of Eq. [1], which can follow paths
substantially apart from the end-states of the system (see figure 7, where the end-state is [1
, 11). Under such conditions, the expected state of the system after n iterations can be
estimated by substituting the value n-/in the trajectory that commences at the initial
conditions. The lower the learning rates, the better the estimate, i.e. the more tightly
clustered the dynamics will be around the corresponding trajectory in the phase plane (see
figure 7).
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Figure 7. Three sample runs of a system parameterisedas[4,3,1,0 | 2 | 112. for different values of nand /.

The product n-/is the same for the three simulations; therefore, for low values of /, the state of the system at the

end of the simulations tends to concentrate around the same point. The source code used to create this figure is
available in the Supporting Material.

When trajectories finish in an SCE, the system will approach the SCE and spend a significant
amount of time in its neighbourhood if learning rates are low enough and the number of
iterations n is large enough (and finite)!8l, This latter regime is the long run. The fact that
trajectories are good approximations for the transient dynamics of the system for slow
learning shows the importance of SCEs —points that "attract” trajectories within their
neighbourhood— as attractors of the actual dynamics of the system. This is particularly so
when, as in most 2x2 games, there are very few asymptotically stable critical points and they
have very wide domains of attraction.

Remember, however, that the system will eventually approach its asymptotic behaviour, which
in the systems shown in figures 3, 4, 5, 6 and 7 is certain mutual cooperation. Having said
that, as Binmore, Samuelson and Vaughan (1995) point out, the length of time required for
the asymptotic distribution to be relevant may be extraordinarily long, much longer than is
often meant by long run, hence the term ultralong run.

To illustrate how learning rates affect the speed of convergence to asymptotic behaviour,
consider once again the Prisoner's Dilemma game parameterisedas[4,3,1,0]| 2| /]2, a
system extensively studied by Macy and Flache (2002). The evolution of the probability to
cooperate (which is identical for both players) for two learning rates / is represented in Figure
8. The top row shows the evolution for / = 0.5 (figures 4 and 5 show a sample run of this
system), and the bottom row shows the evolution for / = 2=% (figure 3 shows a sample run of
this system). For / = 0.5, after only 29 = 512 iterations, the probability that both players will
be almost certain to cooperate is very close to 1, and it remains so thereafter. For / = 274,
however, the distribution is still clustered around the SCE even after 221 = 2097152
iterations. In the latter case, the chain of events that is required to escape from the
neighbourhood of the SCE is extremely unlikely, and therefore this long run regime seems to
persist indefinitely. However, given sufficient time, such a chain of coordinated moves will
occur, and the system will eventually reach its ultralong run regime, i.e. almost-certain
mutual cooperation.
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Figure 8. Histograms representing the probability of cooperating for one player (both players' probabilities are
identical) after n iterations for different learning rates /in a Prisoner's Dilemma game parameterisedas[4,3,1,0

| 2 | 112, each calculated over 1,000 simulation runs. The initial probability for both players is 0.5. The source code
used to create this figure is available in the Supporting Material.
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6.1
To study the robustness of the previous asymptotic results we consider an extension of the
BM model where players suffer from "trembling hands" (Selten 1975): after having decided
which action to undertake, each player i may select the wrong action with some probability &;
> 0 in each iteration. This noisy feature generates a new stochastic process, namely the noisy
process Np, which can also be fully characterized by a 2-dimensional vector prop = [propq ,
prop; ] of propensities (rather than probabilities) to cooperate. Player i's actual probability to
cooperate is now (1 - &) - prop; + € - (1 - prop)), and the profile of propensities prop evolves
after any particular outcome following the rules given in section 2. Izquierdo et al. (2007)
prove that the noisy process Nj, is ergodic in any 2x2 gamelZl. Ergodicity implies that the
state of the process presents an asymptotic probability distribution which does not depend
on the initial state.

6.2
The noisy process has no absorbing states (i.e. SREs) except in the trivial case where both
players find one of their actions always satisfactory and the other action always unsatisfactory
—thus, for example, in the three 2x2 social dilemma games the inclusion of noise precludes
the system from convergence to a single state—. However, even though noisy processes have
no SREs in general, the SREs of the associated unperturbed process (SREUPs, which
correspond to mutually satisfactory outcomes) do still act as attractors whose attractive
power depends on the magnitude of the noise: ceteris paribus the lower the noise the higher
the long run chances of finding the system in the neighborhood of an SREUP (see Figure 9).
This is so because in the proximity of an SREUP, if &; are low enough, the SREUP's associated
mutually satisfactory outcome will probably occur, and this brings the system even closer to
the SREUP. The dynamics of the noisy system will generally be governed also by the other type
of attractor, the SCE.

