
©Copyright JASSS

 

Keiki Takadama, Tetsuro Kawai and Yuhsuke Koyama (2008)

Micro- and Macro-Level Validation in Agent-Based
Simulation: Reproduction of Human-Like Behaviors and

Thinking in a Sequential Bargaining Game
Journal of Artificial Societies and Social Simulation vol. 11, no. 2 9

<http://jasss.soc.surrey.ac.uk/11/2/9.html>
For information about citing this article, click here

Received: 04-Aug-2007    Accepted: 13-Mar-2008    Published: 31-Mar-2008

Abstract

This paper addresses both micro- and macro-level validation in agent-based simulation
(ABS) to explore validated agents that can reproduce not only human-like behaviors
externally but also human-like thinking internally. For this purpose, we employ the sequential
bargaining game, which can investigate a change in humans' behaviors and thinking longer
than the ultimatum game (i.e., one-time bargaining game), and compare simulation results of
Q-learning agents employing any type of the three types of action selections (i.e., the ε-
greedy, roulette, and Boltzmann distribution selections) in the game. Intensive simulations
have revealed the following implications: (1) Q-learning agents with any type of three action
selections can reproduce human-like behaviors but not human-like thinking, which means
that they are validated from the macro-level viewpoint but not from the micro-level
viewpoint; and (2) Q-learning agents employing Boltzmann distribution selection with
changing the random parameter can reproduce both human-like behaviors and thinking,
which means that they are validated from both micro- and macro-level viewpoints.
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 Introduction

1.1
The validation of computational models and simulation results is a critical issue in agent-
based simulation (ABS) (Axelrod 1997; Moss and Davidsson 2001) due to the fact that
simulation results are very sensitive to how agents are modeled. To overcome this problem,
several validation approaches have been proposed for social simulations, which are roughly
categorized as follows (Carley and Gasser 1999): (1) theoretical verification that determines
whether the model is an adequate conceptualization of the real world on the basis of a set of
situation experts; (2) external validation that determines whether the results from the virtual
experiments match the results from the real world; and (3) cross-model validation that
determines whether the results from one computational model map onto, and/or extend, the
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results of another model. All these approaches contribute to improving the validation of
computational models and simulation results. It should be noted, however, that these
approaches typically validate complex social phenomena from the macro-level viewpoint
(e.g., organizational performance caused by interactions among individual agents). This is
simply because such macro-level phenomena are usually of primary interest. However, Gilbert
claimed that "to validate a model completely, it is necessary to confirm that both the macro-
level relationships are as expected and the micro-level behaviours are adequate
representations of the actors' activity" (Gilbert 2004). From this viewpoint, few studies
conducted both the micro- and macro-level validation in agent-based simulation.

1.2
Toward a complete validation of computational models and simulation results, this paper
aims at addressing both micro- and macro-level validation in agent-based simulation. For
this purpose, this paper starts by comparing several simulation results of different agents in
the same model with subject experiment results. The point of this approach is to compare
different agents, which differs from the general model-to-model approach (Hales et al.
2003) that compares different models (e.g., a comparison between culture models (Axelrod
1997) and Sugarscape (Epstein and Axtell 1996) in the work of Axtell et al. (1996)). We
employ such an approach for the following reasons (Takadama et al. 2003): (1) it is difficult to
fairly compare different computational models under the same evaluation criteria, since they
are developed according to their own purpose; (2) common parts in different computational
models are very few in number, which makes it difficult to replicate either computational
model with the other; and (3) simulation results are sensitive to even a small modification in a
model, which makes it difficult to find the key elements or factors that make simulation
results sensitive in a model (i.e., there are several candidates that affect simulation results,
which makes it hard to find the most important candidates). Since these difficulties prevent a
comparison of computational models and their fair comparisons, we start by comparing the
results of ABSs whose agents differ only in one element as the first step toward our goal. An
example of such elements includes learning mechanisms applied to agents. In this paper,
different kinds of action selection mechanisms in learning mechanisms (i.e., the ε-greedy,
roulette, and Boltzmann distribution selections, which are all described in Section 3) are
employed for agent modeling.

1.3
To address this issue, this paper explores agent modeling that is validated from both the
micro- and macro-level viewpoints by comparing several simulation results of different
agents with subject experiment results. Precisely, we conduct the simulation of agents with
different action selection mechanisms and compare these simulation results with subject
experiment results to conduct both micro- and macro-level validation.

1.4
This paper is organized as follows. Section 2 explains an example (i.e., the bargaining game)
employed in this paper and an implementation of agents is described in Section 3. Section 4
presents computer simulations and Section 5 discusses the validity of agents from both the
micro- and macro-level viewpoints. Finally, our conclusions are given in Section 6.

 Bargaining Game

Why the bargaining game?

