
30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 1 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

©Copyright JASSS

Alan G. Isaac (2008)

Simulating Evolutionary Games: A Python-Based Introduction
Journal of Artificial Societies and Social Simulation vol. 11, no. 3 8

<http://jasss.soc.surrey.ac.uk/11/3/8.html>
For information about citing this article, click here

Received: 12-Feb-2008 Accepted: 01-Apr-2008 Published: 30-Jun-2008

Abstract

This paper is an introduction to agent-based simulation using the Python programming
language. The core objective of the paper is to enable students, teachers, and researchers
immediately to begin social-science simulation projects in a general purpose programming
language. This objective is facilitated by design features of the Python programming
language, which we very briefly discuss. The paper has a tutorial component, in that it is
enablement-focused and therefore strongly application-oriented. As our illustrative
application, we choose a classic agent-based simulation model: the evolutionary iterated
prisoner's dilemma. We show how to simulate the iterated prisoner's dilemma with code that
is simple and readable yet flexible and easily extensible. Despite the simplicity of the code, it
constitutes a useful and easily extended simulation toolkit. We offer three examples of this
extensibility: we explore the classic result that topology matters for evolutionary outcomes,
we show how player type evolution is affected by payoff cardinality, and we show that
strategy evaluation procedures can affect strategy persistence. Social science students and
instructors should find that this paper provides adequate background to immediately begin
their own simulation projects. Social science researchers will additionally be able to compare
the simplicity, readability, and extensibility of the Python code with comparable simulations in
other languages.

Keywords:
Agent-Based Simulation, Python, Prisoner's Dilemma

Introduction

1.1
Computer simulation of social and economic interactions has been gaining adherents for
more than two decades. Contemporary researchers often promote simulation methods as a
“third way” of doing social science, distinct from both pure theory and from statistical
exploration (Axelrod 1997). While many methodological questions remain areas of active
inquiry, especially in the realms of model robustness and model/data confrontations,

http://jasss.soc.surrey.ac.uk/admin/copyright.html
http://jasss.soc.surrey.ac.uk/JASSS.html
http://jasss.soc.surrey.ac.uk/11/3/8/isaac.html
http://jasss.soc.surrey.ac.uk/11/3/8/citation.html
http://jasss.soc.surrey.ac.uk/11/3/8/8.pdf
http://jasss.soc.surrey.ac.uk/11/3/8.html#axelrod-1997-abm

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 2 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

researchers have been attracted by the ease with which computational methods can shed
light on intractable theoretical puzzles. Some researchers have gone so far as to argue that
pure theory has little left to offer—that for social science to progress, we need simulations
rather than theorems (Hahn 1991).

1.2
One specific hope is that simulations will advance social science by enabling the creation of
more realistic models. For example, economists can build models that incorporate important
historical, institutional, and psychological properties that “pure theory” often has trouble
accommodating, including learning, adaptation, and other interesting limits on the
computational resources of real-world actors. Another specific hope is that unexpected but
useful (for prediction or understanding) aggregate outcomes will emerge from the
interactions of autonomous actors in agent-based simulations. These hopes are already
being met in many surprising and useful ways (Bonabeau 2002).

1.3
Simulations are considered to be agent-based when the outcomes of interest result from the
repeated interaction of autonomous actors, called ‘agents’. These agents are autonomous in
the sense that each agent selects actions from its own feasible set based on its own state. An
agent is often a stylized representation of a real-world actor: either an individual, such as a
consumer or entrepreneur, or an aggregate of individuals, such as a corporation or a
monetary authority (which may in turn be explicitly constituted of agents).

1.4
Substantial research in agent-based simulation (ABS) has been conducted in a variety of
general purpose programming languages, including procedural languages such as Fortran, C,
or Pascal; object oriented languages such as Objective-C, Smalltalk, C++, or Java; very-high
level matrix languages such as MATLAB or GAUSS; and even symbolic algebra languages such
as Maple or Mathematica. There are also a variety of special purpose toolkits for ABS,
including SWARM and MAML (built in Objective-C); Ascape, NetLogo, and Repast (built in
Java); and many others (Gilbert and Bankes 2002).1 In addition, there are a few efforts at
general environments in which a variety of ABS experiments can be run. (Bremer's GLOBUS
model, Hughes's IFs model, and Tesfatsion's Trade Network Game model are salient
examples.) Researchers occasionally express the hope that one of these might emerge as a
lingua franca for ABS research (Luna and Stefansson 2000). Working against this, as others
note, are the interfaces of capable toolkits and environments, which are often as difficult to
master as a full-blown programming language (Gilbert and Bankes 2002). A variety of
languages and toolkits remain in use, and this seems likely to persist, along with efforts to
assess their relative utility (Railsback et al. 2006).

1.5
This paper explores the use of Python as a language for ABS experiments. Python is a very-
high-level general-purpose programming language that is suitable for a range of simulation
projects, from class projects by students to substantial research projects. In the face of the
plethora of alternatives, an additional ABS research language may seem otiose. However this
paper shows that the Python programming language offers a natural environment for agent-
based simulation that is appropriate for both research and teaching.

1.6
This paper illustrates that suitability by quickly and simply developing a toolkit that can be
applied to a classic ABS model: the evolutionary iterated prisoner's dilemma. This application,
which is familiar to social scientists and illustrative of key needs in ABS research, serves to
illustrate some virtues of Python for such simulation projects.2 The core goals of the paper
naturally imply a substantial tutorial component: an introduction to agent-based simulation

http://jasss.soc.surrey.ac.uk/11/3/8.html#hahn-1991-ej
http://jasss.soc.surrey.ac.uk/11/3/8.html#bonabeau-2002-pnas
http://www.ifsmodel.org/
http://ccl.northwestern.edu/netlogo/
http://repast.sourceforge.net/
http://www.econ.iastate.edu/tesfatsi/tnghome.htm
http://jasss.soc.surrey.ac.uk/11/3/8.html#gilbert-bankes-2002-pnas
http://jasss.soc.surrey.ac.uk/11/3/8.html#platformref
http://www.maml.hu/
http://jasss.soc.surrey.ac.uk/11/3/8.html#railsback-lytinen-jackson-2006-simulation
http://jasss.soc.surrey.ac.uk/11/3/8.html#luna-stefansson-2000-swarm
http://jasss.soc.surrey.ac.uk/11/3/8.html#gilbert-bankes-2002-pnas
http://www.swarm.org/
http://ascape.sourceforge.net/
http://www.python.org/
http://jasss.soc.surrey.ac.uk/11/3/8.html#typicalabs

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 3 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

for those new to the area, an introduction to simulation of the evolutionary iterated prisoner's
dilemma, and a very narrowly focused introduction to the Python programming language.
Since code reuse and extensibility are crucial components of simulation projects, we also
show how to extend a basic simulation toolkit to explore the importance of topology, payoff
cardinality, and strategy evaluation for evolutionary outcomes.

1.7
The iterated prisoner's dilemma (IPD) is familiar to many social scientists, and many ABS
researchers have implemented some version of the IPD as an exercise or illustration. Readers
with ABS backgrounds will be able to appreciate how simple, readable, and intuitive our
Python implementation proves when compared to similar projects implemented in other
languages.3 This is a key reason to use Python for ABS research and teaching: with a little
care from the programmer and an extremely modest understanding of Python by the reader,
Python code can often be as readable as pseudocode. This is no accident: readability is an
explicit design goal of the Python language.

1.8
The core objective of the paper is to enable students, teachers, and researchers immediately
to begin social-science simulation projects in a general purpose programming language. We
achieve this by pursuing three related goals. First, we offer an introduction to the object-
oriented modeling of agents, which is a crucial component of agent-based simulation.
Second, we elaborate a simple yet usable toolkit that we apply to a classic ABS model: an
evolutionary iterated prisoner's dilemma. The speed and ease with which this prototype is
developed supports our claim that ABS research and teaching find a natural ally in the Python
programming language. Finally, we illustrate code reuse and extensibility by extending our
basic toolkit in two directions, exploring the importance of topology and of payoff cardinality
for evolutionary outcomes.

Object Oriented Programming

2.1
This section provides a very brief introduction to object-oriented programming and its
relationship to agent-based simulation. It also provides a similarly brief introduction to
aspects of the Python programming language that facilitate ABS research.

2.2
Agent-based simulation is most naturally approached with object-oriented programming
languages. In order to illustrate this natural relationship, we need a little vocabulary. An
object is a collection of characteristics (data) and behavior (methods). In a game simulation,
for example, a player object may have a move history as data and a method for producing
new moves. We will call a computer program ‘object-based’ to the extent that data and
methods tend to be bundled together into useful objects.

2.3
Many researchers consider models of interacting agents to be naturally object-based. For
example, a player in a game is naturally conceived in terms of that individual player's
characteristics and behavior. We may therefore bundle these together as the data and
methods of a player object. (The next section presents an example.)

2.4
In the present paper, we will consider object-based code to be “object-oriented” when it
relies on encapsulation.4 Code relies on encapsulation when objects interact via interfaces
that conceal implementation details: users of an object rely on its interface, without detailed
knowledge of how the object produces its behavior. For example, we will design a player

http://www.python.org/dev/peps/pep-0020/
http://jasss.soc.surrey.ac.uk/11/3/8.html#otherlang
http://jasss.soc.surrey.ac.uk/11/3/8.html#oop

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 4 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

object such that we can ask for its next move simply by communicating with its move method,
without worrying about how that method is implemented. Specifically, we need not worry
about whether the player owns the data used to produce the move, or even whether the
player delegates the selection of the move to some other agent.

2.5
Given this highly simplified taxonomy, we can say object-oriented programming (OOP) is
possible in most computer languages. It is a matter of approach and practices: OOP focuses
on defining encapsulating objects and determining how such objects will interact. Yet it is
also the case that some languages facilitate OOP. We say a programming language is object-
oriented to the extent that it facilitates object-oriented programming.