A A _

SREUP SREUP SCE SREUP

1o-2 10-3 10
noise (€)

Figure 9. Histograms representing the propensity to cooperate for one player (both players' propensities
are identical) after 1,000,000 iterations (when the distribution is stable) for different levels of noise (¢; =

&) in a Prisoner's Dilemma game parameterisedas[4,3,1,0 ]| 2| 0.25 12. Each histogram has been
calculated over 1,000 simulation runs. The source code used to create this figure is available in the
Supporting Material.
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6.4

6.5

Figures 10, 11 and 12, which correspond to a Prisoner's Dilemma game parameterised as [ 4
,3,1,01 2] /12 show that the presence of noise can greatly damage the stability of the
(unique) SREUP associated to the event CC. Note that the inclusion of noise implies that the
probability of an infinite chain of the mutually satisfactory event CC becomes zero.

In Figure 10, corresponding to a learning rate / = 0.5, the system shows a tendency to be
quickly attracted towards the SRE, but the presence of noise breaks (from time to time) the
chains of mutually satisfactory CC events; unilateral defections make the system escape from
the area of the SREUP before going back towards it again, and so forth.

In Figure 11, corresponding to a lower learning rate (/ = 0.25) than in Figure 10, the system
shows a tendency to be lingering around the SCE for longer. In this case, when a unilateral
defection breaks a chain of mutually satisfactory events CC and the system leaves the
proximity of the SREUP, it usually takes a large number of periods to go back into that area.
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Figure 10. A representative time series of player 1's propensity to cooperate over time for
the Prisoner's Dilemma game parameterisedas[4,3,1,0] 2| 0.5 12 with initial
conditions [ xg, xo]1 =[0.5, 0.5 ], both without noise (top) and with a noise level ¢; = 1073
(bottom). The source code used to create this figure is available in the Supporting Material.
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Figure 11. A representative time series of player 1's propensity to cooperate over time for
the Prisoner's Dilemma game parameterised as [ 4, 3,1, 0 | 2 | 0.25 12 with initial
conditions [ xg, xg]1 =[0.5, 0.5 ], both without noise (top) and with a noise level ¢; = 1073
(bottom). The source code used to create this figure is available in the Supporting Material.
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Figure 12. Evolution of the average probability / propensity to cooperate of one of the players in a Prisoner's
Dilemma game parameterisedas[ 4,3, 1,0 | 2 | 0.5 ]2 with initial state [ 0.5 , 0.5 ], for different levels of
noise (&; = ¢€). Each series has been calculated averaging over 100,000 simulation runs. The standard error of

the represented averages is lower than 3-1073 in every case. The source code used to create this figure is
available in the Supporting Material.

As shown in Figure 12, the greater the noise level, the higher the destabilisation of the SREUP.
This is so because, even in the proximity of the SREUP, the long chains of reinforced CC
events that stabilise the SREUP become highly unlikely when there are high levels of noise,
and unilateral defections (whose probability grows with the noise level in the proximity of the
SREUP) break the stability of the SREUP.

Stochastic stability

Importantly, not all the SREs of the unperturbed process are equally robust to noise. As
mentioned above, if there is any SRE, the unperturbed system converges to an SRE. The
probability of the process converging to one particular SRE depends on the initial state, and if
the initial state is completely mixed, then convergence to any of the SREs is possible
(Izquierdo et al. 2007). Looking at the line labelled "&e = 0" in figure 13 we can see that the
system[4,3,1,0]0.5]0.5 1% with initial state [ 0.9, 0.9 ] has a probability of converging
toits SREat[ 1, 1] approximately equal to 0.7, and a probability of converging to its SRE at [
0, 0] approximately equal to 0.3.

For low enough levels of "trembling hands" noise we find an asymptotic (invariant)
distribution concentrated on neighbourhoods of SREUPs. The lower the noise, the higher the
concentration around SREUPs. If there are several SREUPs, the invariant distribution may
concentrate around some of these SREUPs much more than around others. In the limit as the
noise goes to zero, it is often the case that only some of the SREUPs remain points of
concentration. These are called stochastically stable equilibria (Foster and Young 1990;
Young 1993; Ellison 2000). As an example, consider the simulation results shown in figure
13, which clearly suggest that the SREat [ 0, 0] is the only stochastically stable equilibrium
even though, with initial conditions [ 0.9, 0.9 ], the unperturbed process converges to the
other SRE more frequently. Note that whether an equilibrium is stochastically stable or not is
independent on the initial conditions.
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Figure 13. Evolution of the average probability / propensity to cooperate of one of the players in a Prisoner's

Dilemma game parameterisedas[4,3,1,0| 0.5]| 0.5 12 with initial state [ 0.9 , 0.9 ], for different levels

of noise (g; = ¢). Each series has been calculated averaging over 10,000 simulation runs. The inset graph is a

magnification of the first 500 iterations. The standard error of the represented averages is lower than 0.01 in
every case. The source code used to create this figure is available in the Supporting Material.