2.1
In order to address both micro- and macro-level validation in agent-based simulation as
described in the previous section, we focus on bargaining theory (Muthoo 1999; 2000) in
game theory (Osborne and Rubinstein 1994) and employ a bargaining game (Rubinstein
1982) where two or more players try to reach a mutually beneficial agreement through
negotiations. This game has been proposed for investigating when and what kinds of offers
from an individual player can be accepted by the other players. We selected this domain for
meeting our goal because it can investigate the change in both the payoff of human players
from the macro-level viewpoint and the thinking of human players from the micro-level
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viewpoint. In particular, the sequential bargaining game is employed because (1) both
viewpoints can be investigated longer than in the ultimatum game (i.e., one-time bargaining
game) and (2) sequential negotiations are naturally conducted in general human society
instead of one-time negotiation (i.e., it is a rare case when a negotiation process ends after
only one negotiation).

What is the bargaining game?

2.2
To understand the bargaining game, let us give an example from Rubinstein's work (1982),
which illustrated a typical situation using the following scenario: two players, P1 and P2 , have
to reach an agreement on the partition of a "pie." For this purpose, they alternate offers
describing possible divisions of the pie, such as "P1 receives x and P2 receives 1-x at time t,"
where x is any value in the interval [0,1]. When a player receives an offer, the player decides
whether to accept it or not. If the player accepts the offer, the negotiation process ends, and
each player receives the share of the pie determined by the concluded contract. If the player
decides not to accept the offer, on the other hand, the player makes a counter-offer, and all
of the above steps are repeated until a solution is reached or the process is aborted for some
external reason (e.g., the number of negotiation processes is finite). If the negotiation
process is aborted, neither player can receive any share of the pie.

2.3
Here, we consider the finite-horizon situation, where the maximum number of steps
(MAX_STEP) in the game is fixed and all players know this information as common knowledge.
In the case where MAX_STEP=1 (also known as the ultimatum game), player P1 makes the only
offer and P2 can accept or refuse it. If P2 refuses the offer, both players receive nothing. Since
a rational player operates the notion that "anything is better than nothing," a rational P1 tends
to keep most of the pie to herself by offering only a minimum share to P2 . Since there are no
further steps to be played in the game, a rational P2 inevitably accepts the tiny offer.

2.4
By applying a backward induction reasoning to the situation above, it is possible to perform a
simulation for MAX_STEP>1. For the same reason seen in the ultimatum game, the player who
can make the last offer is better positioned to receive the larger share by offering a minimum
offer (Ståhl 1972). This is because both players know the maximum number of steps in the
game as common knowledge, and therefore the player who can make the last offer can
acquire a larger share with the same behavior as in the ultimatum game at the last
negotiation[1]. From this feature of the game, the last offer is granted to the player who does
not make the first offer if MAX_STEP is even, since each player is allowed to make at most
MAX_STEP/2 offers. On the other hand, the last offer is granted to the same player who
makes the first offer if MAX_STEP is odd.

2.5
After this section, we use the terms "payoff" and "agent" instead of the terms "share" and
"player" for their more general meanings in the bargaining game.

 Modeling Agents

Why reinforcement learning agents?

3.1
For the bargaining game, we employ reinforcement learning agents (Sutton and Barto 1998)
because a lot of research has shown that reinforcement learning agents have a high
reproduction capability of human-like behaviors (Roth and Erev 1995; Erev and Roth 1998;
Iwasaki et al. 2005; Ogawa et al. 2005). For example, Roth and Erev compared simulation
results of simple reinforcement learning agents with results of subject experiments in several
examples (Roth and Erev 1995; Erev and Roth 1998) revealing that (1) computer simulation
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using simple reinforcement learning agents can better explain the result of subject
experiments than economic theory; and (2) the former approach has greater potential of
predicting results than the latter approach. In related work, Ogawa and their colleagues
compared simulation results with subject experiment results in monopolistic intermediary
games (Spulber 1999), which more real-world complexity than examples addressed in Roth
and Erev's works (Roth and Erev 1995; Erev and Roth 1998), and revealed that simple
reinforcement learning agents can reproduce the subject experiment results more precisely
than the best response agents and random agents (Iwasaki et al. 2005; Ogawa et al. 2005).

3.2
Since these results are validated from the macro-level viewpoint which means that they are
not sufficient for micro-level validation, this paper investigates the reproduction capability of
reinforcement learning agents in terms of both micro- and macro-level validation in order to
explore validated agents through comparisons of them. The reinforcement learning agents,
specifically, Q-learning agents (Watkins and Dayan 1992) in computer science literature are
employed among other famous agents like Roth's learning agents (Roth and Erev 1995; Erev
and Roth 1998) in social science literature. This is because our previous research revealed
that Q-learning agents can learn consistent behaviors and acquire sequential negotiation in
the sequential bargaining game, while Roth's agents cannot (Roth's agents work well in one-
time negotiation) (Takadama et al. 2006).

3.3
Furthermore, an employment of reinforcement learning agents including Q-learning agents is
useful for model-to-model comparisons in terms of transferability of agents to other
domains. This is because the agent's model is very simple which makes it easy to replicate for
further analysis, in comparison with conventional models which are generally very complex,
ad hoc, and created for their own purpose.

An implementation of agents

3.4
This section explains an implementation of reinforcement learning agents in the framework of
the sequential bargaining game as follows.