2.6
Key facilities of any OOP language are inheritance and polymorphism. Inheritance is
essentially a useful way to implement the old practice of code reuse: one class of objects can
inherit characteristics (data) and behavior (methods) from another class. This allows common
data and methods to be coded at a single location, reducing coding errors and facilitating
program maintenance and debugging. In practice, we often create specialized classes that
inherit from more general classes, making it easy to compare the implications of various
behavioral specializations. Inheritance proves to be an extremely powerful way to reuse
existing code, and it often facilitates writing simpler, more robust, and easier to understand
code. Part of the resulting simplicity arises through ‘polymorphism', as when a common
method call is made to distinct classes that provide divergent responses.5 For example, all
player classes implement a move method, but some players base their move selection on their
past playing experience and others do not. For an object to participate as a player in a
particular game, it must respond appropriately to certain messages. For example, it must
have a move method that accepts certain arguments and returns appropriate values. However,
we need not know anything about the inner workings of the player's move method; how a
player moves can vary by player type. (Subsequent sections provide examples.)

2.7
The phenomenologically salient actors of social science will often be natural objects in our
simulation models. This adds intuitive appeal to our simulation models: the actors in our
artificial world are these objects. The interactions of these autonomous units produce the
model outcomes, suggesting analogies to the ways in which real-world actors produce real-
world outcomes. This aspect of OOP can facilitate production of sensible models and almost
certainly helps with communication—two big advantages in a relatively new area of research.6

Considering Python

2.8
Researchers naturally attend to productivity when choosing a programming environment.
Students and teachers are particularly interested in ease of use, cost, and the availability of
good documentation and support groups. The choice of programming language will
therefore be very personal, responding to cost, to individual modes of thinking, and to
existing human capital. That said, Python's combination of ease of use, power, and
readability constitute an attractive environment. This section provides an overview of some of
these features. (Appendix B includes guidance for installing and running Python.)

2.9
Python is a young language: version 1 was released in 1994, and the very popular version 2.2
had its final release in 2003. Despite its youth, Python is considered stable and robust, with
around a million users (Lutz 2007). Python is open-sourced under the liberal Python License,
which ensures that it can be freely used (even in commercial projects). The Python Software

http://jasss.soc.surrey.ac.uk/11/3/8.html#polymorph1
http://jasss.soc.surrey.ac.uk/11/3/8.html#objects
http://jasss.soc.surrey.ac.uk/11/3/8.html#appendix-b
http://www.python.org/psf/
http://www.python.org/psf/license/
http://jasss.soc.surrey.ac.uk/11/3/8.html#lutz-2007-learn

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 5 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

Foundation protects the Python trademark, funds Python related development, and provide
extensive documentation for both beginners and advanced users. Python's unusally clear
syntax and ease of use has made it increasingly popular in introductory computer science
classes. At the same time, Python's power, flexibility, true object orientation, and ready
integration with other languages have given Python a growing presence in business and
scientific computing. These are the same features that will underpin the simplicity and
readability of the game simulations presented below.

2.10
Many researchers claim that OOP languages facilitate ABS modeling. Among the OOP
languages, Python is notable for its readability, ease of use, and natural syntax—all of which
facilitate rapid learning and easy prototyping. This does not constitute an argument that
Python is the “best” language for agent-based simulation, whatever that might mean; it
simply highlights a few features that make Python an attractive language for students,
teachers, and researchers who have not already made a language commitment. No single
feature makes Python unique, but together they add up to an attractive combination of power
and ease of use. Here are a few salient considerations.

Readability
We list this first, since it is a crucial consideration in teaching, code sharing, and code
reuse. Code that is easy to read is more easily shared with a research community and
more easily reused by the author after the passage of time. Lightly commented Python
code is often as readable as pseudocode, as we show below. Readability is promoted by
Python's syntax, especially the use of whitespace to delimit code blocks.7 It is also
promoted by the Python programming culture, which emphasizes code readability and
disparages clever but obscure programming tricks.

Documentation
Online documentation is excellent and free. Built-in functions generally provide
excellent self-documentation (via the help function). Python encourages the creation of
self-documenting objects, and a substantial amount of self-documentation is provided
by Python's extensive introspection facilities.

Interpreted Language
In principle, any language may be compiled or interpreted, and even so-called
“interpreted” languages are generally compiled (e.g., to byte code) before execution.
However interactive Python interpreters exist for every major platform, and Python
programming is very largely platform independent. This facilitates code-sharing and
collaboration with other ABS researchers. Working in an interactive interpreter can
facilitate prototyping and rapid development. From an instructional perspective, this is
an important pedagogical aid (due to the immediate feedback from the interpreter).
These advantages are not costless: lower-level languages such as C or Fortran will be
much faster at loop-intensitve operations, and this speed difference can be critical for
very large-scale simulations. (But see the discussion of extensibility below.)

Dynamic Typing
Python is dynamically typed: variables (names) do not have types; rather the values that
are assigned to them do. Dynamic typing has two widely acknowledged advantages:
code becomes simpler to write and simpler to read, and prototyping and refactoring are
facilitated.8

Duck Typing
Python encourages programming to objects’ methods rather than to their types. This in
turn encourages a strong polymorphism known as duck typing: objects interact based
on their attributes (rather than their class). This facilitates quick prototyping and
refactoring.

Flexible Built-In Data Structures
A few powerful, flexible, and extremely easy to use data structures are built-in, in the

http://python.org/doc/
http://www.python.org/psf/
http://jasss.soc.surrey.ac.uk/11/3/8.html#whitespace
http://www-128.ibm.com/developerworks/library/l-pyint.html
http://jasss.soc.surrey.ac.uk/11/3/8.html#statictype
http://docs.python.org/lib/built-in-funcs.html

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 6 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

sense that Python always makes them available. Here we mention the two sequence
data types (list and tuple) and one mapping type (dict).9
Sequence data types are indexed collections of items, which may be heterogeneous.
Lists and tuples are sequence types that are ubiquitous in Python programming. An
empty list can be created as [] or as list(); an empty tuple can be created as () or as
tuple(). A populated list or tuple can be created with a comma separated listing of its
elements: [1,'a'] is a two element list (with heterogeneous elements); (1,'a') is a two
element tuple (with the same elements); and [(3,3), (0,5)] is a list containing two
tuples, which each contain two elements.
Tuples are immutable: they cannot be changed after they are created. Lists are
mutable: they can grow as needed, and elements can be replaced or deleted. (See
Appendix B for more details.)
Sequences can be used for very convenient loop control: Python's for statement iterates
over the items of a sequence. For example, if seq is a list or tuple, the following code
snippet prints a representation of each item in seq:
for item in seq:
 print item

The dictionary is the basic Python mapping data type (resembling hash tables or
associative arrays in other languages). A dictionary is a collection of key-value pairs,
where the value can be retrieved by using the key as an index. If x=dict(a=0,b=1) then
x['a'] returns the value 0 and x['b'] returns the value 1. The same dictionary can be
created from a sequence of 2-tuples: x=dict([('a',0), ('b',1)]).

Useful Built-In Functions
A few dozen very useful functions are built-in, in the sense that Python always makes
them available. Examples include list, tuple, and dict, which are discussed above. The
user does not need to import any standard library modules to access built-in functions.
We will mention one more at this point: range.
If i is a nonnegative integer, then range(i) creates a list of the first i nonnegative
integers. It is idiomatic in Python to use range for loop control. For example,
for i in range(10):
 print i

Generator Expressions
Python uses very powerful and easy to read syntax for the creation of data structures.
Rather than traditional looping constructs, “generator expressions” are often preferred
for producing lists and tuples. Generator expressions are perhaps best introduced by
contrast with traditional practices.
Let players be a collection of players, each of whom has a playertype attribute, and
suppose we want to produce a corresponding tuple of playertypes. Here is a (fairly)
traditional approach to this problem:
ptypes = list()
for player in players:
 ptypes.append(player.playertype)
ptypes = tuple(ptypes)

In this traditional approach, we create an empty list, to which we sequentially append
the playertype type of each player, and we finally create a tuple corresponding to the
list of playertypes.11 As an alternative approach, we can accomplish the same thing
more elegantly and efficiently with a generator expression:
ptypes = tuple(player.playertype for player in players)

This iterates through the generator (player.playertype for player in playerlist) to
populate a tuple of player types, one playertype for each player.12 (In contrast with the
first approach, we side-step the creation of a temporary list.) The expression on the

http://jasss.soc.surrey.ac.uk/11/3/8.html#tutorial
http://jasss.soc.surrey.ac.uk/11/3/8.html#appendix-b
http://docs.python.org/lib/built-in-funcs.html
http://jasss.soc.surrey.ac.uk/11/3/8.html#accessattribute
http://jasss.soc.surrey.ac.uk/11/3/8.html#generator

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 7 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

right reads very naturally: create a tuple that contains the player's playertype for each
player in players. This is a remarkably readable and compact way to generate this new
tuple's elements.

Additional Considerations

2.11
The following more technical considerations may interest an instructor or a new researcher
who is considering the use of Python for agent-based modeling. Other readers can skip this
section.

Garbage Collection
Many languages require the programmer to explicitly allocate and deallocate memory
for any objects created. Memory leaks are a common problem in such languages, even
for experienced programmers.13 Other languages, Python included, build in automatic
memory management: automatic garbage collection ensures that the memory allocated
to an object is freed up when the object is no longer needed. This may involve some
sacrifice of speed and memory usage, but the gain in convenience is considerable. Most
social-science researchers will value this convenience, and most social-science
students will find automatic garbage collection to be indispensable.