Intuitively, note that in the system shown in figure 13, in the proximities of the SREat[ 1, 1],
one single (possibly mistaken) defection is enough to lead the system away from it. On the
other hand, near the SREat[ 0, 0] one single (possibly mistaken) cooperation will make the
system approach this SREat [ 0, 0 ] even more closely. Only a coordinated mutual
cooperation (which is highly unlikely near the SRE at [ 0, 0 ]) will make the system move away
from this SRE. This makes the SRE at[ 0, 0 ] much more robust to occasional mistakes made
by the players when selecting their strategies, as illustrated in figures 14 and 15.
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Figure 14. One representative run of the system parameterisedas[ 4,3, 1,0 | 0.5 | 0.5 ]2 with
initial state [ 0.9, 0.9 ], and noise ¢; = € = 0.1. This figure shows the evolution of the system in the
phase plane of propensities to cooperate, while figure 15 below shows the evolution of player 1's
propensity to cooperate over time for the same simulation run. The background is coloured using the
norm of the expected motion. The source code used to create this figure is available in the Supporting

Material.
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Figure 15. Time series of player 1's propensity to cooperate over time for the same
simulation run displayed in figure 14. The source code used to create this figure is available
in the Supporting Material.
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©* Conclusions

7.1

7.2

In this paper we have replicated and advanced Macy and Flache's (2002; Flache and Macy
2002) work on the dynamics of a particular form of aspiration-based reinforcement learning
in 2x2 social dilemmas. We have shown how their concepts of self-reinforcing equilibrium
(SRE) and self-correcting equilibrium (SCE), as formalised by Izquierdo et al. (2007), can be
meaningfully used to analyse the dynamics of their model. These dynamics are strongly
dependent on the speed at which players learn. With high learning rates, it is shown that the
model approaches its asymptotic behaviour fairly quickly. For most parameterisations of the
model, such asymptotic dynamics are concentrated in the SREs of the system. On the other
hand, with low learning rates, the dynamics of the system are likely to go through two
transient distinct regimes before approaching the asymptotic regime. Such transient dynamics
are strongly linked to the solutions of the continuous time limit approximation of the
system's expected motion.

We have also shown that the inclusion of small quantities of noise in the model can change its
dynamics dramatically. States of the system that are asymptotically reached with high
probability in the unperturbed model may be observed with arbitrarily low probability when
players make occasional mistakes in selecting their actions. Future work will be devoted to
formally identifying the conditions under which asymptotic equilibria of the unperturbed
process are robust to small trembles (i.e. characterising the set of stochastically stable
equilibria).
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%" Notes

1 The aspiration level is a constant value for each player, and it is assumed to be different
from every payoff the player may receive.

2 The concept of SRE is extensively used by Macy and Flache but we have not found a clear
definition in their papers (Macy and Flache 2002; Flache and Macy 2002). Sometimes their
use of the word SRE seems to follow our definition (e.g. Macy and Flache 2002, p. 7231), but
often it seems to denote a mutually satisfactory outcome (e.g. Macy and Flache 2002, p.
7231) or an infinite sequence of such outcomes (e.g. Macy and Flache 2002, p. 7232).

3 The specification of the model is such that probabilities cannot reach the extreme values of
0 or 1 starting from any other intermediate value. Therefore if we find a simulation run that
has actually ended up in the lock-in state [ 1, 1] starting from any other state, we know for
sure that such simulation run did not follow the specifications of the model (e.g. perhaps
because of floating-point errors). For a detailed analysis of the effects of floating point errors
in computer simulations, with applications to this model in particular, see Izquierdo and
Polhill (2006), Polhill and Izquierdo (2005), Polhill et al. (2006), Polhill et al. (2005).

4 Maximin is the largest possible payoff players can guarantee themselves. In the three 2x2
social dilemmas maximin; = max(S;, Pj).

5> Recall that each player's aspiration level is assumed to be different from every payoff the
player may receive.

6 Excluded here is the trivial case where the initial state is an SRE.

7 We exclude here the meaningless case where the payoffs for some player are all the same
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and equal to her aspiration (T; = Rj= Pj= S; = Ajfor some ).

By Appendix

A.l
We provide here a theoretical result that can be used to estimate with arbitrary precision the
probability L, that an infinite sequence of a mutually satisfactory outcome mso = (a1, ap),

where player 1 selects action a; and player 2 selects action ap, begins when the system is in
state [p1 , p2], where p; denotes player i's probability to select action a;.

L, =m0~ Q- p)A~5,00) T [0~ A= )0~ Dy53,)")
T on=0

where /; denotes player i's learning rate, and s; mso denotes player i's stimulus after the
mutually satisfactory outcome mso. The following result can be used to estimate Ly with
arbitrary precision:

Let
k-1

P = H(l -x")
n=0

and let

P, =limP,

k—x
Then, for x, yin the interval (0, 1),
1

P.>P, > P (-0

This result is based on the bound
1

P >(1-x)7

The proof of this bound can be found in Bush and Mosteller (1955), who acknowledge
assistance by William J. McGill. We are indebted to Professor Jorgen W. Weibull for his help
with these calculations.
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