Figure 1. Reinforcement learning agents

Memory
As shown in Figure 1, memory stores a fixed number of matrices of state (which
represents the start or the offered value from the opponent agent) and action (which
represents the acceptance of the offered value or the counter-offer value). In particular,
the MAX_STEP/2 + 1 number of matrices are prepared in each agent and used in turn at
each negotiation to decide to accept an offer or make a counter-offer (see an example
presented later in this section). In Figure 1, both agents have n+1 number of matrices.
In this model, agents independently learn and acquire different worths[2] of the state
and action pair, called Q-values, in order to acquire a large payoff. Q-value,
represented by Q(s,a), indicates an expected reward (i.e., the payoff in the bargaining
game) that an agent will acquire when performing the action a in the situation s. Note
that (1) both state and action in this model are represented by discrete values in units
of 10 (i.e., 10, 20, ..., 90); and (2) in addition to these 10-90 values, the matrix has a
column labeled (S) and a row labeled (A), which are used to indicate the start to
determine the value of the first offer and accept an offer, respectively.
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This modeling of memory indicates that the agents decide their actions according the
latest offer received. This does not fully represent human behaviors because humans
decide their actions according to the offers received not only in the latest but also in the
past. However, the agents have multiple numbers of matrices for each negotiation as
shown in Figure 1 which implicitly enables agents to consider offers received in the past
by employing the mechanism that the current matrix is affected by the previous matrix
which is done by equation (1) described in the next.
Mechanism
Q-learning employed in our simulation updates the worth of pairs of state and action
by the following equation (1). Variables in this equation are summarized in Table 1.

Q(s,a)=Q(s,a)+α[r+γ maxa'∈ A(s') Q(s',a')-Q(s,a)].   ....   (1)

Table 1. Variables in Q-learning

3.5
For the above mechanism, Q-learning mechanism estimates the expected rewards by using
the next Q-values, which strengthens the sequential state and action pairs that contribute to
acquiring the reward. This is done by updating Q(s,a) to be close to r+maxa'∈ A(s') Q(s',a').
Precisely, Q(s,a) is close to maxa'∈ A(s') Q(s',a') until the final negotiation because r is set to 0
due to the fact that the reward is not obtained until the bargaining game is completed, while
Q(s,a) is close to r at the final negotiation because r is set by the acquired reward calculated
from the payoff and maxa'∈ A(s') Q(s',a') is set to 0 which indicates that there is no further
negotiation.

3.6
For the action selection mechanisms that determine the acceptance of an offer or counter-
offer, the following methods are employed.

ε-greedy selection
This method selects an action of the maximum worth (Q-value) at the 1-ε probability,
while selecting an action randomly at the ε (0 ≤ ε ≤ 1) probability.
Roulette selection
This method probabilistically selects an action based on the ratio of Q-values over all
actions, which is calculated by the following equation (2).

P(a|s)=Q(s,a) / ∑ai ∈ A(s) Q(s,ai ).   ....   (2)

Boltzmann distribution selection
This method probabilistically selects an action based on the ratio of Q-values over all
actions, which is calculated by the following equation (3). In this equation, T is the
temperature parameter that adjusts randomness of action selection. Agents select their
actions at random when T is high, while they select their greedy actions when T is low.

P(a|s)=eQ(s,a)/T / ∑ai ∈ A(s) eQ(s,ai )/T.   ....   (3)

3.7
As a concrete negotiation process, agents proceed as follows. Defining {offer,offered}iA{1,2}

as the ith offer value (action) or offered value (state) of agent A1 or A2 , A1 starts by selecting



one Q-value from the line S(Start) (i.e., one Q-value from {Q01 , ..., Q09 }[3] in the line S), and
makes the first offer, offer1A1, according to the selected Q-value (for example, A1 makes an
offer of 10% if it selects Q01). Here, we count one step when either agent makes an offer.
Then, A2 selects one Q-value from the line offered1A2 (= offer1A1) (i.e., one Q-value from
{QV0, ..., QV9 }, where V= offered1A2 (= offer1A1)). A2 accepts the offer if QV0 (i.e., the
acceptance (A)) is selected; otherwise, it makes a counter-offer, offer2A2, according to the
selected Q-value in the same way as A1. This cycle is continued until either agent accepts the
offer of the other agent or the negotiation is over (i.e., the maximum number of steps
(MAX_STEP) is exceeded by deciding to make a counter-offer instead of acceptance at the last
negotiation step).