Powerful Standard Library
Python comes with a powerful, and extremely well documented standard library. Two
components of special interest to ABS researchers are the utilities for platform
independent interaction with the operating system and the extensive random-number
services.14

Graphics
Excellent and powerful graphics libraries are freely available. For example, users
needing static or interactive two-dimensional graphs might use the free and open-
source Matplotlib package, which allows both ease of use and, for those who need it, a
remarkably fine-grained control of graphical presentations.

Numerics
The free and open-source NumPy package implements powerful multidimensional
arrays along with the basic functionality required for scientific computing. The NumPy-
based SciPy package offers substantial additional functionality, resulting in a free and
open source scientific computing environment competitive with many commercial
offerings.

Extensibility
Speed concerns may arise in any interpreted language when a program makes heavy
use of looping constructs. The high speed of modern computers mitigates this concern
but for models with very large numbers of agents does not eliminate it. One approach
is to use a just-in-time compiler for Python code, which is part of the approach taken
by the Psyco extension module. More generally, Python is considered very extensible,
in the sense that performance enhancing Python extensions can be written in relatively
low-level programming languages such as C or Fortran.15

2.12
Other important features of Python—exception handling, support for unit testing, support for
multiple inheritance, support for metaclasses, support for metaprogramming (via descriptors
such as decorators and properties), support for simple but sophisticated operator
overloading, and memory conserving features such as slots—prove useful in advanced
applications. These issues are beyond the scope of the current paper.

A Simple Game

http://jasss.soc.surrey.ac.uk/11/3/8.html#gc
http://docs.python.org/lib/
http://jasss.soc.surrey.ac.uk/11/3/8.html#mersenne
http://matplotlib.sourceforge.net/
http://www.scipy.org/
http://numpy.scipy.org/
http://psyco.sourceforge.net/
http://jasss.soc.surrey.ac.uk/11/3/8.html#extend

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 8 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

3.1
When discussing agent-based simulations, nothing substitutes for actual code, so we will
now implement a very simple game. We initially eschew game theoretic considerations: our
two players will randomly chose their moves and ultimately receive the payoffs determined by
the game. (See Appendix B for suggestions on how to run the following code.)

3.2
This section provides an introduction to Python classes. We therefore begin by defining a
fairly trivial class. A class definition provides a general description of the data and methods
of a new type of object, and accordingly our definition of the RandomMover class provides a
general description of our first game players. A RandomMover has no data and a single method,
named move. We will soon create our first game players as “instances” of this RandomMover
class, but first we will examine the class definition. (Readers familiar with class and function
definitions can skim the next few paragraphs.)

class RandomMover:
 def move(self):
 return random.uniform(0,1) < 0.5

3.3
Note that a class definition starts with the keyword class, followed by the name (RandomMover)
that we are giving the class, followed by a colon.16 So the line class RandomMover: is our
class-definition header: it begins our definition of the RandomMover class, which is completed
by the indented statements that follow. (Blocks are always defined in Python by level of
indentation and never by the use of braces.)

3.4
The body of this class definition is a function definition, which defines the only behavior of a
RandomMover instance. When asked to move, a RandomMover instance will return a random move,
based on a draw from a standard uniform distribution.

3.5
A function definition starts with the keyword def, followed by the name (move) that we are
giving the function, followed by parentheses that enclose any function parameters, followed
by a colon. So the line def move(self): is our function definition header; it begins our
definition of the move function, which is completed by the indented statement that follows.
This function has one argument, which is called self for reasons that we now discuss.

3.6
Functions defined in the body of a class definition are called ‘methods’. Methods define the
behavior of instances of that class. When an instance receives a method call, Python always
provides as an implicit first argument the instance itself. (This is likely to sound obscure to a
reader with no OOP background, but it should be clear by the end of this section.) Therefore
it is conventional to name this first argument self. Note that even when the body of a method
does not make use of the self argument, as illustrated by this introductory example, we still
must include the self argument in the method definition.17

3.7
Since Python uses indentation to delimit code blocks, we must indent our function-definition
header to make it part of the class definition. Similarly, the body of the function definition is
given an additional level of indentation. In this case, the body of the function is a single
statement: return random.uniform(0,1) < 0.5. When this return-statement is executed, the
expression random.uniform(0,1) < 0.5 is evaluated, and the resulting value is returned by our
move method. This value is computed as follows. The expression random.uniform(0,1)

http://jasss.soc.surrey.ac.uk/11/3/8.html#appendix-b
http://jasss.soc.surrey.ac.uk/11/3/8.html#classic
http://jasss.soc.surrey.ac.uk/11/3/8.html#staticmethod

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 9 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

evaluates to a draw from a standard uniform distribution, so it is a “random” number between
zero and one.18 It is compared to the number 0.5. The inequality comparison value is either
True or False. In what follows, a player must choose between two behaviors, which we call
“defection” (represented by True or 1) or “cooperation” (represented by False or 0). These
behaviors are discussed in more detail in the Prisoner's Dilemma section.

3.8
We will now play a simple game. We begin by creating a payoff matrix for the game. (Note
that we include in the code a comment to that effect: the hash mark (#) is a comment marker,
signalling that the rest of the line is commentary rather than code.) We will use the payoff
matrix used in Scodel et al. (1959) and in many subsequent studies. (In subsequent sections,
we will consider the role of the payoff matrix in much more detail.) The payoff matrix is
constructed from lists and tuples (as discussed above). The assignment PAYOFFMAT = [
[(3,3),(0,5)] , [(5,0),(1,1)]] creates a list containing two lists, each of which contains two
tuples. These tuples hold the move-based payoffs for two players. For example, the tuple
(3,3) gives the payoffs to the players if both cooperate: each player gets a payoff of 3.

 ## GAME: RandomMover
 # create a payoff matrix and two players
 PAYOFFMAT = [[(3,3),(0,5)] , [(5,0),(1,1)]]
 player1 = RandomMover()
 player2 = RandomMover()
 # get a move from each player
 move1 = player1.move()
 move2 = player2.move()
 # retrieve and print the payoffs
 pay1, pay2 = PAYOFFMAT[move1][move2]
 print "Player1 payoff: ", pay1
 print "Player2 payoff: ", pay2

3.9
We next create two RandomMover instances, which we name player1 and player2.19 Recall that a
class definition provides a general description of a new kind of object, and we use this
definition to create instances of this new kind of object. We can assign a RandomMover instance
to the name player1 like this: player1 = RandomMover(). We say that each player “instantiates”
the RandomMover class.

3.10
Next we get moves from player1 and player2 by calling the move method of each player.20

Using these moves and the payoff matrix, we calculate the payoff for each player. (True is
equivalent to the integer 1, and False is equivalent to the integer 0.) Finally we print the
results of playing this game. (A comma separates items to be printed, so the first print
statement prints two items: the descriptive string delimited by quotes, and the value of the
player1 payoff.)

Playing Together Nicely

3.11
In the previous section, we defined the RandomMover class to have a built in probability of
defection of 0.5. If we repeatedly play the game of that section, we will discover the average
payoff implied by this strategy. Much more informative would be the average payoff for each
of a variety of strategies. It would be senseless to create a new class for each strategy.
Instead, we will create a class that can produce instances that have different strategies. We
will call this class RandomPlayer. This section illustrates what happens when RandomPlayer
instances with various defection probabilities play against each other.

http://www.python.org/doc/2.3.5/ref/comparisons.html
http://jasss.soc.surrey.ac.uk/11/3/8.html#prisoner-s-dilemma
http://jasss.soc.surrey.ac.uk/11/3/8.html#random-uniform
http://jasss.soc.surrey.ac.uk/11/3/8.html#scodel-minas-ratoosh-lipetz-1959-jconres
http://jasss.soc.surrey.ac.uk/11/3/8.html#callableclass
http://jasss.soc.surrey.ac.uk/11/3/8.html#randomseed

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 10 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

3.12
In the previous section we coded a simple two-player game: we ran the game and computed
player payoffs based on a payoff matrix. Our desire to run such games repeatedly for a
variety of player strategies suggests that a game is a natural object in our project. In this
section, the games played will be instances of a SimpleGame class.

3.13
Consider the following initial design, which allows for a game object and player objects to
interact. A SimpleGame instance will have as data a list of players and a payoff matrix, and it
will also have a history attribute to hold the game history. A game will have a run method (to
run the game) and a payoff method (to compute player payoffs based on player moves and
the payoff matrix).

3.14
The design stage is the time to plan for interactions between a game and its players. We
must decide on our interfaces, which are set the basic rules for how games and players can
interact. To make the SimpleGame class useful for later simulations, it will not only ask each
player for a move but it will offer each player a chance to record the game (itself). Although
we do not plan on doing any recording in our initial games, we will define our RandomPlayer
class to match this behavior: it not only must have a move method but also must have a record
method. (In addition, a SimpleGame will always pass itself when calling a player method, so
each of these methods must accept a game as an argument.) A summary of the proposed
data and methods for these two classes follows.

SimpleGame

Data: players, payoffmat, history
Methods: run, payoff

RandomPlayer

Data: p_defect
Methods: move, record

3.15
Each RandomPlayer has a single data attribute: its probability of defection, p_defect, which can
differ by player. We will now use RandomPlayer instances to play our SimpleGame. Players of a
SimpleGame must respond to certain messages (i.e., method calls). This implies a general
interface requirement for any player of a SimpleGame: the player must respond to move and
record method calls.21 The RandomPlayer class therefore includes move and record methods.

3.16
The RandomPlayer class has much in common with the RandomMover class: by default it moves
just like a RandomMover, and its record method does nothing. Let us focus on the changes. First
the big change: notice that the RandomPlayer class defines a method named __init__. This is a
special name, reserved for the method that does the ‘initialization’ of a new instance.22

Typically, initial values of instance attributes are set during initialization. The __init__
method of a RandomPlayer has a single responsibility: to set the initial value of the player's
p_defect attribute. Since each RandomPlayer instance will have its own probability of defection,
we say that p_defect is an “instance attribute”. We provide a default value of 0.5, but an
instance can always be created with a different value.23

class RandomPlayer:
 def __init__(self, p=0.5):
 self.p_defect = p

http://jasss.soc.surrey.ac.uk/11/3/8.html#interface
http://jasss.soc.surrey.ac.uk/11/3/8.html#default
http://jasss.soc.surrey.ac.uk/11/3/8.html#initialize

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 11 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

 def move(self, game):
 return random.uniform(0,1) < self.p_defect
 def record(self, game):
 pass

3.17
The function-definition headers for the move and record methods reflect our design decisions,
discussed above. Whenever a SimpleGame calls the move or record method of a player, it will
pass itself. In later sections, this will prove a useful feature of the SimpleGame class. This later
utility determines the signature of these methods in our RandomPlayer class. That is, we design
this illustrative RandomPlayer class for interactions with a more generally useful game class.

3.18
The move method of a RandomPlayer is largely unchanged. However since we want our
RandomPlayer instances to play a SimpleGame, we must add a new argument, which we name
game. The new argument simply provides a consistent interface, anticipating that a game will
always pass itself when it calls a player's method. The record method also reflects this
interface decision, although the record method literally does nothing. (Python uses the
keyword pass to indicate “do nothing”.) This method exists solely to accommodate our
interface design—that is, to allow a RandomPlayer to play a SimpleGame.

3.19
It is time for some slightly heavier lifting. SimpleGame is the most complex class we introduce
in this paper, but it includes many now familiar components. Specifically, the design of its
methods parallels the code we used to run our previous game simulation. One benefit of the
care with which we will approach the design of our SimpleGame class is that we can continue to
use it throughout this paper.

3.20
The class definition begins in a familiar way. After the class-definition header (class
SimpleGame:), we define an __init__ method to initialize newly created instances. We initialize
each SimpleGame instance with two player instances and a payoff matrix. The __init__ function
of SimpleGame therefore has four parameters: self, player1, player2, and payoffmat. As
discussed earlier, self will be the local name of the instance that is being initialized. Similarly,
the player instances we pass in will have the local names player1 and player2. So the
statement self.players = [player1,player2] creates an instance attribute named players and
assigns as its value a list of two players. The statement self.history = list() assigns an
empty list to the history attribute. (Later on, we will append to this list in order to record
history of game moves.) Each SimpleGame instance will therefore have these data attributes:
players, payoffmat, and history.

class SimpleGame:
 def __init__(self, player1, player2, payoffmat):
 # initialize instance attributes
 self.players = [player1, player2]
 self.payoffmat = payoffmat
 self.history = list()
 def run(self, game_iter=4):
 # unpack the two players
 player1, player2 = self.players
 # each iteration, get new moves and append these to history
 for iteration in range(game_iter):
 newmoves = player1.move(self), player2.move(self)
 self.history.append(newmoves)
 # prompt players to record the game played (i.e., 'self')
 player1.record(self); player2.record(self)
 def payoff(self):
 # unpack the two players
 player1, player2 = self.players
 # generate a payoff pair for each game iteration

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 12 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

 payoffs = (self.payoffmat[m1][m2] for (m1,m2) in self.history)
 # transpose to get a payoff sequence for each player
 pay1, pay2 = transpose(payoffs)
 # return a mapping of each player to its mean payoff
 return { player1:mean(pay1), player2:mean(pay2) }

3.21
Once we have an initialized SimpleGame instance, we can do two things with it. First, we can
run the game by calling the instance's run method. This elicits a number of moves from each
player. (The number is is determined by the game_iter argument, which has a default value of
4.) Then we can get the game payoff for each player by calling the payoff method. The
implementation details are very heavily commented and thereby largely self explanatory.
When we run a game, we get a sequence of pairs of moves, one pair of moves for each
iteration in the game. Note that for each iteration in the game, the game appends to its
history the pair of moves made by the two players.

3.22
Naturally, the history of moves determines the game's payoff to each player. In a SimpleGame
each player receives as a payoff the average of its single-move payoffs. Recalling our earlier
discussion of generator expressions, we see that the definition of the payoff method includes
a generator expression. The expression (self.payoffmat[m1][m2] for (m1,m2) in self.history)
will generate the player-payoff pairs for each pair of moves. We then transpose that grouping
so as to group payoffs by player.24 The payoff method returns a dictionary that maps each
player to its payoff.

3.23
We now use our two new classes for a game simulation. The code for this is very similar to
the code for our first game simulation. We begin by creating a payoff matrix and two players.
We then create a game instance, initialized with these two players and our payoff matrix, and
we run the game. Note that we call the SimpleGame class with three arguments: the two player
instances and the payoff matrix required by its initialization function. (When a SimpleGame
instance is created, its __init__ method is called with these arguments to initialize the
instance. Note again that it is an instance, not the class, which owns this data.) We call the run
method of game to run the game: this causes game to request moves from its players and to
record their moves as the game history. We then call the payoff method of game to compute
the game payoffs as the average of the single-move payoffs. Finally, we retrieve the
computed payoffs and print the game payoff for each player.

 ## GAME: SimpleGame with RandomPlayer
 # create a payoff matrix and two players
 PAYOFFMAT = [[(3,3),(0,5)] , [(5,0),(1,1)]]
 player1 = RandomPlayer()
 player2 = RandomPlayer()
 # create and run the game
 game = SimpleGame(player1, player2, PAYOFFMAT)
 game.run()
 # retrieve and print the payoffs
 payoffs = game.payoff()
 print "Player1 payoff: ", payoffs[player1]
 print "Player2 payoff: ", payoffs[player2]

3.24
It is worth pausing to consider what we have accomplished at this point. This bare-bones
SimpleGame class has enough features that it will remain useful throughout this paper. Indeed,
it can be used for for complex game simulations. Yet with a little work this useful object can
be understood, and often even used, by readers without prior programming experience. This
illustrates the readability and simplicity that is a strength of Python.

http://jasss.soc.surrey.ac.uk/11/3/8.html#transposefn

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 13 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

3.25
Since we called our game's run method without an argument, the game involves 4 moves per
player (the default value of game_iter). Since our payoff matrix represents a Prisoner's
Dilemma, we have run our first iterated prisoner's dilemma simulation. This simple structure
remains at the core of the simulations run later in this paper.

3.26
Our RandomPlayer embodies a very simple concept of a strategy: it is nothing more than a
constant probability of defection. It is nevertheless natural to be curious about the
performance of various strategies against each other. Table 1 displays the average player1
payoff for various probabilities of default for player1 (p1, as listed in the first column) and for
player2 (p2, as listed in the first row). We see that, for any given player2 probability of
defection, player1 experiences an increase in its payoff if it increases its probability of
defection. Similarly, for any given player1 probability of defection, player1 experiences a
decrease its payoff if player2 increases its probability of defection. (The situation is of course
symmetric for player 2.) Perhaps most interesting are the results down the diagonal, where
the payoffs for player1 and player2 are equal. As player1 and player2 increase a common
probability of defection, their expected payoffs fall monotonically. These aspects of the
prisoner's dilemma have drawn substantial research attention and will occupy us at several
points in the present paper.

Table 1: Player1 Payoffs at Various Defection Probabilities
p1\p2 0.0 0.2 0.4 0.6 0.8 1.0

0.0 3.00 2.44 1.75 1.23 0.62 0.00
0.2 3.39 2.81 2.03 1.46 0.85 0.24
0.4 3.86 3.19 2.54 1.87 1.10 0.41
0.6 4.19 3.50 2.76 1.95 1.41 0.63
0.8 4.60 3.86 3.05 2.29 1.63 0.80
1.0 5.00 4.21 3.55 2.49 1.88 1.00

Prisoner's Dilemma

3.27
Our next project will be to explore further consequences of strategy choice in an iterated
prisoner's dilemma. The present section offers a very brief overview and definition of the
prisoner's dilemma, as context for the subsequent discussions. In a simple prisoner's
dilemma there are two players each of whom chooses one of two actions, traditionally called
‘cooperate’ (C) and ‘defect’ (D). The payoffs are such that—regardless of how the other player
behaves—a player always achieves a higher individual payoff by defecting. However the
payoffs are also such that when both players defect they each get a smaller individual payoff
than if both had cooperated.

3.28
Real world applications of the prisoner's dilemma are legion Poundstone (1992). The most
famous application is to arms races: the story is that both sides race since each prefers to be
armed regardless of the other's behavior, but an arms control agreement would make both
better off. There are also many related results. Schelling (1973) famously argued that
mandated helmets in hockey would be preferred by all players even though each individual
player will forego a helmet when permitted. As a related but less considered illustration from
the world of sports, consider a practice of competitive wrestlers: food deprivation and even
radical restriction of liquids in an effort to lose weight in the days before a weigh-in. This is
followed by rehydrating and binge eating after the weigh-in but before the match. Whether

http://jasss.soc.surrey.ac.uk/11/3/8.html#prisoner-s-dilemma
http://jasss.soc.surrey.ac.uk/11/3/8.html#schelling-1973-jconres
http://jasss.soc.surrey.ac.uk/11/3/8.html#poundstone-1992-pd

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 14 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

or not other wrestlers also follow this regime, individual wrestlers perceive it to provide a
competitive advantage. But it is plausible that all players would be better off if the practice
were ended (perhaps by mandating the skinfold testing advocated by the Wisconsin Minimum
Weight Project).