3.8
To understand this situation, let us consider the simple example where MAX_STEP=6 as
shown in Figure 2. Following this example, A1 starts to make an offer of 10%(= offer1A1) to
A2 by selecting Q01 from the line S(Start). However, A2 does not accept the first offer because
it determines to make a 10%(= offer2A2) counter-offer by selecting Q11 from the line 10%(=
offered1A2, corresponding to A1's offer). Then, in this example, A1 makes a 90%(= offer3A1)
counter-offer by selecting Q19 from the line 10%(= offered2A1), A2 makes a 90%(= offer4A2)
counter-offer by selecting Q99 from the line 90%(= offered3A2), A1 makes a 10%(= offer5A1)
counter-offer by selecting Q91 from the line 90%(= offered4A1), and A2 makes a 10%(=
offer6A2) counter-offer by selecting Q11 from the line 10%(= offered5A2). Finally, A1 accepts
the 6th offer from A2 by selecting Q10 from the line 10%, which results in A(acceptance). But,
if A1 makes a counter-offer instead of accepting the 6th offer from A2 at the last negotiation
step (which means to exceed the maximum number of steps), both agents can no longer
receive any payoff, i.e., they receive 0 payoff.

Figure 2. Example of a negotiation process

3.9
Here, we count one iteration when the negotiation process ends or fails. In each iteration, Q-
learning agents update the worth pairs of state and action in order to acquire a large payoff.

 Simulation

Simulation cases



4.1
The following simulations were conducted in the sequential bargaining game as comparative
simulations shown in Table 2.

Case 1: Q-learning agents with the constant random parameter
The aim of case 1 is to explore agent modeling that can reproduce human-like
behaviors from the macro-level viewpoint. To address this issue, we compare the
results of Q-learning agents, applying one of the three action selection mechanisms
(i.e., the ε-greedy, roulette, and Boltzmann distribution selection mechanisms) and
investigate which agent modeling can reproduce simulation results that are close to
subject experiment results. Note that the random parameters, ε and T, in the ε-greedy
and Boltzmann distribution selection mechanisms are set as the constant value (see
Section 4.2).
Case 2: Q-learning agents with changing the random parameter
The aim of case 2 is to explore agent modeling that can reproduce human-like
behaviors and thinking from both the micro- and macro-level viewpoints. To address
this issue, we compare the results of Q-learning agents, applying either of the ε-greedy
or Boltzmann distribution selection mechanism with changing the random parameter, ε
and T, as the following equations (4) and (5) and investigate which agent modeling can
reproduce simulation results that are close to subject experiment results. In the
following equations, ChangeRate (0 < changerate < 1) indicates the randomness
decreasing parameter which is set in Section 4.2.

ε = ε × (1-ChangeRate)  in each interaction,   ....   (4)

T = T × (1-ChangeRate)  in each interaction.   ....   (5)

Note that (1) the above equations implicitly represent the thinking of human players
(i.e., the micro-level behaviors) according to the subject experiment, which is discussed
in Sections 5.1 and 5.6; and (2) we do not conduct the simulation of Q-learning agents
with the roulette selection mechanism because there is no random parameter in this
mechanism.

Table 2. Simulation cases

Evaluation criteria and parameter setting

4.2
In each simulation, (a) the payoff for two agents and (b) the negotiation process size are
investigated. Here, the negotiation process size is the number of steps until an offer is
accepted or MAX_STEP if no offer is accepted. All simulations are conducted for up to
10,000,000 iterations, which is enough for the agents to learn appropriate behaviors, and the
results show the moving average of 10,000 iterations, which are all averaged over 10 runs. As
for the parameter setting, the variables are set as follows.

Common parameters of the game: MAX_STEP (the maximum number of steps in one
iteration) is 6; reward r (the maximum payoff) is 10; ε (the ε-greedy selection) is 0.25 in
case 1 and 0.9 in case 2; T (the Boltzmann distribution selection) is 0.5 in case 1 and
1000 in case 2; and ChangeRate is 0.000001.
Q-learning parameters: α (learning rate) is 0.1; γ (discount rate) is 1.0; and initial Q-
value is 0.1.



4.3
Note that (1) preliminary examinations found that the tendency of the results does not
drastically change according to the above parameter setting. We have confirmed, in particular,
that the results do not drastically change when varying the sensitive parameter ε and T
around 0.25 and 0.5, respectively; (2) we have confirmed in case 2 that ε(=0.9) in the ε-
greedy selection and T(=1000) in the Boltzmann distribution selection show mostly the same
high randomness in the action selection; and (3) ChangeRate in case 2 is set as 0.000001 to
reduce the randomness of agents' behaviors around the end of simulations (i.e., 10,000,000
iterations).

4.4
Finally, all simulations were implemented by Java with standard libraries and conducted in
Windows XP OS with Pentium 4 (2.60GHz) Processor[4].

Simulation results

4.5
Figures 3 and 4 show the simulation results of Q-learning agents with the constant random
parameter and those with changing the random parameter, respectively. The upper, middle,
and lower figures in Figure 3 correspond to cases 1-a, 1-b, and 1-c, respectively, while the
upper and lower figures in Figure 4 correspond to cases 2-a and 2-c, respectively. The left
and right figures in all cases indicate the payoff and negotiation process size, respectively.
The vertical axis in these figures indicates these two criteria, while the horizontal axis
indicates the iterations. In the payoff figure, in particular, the red and skyblue lines indicate
the payoff of agents 1 and 2, respectively. Finally, all results are averaged from 10 runs at
10,000,000 iterations. The variances across the 10 runs of all simulation results are less than
0.3 in both payoffs and the negotiation process size, which is enough to be small, i.e., the
simulation results across the 10 runs are consistent.