3.29
In its game theoretic formulation, stripped of the social ramifications of betrayal, the
“prisoner's dilemma” is a misnomer: there is a dominant strategy so there is no dilemma. An
informed and instrumentally rational player may pick without difficulty the individually
rational strategy. An economist might be inclined to call this game “the prisoners paradox”,
to highlight the failure of individually rational action to produce an efficient outcome. In the
present paper we nevertheless stick with the conventional name.

3.30
The payoff matrix presented earlier in our SimpleGame is often encountered, tracing to key
early studies of the prisoner's dilemma.25 We can use these canonical payoffs to highlight the
paradoxical nature of the prisoner's dilemma. Imagine that the game models a public policy
choice faced in three countries filled with different kinds of players. The population of the
Country A comprises random players, as in our game simulations above, that choose either of
the two strategies with equal probability. The average payoff to individuals in Country A is
2.25. People in Country B are informed and instrumentally rational individuals: they act
individually so as to produce the best individual outcome, without knowledge of the other
player's strategy. (That is, each player always chooses to defect.) The average payoff to
individuals in Country B is 1. People in Country C have somehow been socialized to
cooperate: each individual always chooses the cooperative strategy. The average payoff to
individuals in Country C is 3.

3.31
Researchers have extensively investigated this apparent conflict between rationality and
efficiency in a variety of contexts. In the next section, we will show how a standard
generalization of player strategies can help us usefully taxonomize this conflict. (See
Stefansson (2000) for a more detailed discussion.)

Defining the Prisoner's Dilemma

3.32
Some authors define the prisoner's dilemma to include two additional constraints on the
payoff matrix: the matrix must be symmetric, and the payoff sum when both cooperate must
be at least the payoff sum when one cooperates and the other defects. Rapoport and
Chammah (1965) introduce the latter restriction, which is sometimes justified as capping the
payoff to defection or reducing the attractiveness of a purely random strategy. Scodel et al.
(1959), Oskamp (1971), and others impose the further restriction that the payoff sum when
one cooperates and the other defects must exceed the payoff sum when both defect. Many
authors simply use without discussion the canonical payoff matrix above, which satisfies all
these constraints. As we shall see near the end of this paper, even within these constraints,
payoffs can matter.

Contingent Strategies in an Iterated Prisoner's Dilemma

4.1
When we suspect that game payoffs resemble a prisoner's dilemma, the appearance of
cooperative behavior is provocative: it might indicate deviations from the individual
rationality, or it might indicate that the payoffs have been incorrectly understood (Rapoport
and Chammah 1965). Trivers (1971) proposed reciprocity as a basis of cooperation. A decade

http://jasss.soc.surrey.ac.uk/11/3/8.html#canonpay
http://jasss.soc.surrey.ac.uk/11/3/8.html#stefansson-2000-luna-stefansson
http://jasss.soc.surrey.ac.uk/11/3/8.html#rapoport-chammah-1965
http://jasss.soc.surrey.ac.uk/11/3/8.html#scodel-minas-ratoosh-lipetz-1959-jconres
http://jasss.soc.surrey.ac.uk/11/3/8.html#oskamp-1971-jconres
http://jasss.soc.surrey.ac.uk/11/3/8.html#trivers-1971-qrbio
http://jasss.soc.surrey.ac.uk/11/3/8.html#rapoport-chammah-1965

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 15 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

later, political science and evolutionary biology joined hands to show that reciprocity could
serve a basis for cooperation even in the face of a prisoner's dilemma (Axelrod and Hamilton
1981). This led to an intense exploration of the iterated prisoner's dilemma, wherein players
play a prisoner's dilemma repeatedly. Unlike the static version, an iterated prisoner's dilemma
(IPD) actually can involve a dilemma: choosing defection over cooperation will raise the one
period payoff but may lower the ultimate payoff.26

4.2
We now consider players that use “reactive” strategies (Nowak and Sigmund 1992). A reactive
strategy determines current behavior as a response to past events. In this section, we adopt
particularly simple and widely explored reactive strategies. Our reactive players respond to
whether the other player previously cooperated (C) or defected (D), except of course when
players are making their initial move. Players using such strategies have a cd-i playertype. A
strategy for a cd-i playertype will be parameterized by a 3-tuple of probabilities: the
probability of defecting when the other cooperated on the previous move, the probability of
defecting when the other defected, and the probability of defecting on the initial move. The
game played will again be iterations of our prisoner's dilemma.

4.3
Discussion of reactive strategies leads to a simple description of the essential nature of the
strategies. This suggests that a strategy is a natural object in our model—one whose general
description should be embodied in a separate class. We will slightly generalize this
suggestion by introducing the notion of a player type. In essence, we decompose our
previous understanding of a player into two objects: the player, and its playertype. Our future
game simulations will therefore involve three types of objects: a game, the players, and the
playertypes (e.g, strategies).

4.4
Once again our core project will be to create a game with two players. (In addition, we will
seize pedagogical opportunities to illustrate delegation and inheritance.) We will call the new
type of game a CDIGame. As before, a game will have as data a payoff matrix and players, and
it will have a run method (to run the game) and a payoff method (to compute player payoffs
based on player moves and the payoff matrix). But a CDIGame will additionally have a new
method: get_last_move. A CDIGame is essentially a SimpleGame plus a new method: get_last_move.

4.5
A CDIGame will be played by a new type of player: SimplePlayer. A player will now have a
playertype as data. Additional data will be games_played and players_played, which provide the
player with storage for “memories”. A player can move, record its history, and reset itself.

4.6
Finally, our truly new type of object is the CDIPlayerType. A player type will have as data p_cdi,
which is the player type's strategy (i.e., a 3-tuple of probabilities). It will also have a move
method.

CDIGame

Inherit data and methods from SimpleGame
New data: opponents
New methods: get_last_move

SimplePlayer

Data: playertype, games_played, players_played
Methods: move, record, reset

http://jasss.soc.surrey.ac.uk/11/3/8.html#evolve
http://jasss.soc.surrey.ac.uk/11/3/8.html#axelrod-hamilton-1981-science
http://jasss.soc.surrey.ac.uk/11/3/8.html#nowak-sigmund-1992-nature

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 16 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

CDIPlayerType

Data: p_cdi
Methods: move

4.7
The new SimplePlayer class will feel very familiar, so we begin our implementation exposition
by examining its details. At initialization, a SimplePlayer instance acquires a player type. (The
line self.playertype = playertype assigns the value of the local variable named playertype to
the instance attribute of the same name, which is accessed as self.playertype.) Note that part
of initialization is done by calling the reset method, which assigns empty lists to the player's
games_played and players_played attributes.27 These attributes can provide a player with
“memory”, which can be augmented each time the player's record method is called.

class SimplePlayer:
 def __init__(self, playertype):
 self.playertype = playertype
 self.reset()
 def reset(self):
 self.games_played = list() #empty list
 self.players_played = list() #empty list
 def move(self,game):
 # delegate move to playertype
 return self.playertype.move(self, game)
 def record(self, game):
 self.games_played.append(game)
 opponent = game.opponents[self]
 self.players_played.append(opponent)

4.8
A SimplePlayer naturally has the move and record methods required for game players. In
contrast with a RandomPlayer, the record method of a SimplePlayer actually does something: it
appends the game to the games_played list and the opponent to the players_played list. The
move method is more interesting. A SimplePlayer uses delegation to select a move. Looking at
the move function, we see that a player delegates its moves to its playertype. This is our first
use of delegation, a common OOP strategy. Here it is natural to delegate moving to the player
type, since a player type is essentially the strategy that determines the moves. (Note that
when a player calls the move method of its playertype instance, it passes itself and its game to
the playertype. This means that, when determining a move, the playertype has access to
player specific and game specific information.)

4.9
Next we examine the CDIPlayerType class. This is our general description of a player's type,
which in turn is essentially a reactive strategy. Recall that we assigned the strategy of a
RandomPlayer to its p_defect attribute. Similarly we assign the strategy of a CDIPlayerType to its
p_cdi attribute. The default value of p_cdi is (0.5,0.5,0.5), which means the default
CDIPlayerType determines moves in the same way as the default RandomPlayer. This can be
seen by working through the move function for this class.

class CDIPlayerType:
 def __init__(self, p_cdi=(0.5,0.5,0.5)):
 self.p_cdi = p_cdi
 def move(self, player, game):
 # get opponent and learn her last move
 opponent = game.opponents[player]
 last_move = game.get_last_move(opponent)
 # respond to opponent's last move
 if last_move is None:
 p_defect = self.p_cdi[-1]

http://jasss.soc.surrey.ac.uk/11/3/8.html#plpld

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 17 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

 else:
 p_defect = self.p_cdi[last_move]
 return random.uniform(0,1) < p_defect

4.10
For the initial move, the probability of defection is given by the last element of the tuple p_cdi
(which we index with -1). After the initial moves, the probability of defection is conditional on
the previous move of the other player. (The playertype fetches this move from the history of
the player's game; see the CDIGame code for the implementation details.) If the opponent
previously cooperated, the opponent's previous move is False (or equivalently, 0), and the
first element (index 0) of p_cdi is the probability of defection. If the opponent previously
defected, the opponent's last move is True (or equivalently, 1), and the second element
(index 1) of p_cdi is the probability of defection.

4.11
Finally, let us consider the CDIGame class, which constructs our game instances. Notice the
CDIGame definition evinces only part of the data and behavior of this class. The class-
definition header (class CDIGame(SimpleGame):) states that our new class will “inherit” data and
behavior from the SimpleGame class.

class CDIGame(SimpleGame):
 def __init__(self, player1, player2, payoffmat):
 # begin initialization with `__init__` from `SimpleGame`
 SimpleGame.__init__(self, player1, player2, payoffmat)
 # initialize the new data attribute
 self.opponents = {player1:player2, player2:player1}
 def get_last_move(self, player):
 # if history not empty, return prior move of `player`
 if self.history:
 player_idx = self.players.index(player)
 last_move = self.history[-1][player_idx]
 else:
 last_move = None
 return last_move

4.12
This is our first use of inheritance. Since we inherit the run and payoff method definitions
from SimpleGame, we do not need to repeat them in our CDIGame definition. The use of
inheritance is a typical OOP idiom for code reuse. Of course we also want to add new data
and behavior. Specifically we want to add an opponents data attribute and a get_last_move
method. Adding the new method is simple enough: we just include its definition in the body
of the class definition, as usual. However data attributes are set during initialization, and we
want to keep the initializations done by SimpleGame. Here we adopt the following solution: give
CDIGame its own __init__ function, which calls the __init__ method provided by SimpleGame to
initialize the old data attributes.28 The new __init__ method also initializes the new opponents
data attribute.

4.13
When a player delegates a move to its playertype, the playertype fetches from the game the
opponent's last move (i.e., the move with index -1). (Recall that the probability of defection
generally is conditional on the other player's last move.) The playertype accomplishes this by
invoking the game's get_last_move method. The only new behavior provided by a CDIGame is
this get_last_move method, which returns the requested element of the game's move history
(if it exists, and otherwise returns None).

4.14
Table 2 illustrates the resulting interdependencies between objects when a game asks a

http://jasss.soc.surrey.ac.uk/11/3/8.html#superinit

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 18 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

player for a move. The player delegates moving to its playertype. As part of selecting a move,
the playertype first fetches the opponent's last move from the game. Once the playertype has
this last move, it computes a move. It returns this move to the player that asked for it, who
finally returns it to the game that asked for it.

Table 2: Game Play
Game Player Playertype

1. request move from Player
 2. request move from

Playertype

 3. request opponent's last move
from Game

4. compute opponent's last
move

5. return last move to
Playertype

 6. compute new move
 7. return new move to Player
 8. return new move to

Game

4.15
At first exposure, these linkages may feel a bit circuitous. However, if we accept that the
player delegates the move to the playertype, and that the game is the natural place to store
the move history, these linkages appear natural.29 For example, the game cannot simply
request a move from the playertype, since multiple players may share a single playertype.
(There is no mapping from playertypes to players.)

4.16
With our new class definitions in hand, we are ready to create playertypes, players, and a
game. The code looks almost identical to our previous game simulation. The only difference
is that we now need to create CDIPlayerType instances with which to initialize our SimplePlayer
instances.

 ## GAME: CDIGame with SimplePlayer
 # create a payoff matrix and two players (with playertypes)
 PAYOFFMAT = [[(3,3),(0,5)] , [(5,0),(1,1)]]
 ptype1 = CDIPlayerType()
 ptype2 = CDIPlayerType()
 player1 = SimplePlayer(ptype1)
 player2 = SimplePlayer(ptype2)
 # create and run the game
 game = CDIGame(player1, player2, PAYOFFMAT)
 game.run()
 # retrieve and print the payoffs
 payoffs = game.payoff()
 print "Player1 payoff: ", payoffs[player1]
 print "Player2 payoff: ", payoffs[player2]

4.17
It is natural to wonder again how various strategies perform against each other. Of course we
can construct an endless variety of cd-i playertypes. In the present paper, we will focus on
pure strategies: each element of the strategy 3-tuple is either zero or one. This gives us 8
possible player types and therefore 36 different games. (There are 36 unique pairings, since
player order is irrelevant.) We can pit these against each other in a tournament. (This is a

http://jasss.soc.surrey.ac.uk/11/3/8.html#memory

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 19 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

“round robin” tournament, in the sense that it produces the outcomes for all these possible
pairings.) If we play a CDIGame for each pair of strategies, we get the results in Table 3, which
summarizes the payoffs to the first (row) player in each of these 36 games. (E.g., the table
tells us that if the first player plays CCC and the second plays DCC then the two player
payoffs are (0.75,4.50).)

Table 3: Competing Pure CDI Strategies (Column Player Payoffs)
 CCC DCC CDC DDC CCD DCD CDD DDD

CCC 3.00 0.75 3.00 0.75 2.25 0.00 2.25 0.00
DCC 4.50 2.00 2.25 1.00 3.25 0.00 2.25 0.00
CDC 3.00 2.25 3.00 1.25 2.75 2.25 2.50 0.75
DDC 4.50 3.50 2.50 1.50 3.75 2.75 1.75 0.75
CCD 3.50 2.00 2.75 1.25 2.50 1.00 1.75 0.25
DCD 5.00 5.00 2.25 1.50 3.50 2.00 2.25 0.25
CDD 3.50 2.25 2.50 1.75 3.00 2.25 1.00 1.00
DDD 5.00 5.00 2.00 2.00 4.00 4.00 1.00 1.00

4.18
Perhaps the most striking thing about Table 3 is that playing DD-D is best (i.e., produces a
maximal payoff) against all but two strategies: CD-C and CD-D. Put in simple terms, DD-D
would be dominant among the pure strategies if the imitative/reciprocal strategies where
removed from the strategy space. (These strategies are imitative in that they always adopt the
opponent's previous move. They are reciprocal in that they always respond in kind.) The first
of these, CD-C, is the famous Tit-For-Tat strategy. This strategy has also been called
“reciprocal altruism” (Trivers 1971). The potential robustness of this strategy in an IPD
context has been long recognized (Axelrod and Hamilton 1981). Neither of these two
strategies dominates the other. It is noteworthy that CD-D holds its own against DD-D,
whereas CD-C does not. Also noteworthy is that two CD-C players will do much better than
two CD-D players.30 Additionally, as Axelrod (1984) emphasized, a CD-C player never has a
higher outcome than its partner. We will explore some corollaries of these observations.

Evolutionary Soup

5.1
In this section, we characterize how an initially diverse group of players evolves over time. So
far, we have developed a useful collection of objects and used them to simulate the outcomes
of an iterated prisoner's dilemma with reactive strategies. The code required to do this is
remarkably readable and strikingly short: our four core class definitions comprise about 50
short lines of code. We now show how this core toolkit can be easily extended to
accommodate simple evolutionary considerations.

5.2
We will adopt a simple but widely used evolutionary mechanism: players imitate “winning”
strategies. Our first implementation of these evolutionary considerations will be in the
context of random encounters within a population of players.31 In order to simulate a simple
evolutionary iterated prisoner's dilemma, we introduce the concepts of a round and a
tournament. A tournament consists of several rounds. On each round, players are randomly
sorted into pairs, and each pair plays a CDIGame (i.e., an iterated prisoner's dilemma with
reactive strategies). As before, a player's moves are determined by its playertype. After each
round, each player adopts a winning strategy from the game just played. This means that a
player might change playertype once per round during a tournament.

http://jasss.soc.surrey.ac.uk/11/3/8.html#axelrod-1984
http://jasss.soc.surrey.ac.uk/11/3/8.html#cdccdd
http://jasss.soc.surrey.ac.uk/11/3/8.html#trivers-1971-qrbio
http://jasss.soc.surrey.ac.uk/11/3/8.html#axelrod-hamilton-1981-science
http://jasss.soc.surrey.ac.uk/11/3/8.html#complex

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 20 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

5.3
We introduce two new classes to implement this evolutionary tournament: SoupPlayer and
SoupRound. Our earlier design work means that we can retain our game and playertype classes:
CDIGame and CDIPlayerType continue to be useful in this new application.

SoupPlayer

Inherit data and methods from SimplePlayer
New data: next_player_type
New methods: get_payoff, choose_next_type, evolve

SoupRound

Data: players, payoffmat
Methods: run

5.4
The SoupPlayer class inherits much of its behavior from SimplePlayer, but it has new attributes
deriving from our desire that each player be able to evolve its playertype. When we call the
choose_next_type method of a SoupPlayer instance, this sets the next_player_type data
attribute.32 The next_player_type is always set to the best playertype (its own, or its
opponent's). Here “best” means the highest total payoff achieved in a round of games, and
ties are resolved randomly. (The best playertypes are found by the topscore_playertypes
function, defined in Appendix A.) The get_payoff method computes this total payoff as the
sum of the single game payoffs in the current round of games played by the player. (This is
just a single game in a SoupRound, but allowing for multiple games per round adds flexibility
that we use later.) A player will adapt its playertype when we call its evolve method.33

class SoupPlayer(SimplePlayer):
 def evolve(self):
 self.playertype = self.next_playertype
 def get_payoff(self):
 return sum(game.payoff()[self] for game in self.games_played)
 def choose_next_type(self):
 # find the playertype(s) producing the highest score(s)
 best_playertypes = topscore_playertypes(self)
 # choose randomly from these best playertypes
 self.next_playertype = random.choice(best_playertypes)

5.5
A SoupRound instance is initialized with a list of players and the payoff matrix for the games to
be played. When we call the run method of a SoupRound instance, it randomly shuffles all the
players, pairs them up, and plays a CDIGame for each of these pairs.34

class SoupRound:
 def __init__(self, players, payoffmat):
 self.players = players
 self.payoffmat = payoffmat
 def run(self):
 payoff_matrix = self.payoffmat
 for player1, player2 in random_pairs_of(self.players):
 game = CDIGame(player1, player2, payoff_matrix)
 game.run()

5.6
Suppose we run a tournament of multiple rounds. At the end of each round, we ask each
player to pick its next_player_type and to adapt its playertype according to its evolve method.

http://jasss.soc.surrey.ac.uk/11/3/8.html#selectionpressure1
http://jasss.soc.surrey.ac.uk/11/3/8.html#appendix-a
http://jasss.soc.surrey.ac.uk/11/3/8.html#dynamicattribute
http://jasss.soc.surrey.ac.uk/11/3/8.html#fn-shuffle

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 21 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

If we keep track of the playertype counts of each round, we can observe how playertype
prevalence evolves over time. Table 4 shows how the player type counts evolve over a typical
ten round tournament, starting with 50 of each of the eight pure-strategy player types.