Figure 3. Simulation results of Q-learning agents (Case 1):
Average values over 10 runs through 10,000,000 iterations



Figure 4. Simulation results of Q-learning agents (Case 2):
Average values over 10 runs through 10,000,000 iterations

4.6
These results suggest that (1) in case 1, the payoff of Q-learning agents with the constant
random parameter converges within 40% and 60% in any type of the three action selections
(i.e., the ε-greedy, roulette, and Boltzmann distribution selections), while the negotiation of
those agents is more than two-time negotiations in any type of the three action selections,
which means that the agents acquire the sequential negotiation; and (2) in case 2, the payoff
of the Q-learning agents with changing the random parameter mostly converges at 10% and
90% in the ε-greedy selection and converges within 40% and 60% in Boltzmann distribution
selection, while the negotiation process size of those agents tends to increase as a whole in
the ε-greedy selection and shows the increasing and decreasing trend in Boltzmann
distribution selection.

 Discussion

Subject experiment result

5.1
Before discussing the simulation results of Q-learning agents, this section briefly describes
the subject experiment result found in Kawai et al. (2005). Figure 5 shows this result
indicating the payoff of two human players in the left figures and the negotiation process size
in the right figures. The vertical and horizontal axes have the same meaning as in Figures 3
and 4. In the payoff figure, in particular, the red and skyblue lines indicate the payoff of
human players 1 and 2, respectively. Note that (1) all values in this figure are averaged from
10 cases through 20 iterations, where 10 cases were done by 10 pairs created from 20 human
players. The variances across the 10 cases of all experiment results are less than 0.9 in both
payoffs and the negotiation process size, which is a little larger than that in simulation results
but the experiment results across the 10 cases are mostly consistent; (2) all human players
are not well aware of the bargaining game and can make an offer or counter-offer either of
10%, 20%, ..., 90% or accept an offer (which is the same as simulations); (3) human players
negotiated not face-to-face but by Windows Messenger in order not to know each other and
to avoid the influence of facial emotion. For this purpose, human players participated in the
bargaining game in separated rooms; and (4) human players received one actual payoff from
1 iteration (game) selected from among 20 iterations (games). By informing human players of
this reward decision rule before starting the bargaining game, they were motivated to
concentrate on every game because they did not know which game would be selected for
determining the payment.
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Figure 5. Subject experiment results in (Kawai 2005):
Average values over 10 experiments through 20 iterations

5.2
The result shows that (1) the payoff of two human players mostly converges within 40% and
60%, which indicates that human players never accept the tiny offer, unlike the rational
players analyzed in Section 2; and (2) the negotiation process size increases a little bit around
the first several iterations, decreases and converges around two around the last several
iterations, which indicates that (2-i) human players acquire sequential negotiations; and (2-ii)
the increasing and decreasing trend occurs in the subject experiment. This result also differs
from the theoretical analysis done by (Rubinstein 1982), which indicates that the rational
players (calculate and) offer the optimal payoff (i.e., the minimum payoff) and accept the offer
right away without any further negotiation.

5.3
To analyze the reason why we obtained the above results, we conducted a questionnaire
survey of the human players. The results are summarized as follows: (1) human players that
can make the last offer come to be aware of their advantage of having a chance to acquire a
larger payoff; (2) human players search for a mutually agreeable payoff not by one-time
negotiation but by sequential negotiations; and (3) the increasing and decreasing trend
emerges because of the following reasons: (3-i) the negotiation process size increases
around the first several iterations because both players do not know their strategies each
other which promotes them to explore possibilities of obtaining a larger payoff by competing
with each other which requires further negotiations (i.e., a larger negotiation process size is
required to explore a larger payoff) and (3-ii) the negotiation process size decreases around
the last several iterations because both players find a mutually agreeable payoff by knowing
their strategies each other which decreases the motivation of human players to negotiate
again (i.e., a few negotiation process size is enough to determine their payoffs). These results
suggest that the trend change of the negotiation process size (i.e., the increasing trend to the
decreasing trend) represents the change in thinking of human players (i.e., thinking for
exploring a larger payoff to thinking for a mutually agreeable payoff).

Case 1: Q-learning agents with the constant random parameter

5.4
Regarding Q-learning agents with the constant random parameter, Figure 3 shows that (1)
the payoff of two agents converges within 40% and 60% (one of them is rather close to 50%
and 50%) in any type of the three action selections (i.e., the ε-greedy, roulette, and
Boltzmann distribution selections); and (2) the negotiation process size of those agents is
more than two in any type of the three action selections, which means that the agents acquire
the sequential negotiation. We obtain these results for the following reasons:

Payoff viewpoint: Q-learning agents updates their Q-values by estimating the
expected reward, but they sometimes select actions probabilistically or randomly. This
results in acquiring around 40% to 60% payoffs instead of acquiring the maximum and
minimum payoffs[5]. This corresponds to human behaviors, i.e., a human does not
always take the optimal actions.
Negotiation process size viewpoint: Since Q-values that determine players' actions
(i.e., the offer, counter-offer, or acceptance of an offer) are not so much different, the
negotiation may continue, i.e., some games are completed by one-time negotiation,
while others are completed by the maximum time negotiation. This causes more than
two-time negotiations and corresponds to human behaviors, i.e., a human does not
always complete the same number of negotiations.
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5.5
The above analysis suggests that Q-learning agents can acquire the similar results of the
subject experiment described in Section 5.1 from both the payoff viewpoint (i.e., an
acquisition of the payoff within 40% and 60%) and the negotiation process size viewpoint (i.e.,
an acquisition of sequential negotiations). This derives the implication that Q-learning agents
with any type of action selections are validated from the macro-level viewpoint.

Case 2: Q-learning agents with changing the random parameter

5.6
It should be noted here, however, that the validation described in the previous section is not
accurate because Q-learning agents cannot reproduce the increasing and decreasing trend
found in the subject experiment from the precise negotiation process size viewpoint. This
suggests that the macro-level validation is not enough to explore validated agents. More
importantly, the only macro-level validation may derive incorrect implications. To overcome
this problem, we should conduct the micro-level validation in addition to the macro-level
validation as Gilbert claimed (Gilbert 2004).

5.7
For this purpose, we focus on the thinking of human players from the micro-level validation
and consider why the increasing and decreasing trend is occurred in the negotiation process
size. Concretely, the change in thinking of human players is investigated from the viewpoint
of the negotiation process size because the trend change of the negotiation process size
represents the change in thinking of human players which is revealed from the questionnaire
survey to human players conducted in the subject experiment in Section 5.1. Repeating the
analysis of the subject experiment, such a trend emerges by players competing with each
other to obtain a larger payoff around the first several iterations which promotes further
negotiations (i.e., the negotiation process size increases), and by finding a mutually
agreeable payoff around the last several iterations which decreases the motivation of human
players to negotiate again (i.e., the negotiation process size decreases). Considering these
characteristics of human players, we introduce the randomness decreasing parameter in
equations (4) and (5) described in Section 4.1. This parameter decreases the randomness of
the action selection of human players as the iterations increase, which have the following
functions: (1) the high randomness of the action selection in the first several iterations
corresponds to the stage where players try to explore a larger payoff by competing with each
other; while (2) the low randomness of the action selection in the last several iterations
corresponds to the stage where players make a mutually agreeable payoff with a small
number of negotiations.

5.8
By using Q-learning agents with the above randomness decreasing parameter, we conducted
the simulation and acquired Figure 4 showing that (1) the payoff of agents employing the ε-
greedy selection converges mostly at the maximum and minimum payoffs, while that of
agents employing Boltzmann distribution selection converges within 40% and 60%; and (2) the
negotiation process size of agents employing the ε-greedy selection increases as a whole
tendency although it sometimes vibrates, while that of agents employing the Boltzmann
distribution selection shows the increasing and decreasing trend. We obtain these results for
the following reasons.

Payoff viewpoint: When the random parameter is high, both Q-learning agents
employing the ε-greedy and Boltzmann distribution selections explore their offer or
counter-offer values randomly with the high value of ε and T. When the random
parameter becomes low, however, the agents employing the ε-greedy selection become
to select the best action, while the agents employing Boltzmann distribution selection
become to select actions considering the past experience (i.e., the better actions are
selected in a high probability, while the worse actions are selected in a low probability).
This difference derives the implication that agents employing the ε-greedy selection
can estimate the expected reward that contributes to acquiring mostly the maximum
and minimum payoffs, while those employing Boltzmann distribution selection cannot
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estimate the expected reward that results in acquiring around 40% to 60% payoffs like
human players. The latter result (i.e., the result of agents employing Boltzmann
distribution selection) corresponds to human behaviors, i.e., humans do not always
select their best actions but select them considering the past experience.
Negotiation process size viewpoint: The above difference between the best action
selection in the ε-greedy selection and the learned actions selection in Boltzmann
distribution selection also causes the different Q-tables after 10,000,000 iterations as
shown in Table 3(a) and (b). In both tables, the column and line indicate the action (e.g.,
"acceptance" represented by A or "offer/counter-offer value") and state (e.g., "start"
represented by S or "offered value"), respectively. For example, the Q-value of counter-
offering 10% is 8.1 when an opponent agent offers 10% in Table 3(a). The tables
indicate that (1) agents employing the ε-greedy selection continue to make a 10% or
20% counter-offer in a high probability because the highest Q-values (i.e., 8 (counter-
offering a 10% payoff) or 8.1 (counter-offering a 20% payoff) in Table 3(a)) is usually
selected, which contributes to increasing the negotiation process size as shown in
Figure 4(a); and (2) agents employing Boltzmann distribution selection, on the other
hand, make a 50% offer and accept it in a high probability because the highest Q-values
(i.e., 5 (counter-offering a 50% payoff) in Table 3(b)) is usually selected (precisely,
agents may make a 50% counter-offer with the same probability of the acceptance of
the offer because both Q-values are 5). This contributes to decreasing the negotiation
process size as shown in Figure 4(b). This directly corresponds to human behaviors, i.e.,
humans behave under the consideration of fairness (or equity) discussed in Section
5.10.