Table 4: Evolutionary Soup Player-Type Counts by Round
CCC CCD CDC CDD DCC DCD DDC DDD
50 50 50 50 50 50 50 50
10 17 45 65 53 55 70 85
2 2 33 77 23 47 82 134
0 0 18 72 7 30 77 196
0 0 9 68 2 15 54 252
0 0 0 60 0 6 22 312
0 0 0 60 0 2 7 331
0 0 0 58 0 0 2 340
0 0 0 58 0 0 0 342
0 0 0 57 0 0 0 343
0 0 0 58 0 0 0 342

5.7
Our previous examination of Table 3 has largely prepared us for the stark results in Table 4.
These results are typical for this type of evolutionary prisoner's dilemma (Stefansson 2000).
Defection quickly takes over the population as the strategy of choice. The average payoff
received by players declines correspondingly. In less than 10 rounds, all players are playing
“defect” every move of every game. The average payoff per player has fallen from an initial
value of about 2.25 to its final value of 1.35

Evolutionary Network

6.1
In this section we offer concluding examples of the ease with which we can extend our core
game-simulation toolkit to new considerations. We develop a simple version of the spatial
evolutionary iterated prisoner's dilemma, which is a common alternative topology to the
evolutionary “soup” explored above. We use the resulting simulation model to reproduce a
classic result in the literature: evolutionary outcomes are affected by the network of
relationships between players. In contrast with the “evolutionary soup” model, where players
randomly encounter other players, we will now consider players who repeatedly face a fixed
set of other players. Each player will retain a fixed set of other players as “neighbors”
throughout a tournament, although the playertypes of these neighbors will evolve over time.

6.2
We adopt a standard spatial representation of the network of relationships between players:
we associate each player with a location on a two-dimensional grid, and we let a
neighborhood of relative locations determine the player's opponents. We introduce three new
classes: GridPlayer, GridRound, and SimpleTorus. A GridPlayer is essentially a SoupPlayer with
two new methods, set_grid and get_neighbors, and two new data attributes, grid and
gridlocation. The values of the new data attributes will be set by the new set_grid method. A
GridRound is a SoupRound with a slightly more complex run method. Our SimpleTorus will take a
bit of discussion, although it is essentially a list of lists of players that is able to do some
accounting.

GridPlayer

http://jasss.soc.surrey.ac.uk/11/3/8.html#drift
http://jasss.soc.surrey.ac.uk/11/3/8.html#stefansson-2000-luna-stefansson

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 22 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

Inherit data and methods from SoupPlayer
New data: grid, gridlocation
New methods: set_grid, get_neighbors

GridRound

Inherit data and methods from SoupRound
Override methods: run

SimpleTorus

Data: nrows, ncols, neighborhood, players2d, neighbors
Methods: populate, get_neighbors

6.3
The implementation of an evolutionary prisoner's dilemma on a grid profits substantially from
our earlier work at representing players, games, and rounds. Consider the simplicity of our
GridPlayer class. A GridPlayer inherits almost all its behavior from SoupPlayer. A GridPlayer is
essentially a SoupPlayer that can set a grid and determine its neighbors on that grid.36 (It will
delegate that determination to its grid.)

class GridPlayer(SoupPlayer):
 def set_grid(self, grid, row, column):
 self.grid = grid
 self.gridlocation = row, column
 def get_neighbors(self): #delegate to the grid
 return self.grid.get_neighbors(self)

6.4
Similarly, our GridRound class inherits from SoupRound but provides its own run method.37

Since we give the GridRound class its own run method, it will use this new method instead of
inheriting run from the SoupRound class. We say that GridRound “overrides” the run method of
the SoupRound class. Our new run method is a very modest change: a player now plays a
CDIGame once with each neighbor.

class GridRound(SoupRound):
 def run(self):
 payoff_matrix = self.payoffmat
 # each player plays each of its neighbors once
 for player in self.players:
 for neighbor in player.get_neighbors():
 if neighbor not in player.players_played:
 # create and run a new game
 game = CDIGame(player, neighbor, payoff_matrix)
 game.run()

6.5
Players will be located on a two-dimensional grid.38 Our grid is a torus (in that it wraps
around its edges). We therefore call our new class SimpleTorus. We initialize a SimpleTorus
instance with its number of rows, its number of columns, and its “neighborhood”. A
neighborhood is just a list of tuples of x,y-offsets (relative to any grid location).

6.6
If the SimpleTorus class looks slightly complicated, that is only because it must handle a little
accounting. An instance must be able to populate itself with players, using its populate
method, and find the neighbors of any player, using its get_neighbors method. (The
compute_neighbors function is listed in Appendix A.) As a SimpleTorus populates itself with

http://jasss.soc.surrey.ac.uk/11/3/8.html#gridattr
http://jasss.soc.surrey.ac.uk/11/3/8.html#defoverride
http://jasss.soc.surrey.ac.uk/11/3/8.html#grid
http://jasss.soc.surrey.ac.uk/11/3/8.html#appendix-a

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 23 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

players, it calls each player's set_grid method. This sets two player attributes for each player:
grid is set to the torus, and gridlocation is set to the row and column location of the player
(on the grid).

class SimpleTorus:
 def __init__(self, nrows, ncols, neighborhood):
 self.nrows, self.ncols = nrows, ncols
 self.neighborhood = neighborhood
 # empty dict (will eventually map players to neighbors)
 self.players2neighbors = dict()
 # create 2d grid (each element is None until populated)
 self.players2d = [[None]*ncols for i in range(nrows)]
 def populate(self, players1d): # fill grid with players
 players = iter(players1d)
 # put a player in each grid location (row, column)
 for row in range(self.nrows):
 for column in range(self.ncols):
 player = players.next()
 self.players2d[row][column] = player
 player.set_grid(self, row, column)
 def get_neighbors(self, player):
 if player in self.players2neighbors: # neighbors precomputed
 neighbors = self.players2neighbors[player]
 else: # neighbors not yet computed
 neighbors = compute_neighbors(player, self)
 # map player to computed neighbors (for later use)
 self.players2neighbors[player] = neighbors
 return neighbors

6.7
For any player, we can ask a SimpleTorus for the player's neighbors, using the get_neighbors
method. This method first checks to see if these neighbors have already been computed, and
if not, it computes them based on the x,y-offsets of its neighborhood. (This ensures that the
neighbors of any given player need only be computed once, even if they are requested many
times.)

6.8
Our evolutionary tournament will be a sequence of rounds, where as usual players choose a
next playertype at the end of each round. We adopt a very common definition of a
neighborhood, where neighbors are above, below, and to each side.39 The associated list of
offsets is therefore [(0,1),(1,0),(0,-1),(-1,0)]. The result of running such a tournament has
often been viewed as surprising and interesting. Axelrod (1984) notes that the “Tit-for-Tat”
strategy (CD-C) can often succeed in related settings, and Cohen et al. (1999) note more
generally that repeated interaction with a fixed set of neighbors tends to promote
cooperation. Here we find that CD-C often squeezes out all other strategies. Figure 1
summarizes a typical tournament.40 (Players of all eight pure strategy player types are
generated randomly and assigned to a 20 by 20 grid, but only two of the eight player types
are plotted.)

http://jasss.soc.surrey.ac.uk/11/3/8.html#cohen-riolo-axelrod-1999-sfi
http://jasss.soc.surrey.ac.uk/11/3/8.html#vnm
http://jasss.soc.surrey.ac.uk/11/3/8.html#makefig
http://jasss.soc.surrey.ac.uk/11/3/8.html#axelrod-1984

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 24 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

Figure 1: Evolving Strategy Frequencies on an Evolutionary Grid (P=1)

6.9
We can understand the success of the CD-C strategy that we see in Figure 1 in terms of our
previous results in Table 3. Consider two adjacent CD-C players on a grid that is otherwise
entirely populated by DD-D players. Using the notation of Rapoport and Chammah (1965),
let the payoff matrix be represented symbolically as [[(R,R),(S,T)],[(T,S),(P,P)]. When
playing a four-move game against a DD-D player, a CD-C player receives a payoff of S+3P.
When playing a against a CD-C player, a CD-C player receives a payoff of 4R. Given our
standard (von Neumann, radius 1) neighborhood, a CD-C player on this grid will have three
DD-D neighbors and one CD-C neighbor. Its total payoff from a round is therefore
4R+9P+3S.

Table 5: Player Payoffs I
DD-D
16P

DD-D
T+15P

DD-D
T+15P

DD-D
16P

DD-D
T+15P

CD-C
4R+9P+3S

CD-C
4R+9P+3S

DD-D
T+15P

DD-D
16P

DD-D
T+15P

DD-D
T+15P

DD-D
16P

6.10
Next, consider a DD-D player playing four-move games on the grid described above. A DD-
D player who plays a game against a CD-C player receives a payoff of T+3P. A DD-D player
who plays a game against a DD-D player receives a payoff of 4P. So a DD-D player who has a
CD-C neighbor gets a one-round payoff of T+15P, while a DD-D player who has only DD-D
neighbors gets a one-round payoff of 16P.

6.11
Now consider the implications of these payoffs in an evolutionary prisoner's dilemma. In the

http://jasss.soc.surrey.ac.uk/11/3/8.html#rapoport-chammah-1965

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 25 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

literature it is fairly common to let each game run for four iterations. For concreteness, we
focus on this four-move game. In this case, the two adjacent CD-C players get a higher
payoff than their DD-D neighbors as long as 4R+3S>T+6P. Recall the canonical prisoner's
dilemma payoffs: [[(3,3),(0,5)], [(5,0),(1,1)]. This means that the highest average payoff
will go to our two adjacent CD-C players. (The two CD-C players in this case each receive a
payoff of 21, while a DD-D neighbor will receive 20.) The neighboring DD-D players will
therefore switch strategies.41 This increases the number of adjacent CD-C players.
Therefore, the “Tit-for-Tat” strategy quickly takes over the grid.