Table 3. Q-table in Q-learning agents

5.9
The above analysis suggests that Q-learning agents employing Boltzmann distribution
selection with changing the random parameter can acquire the results similar to the subject
experiment described in Section 5.1 from both the payoff viewpoint (i.e., an acquisition of the
payoff within 40% and 60%) and the negotiation process size viewpoint (i.e., an acquisition of
both sequential negotiations and the increasing and decreasing trend). This is because the
agents employing Boltzmann distribution selection with changing the random parameter
become to select their actions considering the past experience, while the agents employing
the ε-greedy selection with changing the random parameter become to select the best action
(which is not usual human behaviors). It goes without saying that the agents employing the
roulette section cannot reproduce the increasing and decreasing trend in the negotiation
process size due to a lack of the random change parameter, while the agents employing both
ε-greedy and Boltzmann distribution selections with changing the random parameter can
reproduce such trend change. This derives the implication that Q-learning agents employing
Boltzmann distribution selection with changing the random parameter are validated in the
sequential bargaining game from both the micro- and macro-level viewpoints. This result
stresses the importance of both the micro- and macro-level validation in an exploration of
validated agents.

Validity of Q-learning agents

5.10
The above analysis derives the following implications: (1) the macro-level validation is not
sufficient to explore validated agents, which suggests that the micro-level validation should
be conducted in addition to the macro-level validation; and (2) Q-learning agents employing
Boltzmann distribution selection with changing the random parameter are validated in the
sequential bargaining game from both the micro- and macro-level viewpoints. In order to
further strengthen the validity of the above Q-learning agents, this section discusses it from
the following aspects.

Other micro- and macro-level viewpoints

Other micro- and macro-level viewpoints can be analyzed instead of the payoffs and
the negotiation process size evaluated in our simulations. This indicates that Q-
learning agents employing Boltzmann distribution selection with changing the random
parameter is only validated from the viewpoints of the payoffs and the negotiation
process size. Therefore, further investigations should be done from other micro- and
macro-level viewpoints to generalize our results.

Interaction

Comparing the iterations between the subject experiment and computer simulation,
humans require only 20 iterations to learn consistent behaviors and acquire sequential
negotiation, while Q-learning agents require 10,000,000 iterations. It seems that Q-
learning agents cannot completely reproduce the human-like behaviors from the
iteration viewpoint. This is true if agents should be validated in terms of iteration
aspect, but the tendency and consistency of the simulation results are important
aspects in such comparisons for the following reasons: (1) it is difficult to fairly
compare both humans' and agents' results in terms of iteration aspect due to humans
by nature having much higher capabilities than Q-learning agents (e.g., Q-learning
agents do not have the capability of modeling opponent players). This requires a lot of
learning time for agents in comparison with human players; and (2) when we validate
agents in terms of the iteration aspect, we should also consider the time of one iteration
in the sequential bargaining game. This is because one iteration in a short consideration
time is not the same as one in a long consideration time. For example, human players
can consider opponents' actions in future steps in a long consideration time. From this
viewpoint, human players have the a lot of time to consider in comparison with agents



due to the fact that average time of completing 10,000,000 iterations for agents (less
than 1 minute) is smaller than that of 20 iterations in human players (10 minutes (Kawai
et al. 2005)). It seems that 10,000,000 iterations in agents is not so large for
comparing the results in terms of the time aspects. But, as you can easily imagine, it is
also not a fair comparison due to the different capabilities of human players and agents.

From the above difficulty of validating agents in terms of iterations, a comparison of
humans' and agents' results in terms of the tendency and consistency is important for
the first stage of validation. However, an exploration of agents modeling that produces
human-like behaviors in short iterations (like 20 iterations) is the challenging issue to
overcome the above validation problem.

Fairness (Equity)

Focusing on the fairness (or equity) of the payoff, Q-learning agents employing
Boltzmann distribution selection derive the roughly equal division of the payoff, which
is most similar to the subject experiment result. It should be noted here, however, that
(1) the Q-learning mechanism itself does not consider fairness (or equity) of the payoff
because it is an optimization method but (2) the integration of the Q-learning
mechanism with action selections enables agents to acquire the fairness of behaviors.
Especially in the case of introducing the randomness decreasing parameter that reflects
human behaviors (i.e., (1) the high randomness of the action selection in the first
several iterations corresponds to the stage where players try to explore a larger payoff
by competing with each other; while (2) the low randomness of the action selection in
the last several iterations corresponds to the stage where players make a mutually
agreeable payoff with a small number of negotiations), agents acquires 50% offer for
any offers from the opponent agents as shown in Table 3(b). Such results cannot be
obtained in the case of other action selection mechanisms. In this sense, Q-learning
employing the Boltzmann distribution selections has great potential for providing the
fairness of behaviors.

This implication can be supported by other research of the bargaining game in the
context of experimental economics (Friedman and Sunder 1994; Kagel and Roth 1995).
For example, Nydegger and Owen showed that there is a focal point (Schelling 1960)
around the 50% split in the payoff of two players (Nydegger and Owen 1974); Binmore
(1988: 209) suggested that fairness norms evolved to serve as an equilibrium selection
criterion when members of a group are faced with a new source of surplus and have to
divide it among its members without creating an internal conflict; and the results
obtained by Roth et al. showed the fairness even though the subjects playing the
ultimatum game had distinct characteristic behaviors depending on their countries of
origin (precisely, four different countries: Israel, Japan, USA, and Slovenia) (Roth et al.
1991).

Model comparison vs. agent comparison

5.11
In general, the model-to-model approach (Hales et al. 2003) compares different models to
investigate the validity of "computational models" and "simulation results." This also
contributes to promoting transfer of knowledge on "models" by clarifying the limits of the
applicability of their "models". In comparison with this approach, our approach compares
different agents in the same model to validate "agents" and "simulation results" by
comparison with subject experiment results. This also contributes to promoting transfer of
knowledge on "agents" by clarifying the limits of applicability of their "agents." From this
analysis, we find that (1) both approaches pursue the same goal and (2) the only difference is
to focus on model-level design (i.e., the framework of the model) or agent-level design (i.e.,
the framework of the agent). This viewpoint suggests that our approach can be regarded as
one of the model-to-model approaches.

 Conclusions
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6.1
This paper addressed both micro- and macro-level validation in agent-based simulation
(ABS) to explore validated agents that can reproduce not only human-like behaviors
externally but also human-like thinking internally. For this purpose, we employed the
sequential bargaining game for the long investigation of a change in humans' behaviors and
thinking and compared simulation results of Q-learning agents employing any type of the
three types of action selections (i.e., the ε-greed, roulette, and Boltzmann distribution
selections) in the game. Intensive simulations have revealed the following implications: (1) Q-
learning agents with any type of the three action selections can acquire sequential
negotiation, but they cannot show the increasing and decreasing trend found in subject
experiments. This indicates that Q-learning agents can reproduce human-like behaviors but
not human-like thinking, which means that they are validated from the macro-level viewpoint
but not from the micro-level viewpoint; and (2) Q-learning agents employing Boltzmann
distribution selection with changing the random parameter cannot only acquire sequential
negotiation but also show the increasing and decreasing trend in the game. This indicates
that the Q-learning agents can reproduce both human-like behaviors and thinking, which
means that they are validated from both micro- and macro-level viewpoints.

6.2
What should be noted here is that these results have only been obtained from one example,
i.e., the sequential bargaining game. Therefore, further careful qualifications and
justifications, such as analyses of results using other learning mechanisms and action
selections or in other domains, are needed to generalize our results. Such important
directions must be pursued in the near future in addition to the following future research: (1)
an exploration of other ChangeRage settings; (2) modeling agents that produce human-like
behaviors in the short iterations (such as 20 iterations as subject experimental results); (3)
simulation with more than two agents; (4) an analysis of the case where humans play the
game with agents like in (Bosse and Jonker 2005); and (5) investigation of the influence of the
discount factor (Rubinstein 1982) in the bargaining game.
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 Notes

1 In detail, Rubinstein concluded that the solution for the bargaining game is unique, i.e., it
reaches the perfect equilibrium partition (P.E.P) under the assumptions that (1) the discount
factors are common knowledge to the players and (2) the number of stages (or steps) to be
played is infinite (Rubinstein 1982). In other words, in an exchange between rational players,
the first offerer should (calculate and) offer the P.E.P; the responder (the opponent players)
should then accept the offer right away, making an instantaneous deal with no need of further
interaction. Concretely, assuming that players P1 and P2 are penalized with discount factors
δ1 and δ2 , respectively, and P1 is granted the first offer, the composition of the P.E.P contract
is that player P1 receives a share of the pie that returns her a utility of U_1 = (1-δ2 ) / (1-
δ1δ2 ), whereas player P2 gets a share that returns him a utility of U_2 = δ2(1-δ1 ) / (1-δ1δ2
). For values of δ close to 0, the finite-horizon alternating-offers bargaining games give a
great advantage to the player making the last offer. In this research, we employ the finite-
horizon alternating-offers bargaining game in the case where δ1 = δ2 = 0.
2 In the context of reinforcement learning, worth is called "value." We select the term "worth"
instead of "value" because the term "value" is used as a numerical number represented in the
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state and action.
3 At the first negotiation, one Q-value is selected from {Q01 , ..., Q09 }, not from {Q00 , Q01 ,
..., Q09 }. This is because the role of the first agent is to make the first offer and not to accept
any offer (by selecting Q00) due to the fact that a negotiation has not started yet.
4 Source code can be downloaded from http://www.cas.hc.uec.ac.jp/bargaining-
game/index.html. 
5 In other words, the Q-learning agents get into the local minimum solution. 
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