Fragility

6.12
Contrary to a common impression, our results do not mean that CD-C is the best strategy on
our evolutionary grid. Three obvious changes will affect whether DD-D or CD-D wins the
evolutionary race.42 One possibility is to change the number of moves in each game. (For
example if we recalculate Table 5 for a 3-move game, the two CD-C players each receive a
payoff of 3R+6P+3S=15, while a DD-D neighbor will receive T+11P=16.) Greater interest
attends deviations from the canonical payoff matrix we have been using. Finally, we might
alter our understanding of the evolutionary significance of the payoff.

6.13
Here we briefly explore the second and third possibilities. To keep the discussion focused, we
will change a single parameter: P. Consider for example raising the value of P, retaining the
canonical payoffs T=5, S=0, and R=3. Recall our isolated CD-C pair will beat their DD-D
neighbors as long as 4R+9P+3S>T+15P: that is, as long as 7/6>P. If we raise P above this
threshold, then the DD-D neighbors will win and the CD-C pair will switch strategies.
Intuitively, if we increase the payoff for mutual defection, we expect defection to be more
likely to persist as a strategy (Rapoport and Chammah 1965).

6.14
Once we have P>7/6, this eliminates the ability of isolated pairs to spread, but it is still
plausible that CD-C players will dominate in a given tournament. Larger groups of CD-C
players may be part of an initial distribution of players, or may emerge as other player types
vanish, and these will achieve higher payoffs. To make this concrete, consider four CD-C
players arranged in a square, who are completely surrounded by DD-D players.

Table 6: Player Payoffs II
DD-D
16P

DD-D
16P

DD-D
16P

DD-D
16P

DD-D
16P

DD-D
16P

DD-D
16P

DD-D
16P

DD-D
T+15P

DD-D
T+15P

DD-D
16P

DD-D
16P

DD-D
16P

DD-D
T+15P

CD-C
8R+6P+2S

CD-C
8R+6P+2S

DD-D
T+15P

DD-D
16P

DD-D
16P

DD-D
T+15P

CD-C
8R+6P+2S

CD-C
8R+6P+2S

DD-D
T+15P

DD-D
16P

DD-D
16P

DD-D
16P

DD-D
T+15P

DD-D
T+15P

DD-D
16P

DD-D
16P

DD-D
16P

DD-D
16P

DD-D
16P

DD-D
16P

DD-D
16P

DD-D
16P

6.15
Each of the four CD-C players has two CD-C neighbors and two DD-D neighbors. Each
therefore receives a payoff of 8R+6P+2S (one round, four moves per game). The neighboring

http://jasss.soc.surrey.ac.uk/11/3/8.html#selectionpressure2
http://jasss.soc.surrey.ac.uk/11/3/8.html#synchronous1
http://jasss.soc.surrey.ac.uk/11/3/8.html#rapoport-chammah-1965

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 26 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

DD-Ds each get a payoff of T+15P. The CD-Cs have the better payoff if 8R+6P+2S>T+15P.
Again retaining T=5, R=3, and S=0, this means that as long as 19/9>P the CD-C players will
have the higher payoff. All the DD-D neighbors will thereafter adopt CD-C strategies, and
this expansion will continue outward from the initial square.43

6.16
In more general terms, as we raise the payoff to mutual defection, it becomes harder and
harder for the CD-C strategy to win out over the DD-D strategy on our evolutionary grid. The
canonical payoff matrix makes it almost inevitable the CD-C player type will come to
dominate the grid. As we raise the value of P high enough, it becomes almost inevitable for
the DD-D player type to come to dominate the grid. This can happen relatively soon. Figure 2
illustrates the outcome when the simulation underlying Figure 1 is rerun with no other
changes than a new payoff matrix: [[(3,3),(0,5)],[(5,0),(P,P)]], where P varies from its
canonical value of 1 to the higher value 2.

Figure 2: Strategy Persistence as Payoffs Vary

6.17
Figure 2 suggests one underappreciated way in which outcomes on an evolutionary grid can
be fragile: cardinal payoffs matter.44 Before leaving the evolutionary grid, we briefly explore
one other underappreciated way in which such simulation results can prove fragile. So far
players have evolved by imitating a top-scoring player type. However when a player faces
multiple opponents who share a playertype, other assessments of the best playertype are
plausible. We consider a player who chooses the encountered playertype that had the highest
minimum outcome: the MaxminGridPlayer. Since a top scoring playertype might also perform
poorly against different neighbors, top scoring playertypes will not always appear to be “best”
by this maxmin criterion.

class MaxminGridPlayer(GridPlayer):
 def choose_next_type(self):
 # find playertype(s) with the highest minimum score

http://jasss.soc.surrey.ac.uk/11/3/8.html#gridsize
http://jasss.soc.surrey.ac.uk/11/3/8.html#cardinal

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 27 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

 best_playertypes = maxmin_playertypes(self)
 # choose randomly from these best playertypes
 self.next_playertype = random.choice(best_playertypes)

6.18
Bragt et al. (2001) show that “selection schemes” affect outcomes in an evolutionary IPD.
Here we extend this into the consideration of fitness evaluation. This is appropriate in our
IPD since strategy evolution is rooted in imitation. We explore this possibility by introducing
the MaxminGridPlayer. This is just a GridPlayer with a new choose_next_type method, which
treats as best those encountered playertypes with the highest minimum outcome.
(Implementation details for the maxmin_playertypes function are in Appendix A.) Again, the
simplicity with which we can make this change shows how easy it is to adapt our core game-
simulation toolkit to new considerations. Figure 3 considers the same player grid as Figure 2,
with one difference: the best strategy encountered is taken to be the one with highest
minimum score. Note that the outcomes are changed in interesting ways: the CD-C players
are squeezed out just a surely but more slowly as we increase P, and both CD-D and DD-D
playertypes are eventually able to persist.

Figure 3: Strategy Persistence and Payoffs (best=maxmin)

Conclusion

7.1
Researchers often promote agent-based simulation (ABS) methods as a “third way” of doing
social science, distinct from both pure theory and from statistical exploration (Axelrod 1997).
One hope of ABS researchers is that unexpected but useful (for prediction or understanding)
aggregate outcomes will emerge from the interactions of autonomous actors. The
evolutionary iterated prisoner's dilemma is a good illustration of the fruition of this hope:
more than two decades of computational exploration have delivered many interesting and
surprising results. Classic among these is the high fitness of the “Tit-for-Tat” player type in

http://jasss.soc.surrey.ac.uk/11/3/8.html#appendix-a
http://jasss.soc.surrey.ac.uk/11/3/8.html#bragt-kemenade-poutre-2001-ce
http://jasss.soc.surrey.ac.uk/11/3/8.html#axelrod-1997-abm

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 28 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

certain evolutionary grid environments, which many researchers have found suggestive of the
evolution of cooperation among real-world agents.

7.2
Students, teachers, and researchers naturally search for entry points to agent-based
simulation. This paper provides such an entry point. We use the iterated prisoner's dilemma
as a springboard into agent-based simulation with the Python programming language. This
demonstrates that useful ABS models can be constructed with surprising ease in a general
purpose programming language. Python's flexibility and object-orientation make it a
powerful language for simulation, and its syntax promotes the creation of code that is highly
readable (and therefore easily shared and maintained). This readability does not imply
verbosity: we list in a few dozen lines the actual source code underpinning the reported
simulations. This code is compact yet readable, and it often bears a close resemblance to
simple formal pseudocode.

7.3
A core objective of the paper is to enable students, teachers, and researchers to begin social-
science simulation projects immediately in a general purpose programming language. The
paper therefore includes a narrowly focused introduction both to agent-based simulation
and to the Python programming language. We then introduce agent-based simulation in
Python, producing in the process an accessible basic tookit for the simulation of two-person
evolutionary games. The reported simulations use this toolkit.

7.4
Our initial simulations introduce the iterated prisoner's dilemma and motivate the use of
agent-based models. We demonstrate that it is possible to quickly lay bare the
underpinnings of some classic results, including the importance of topology for outcomes in
evolutionary games. We then demonstrate that one can readily extend the basic toolkit into
new territory. By altering a single entry of the payoff matrix we demonstrate that payoff
cardinality is crucial to prisoner's dilemma outcomes on an evolutionary grid. (This provides a
cautionary tale for those relying on the canonical payoffs for their simulations.) By altering a
single player method attribute, so that the evolution of new player types is based on maximin
rather than maximum outcomes, we discover an interaction between payoff cardinality and
this player attribute. Taken as a group, the simulations in this paper provide a highly
accessible but nevertheless substantive and enabling introduction to the agent-based
simulation of evolutionary games in a general purpose programming language.

Appendix A

This appendix contains utilities that were used to simplify the code samples in the main text.

def mean(seq): #simplest computation of mean
 """Return mean of values in `seq`."""
 n = len(seq)
 return sum(seq)/float(n)

def transpose(seqseq): #simple 2-dimensional transpose
 """Return transpose of `seqseq`."""
 return zip(*seqseq)

def topscore_playertypes(player):
 """Return list of best (maximum payoff) player types."""
 best_types = [player.playertype]
 best_payoff = player.get_payoff()
 for opponent in player.players_played:
 payoff = opponent.get_payoff()
 if payoff > best_payoff:

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 29 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

 best_payoff = payoff
 best_types = [opponent.playertype]
 elif payoff == best_payoff:
 best_types.append(opponent.playertype)
 return best_types

def maxmin_playertypes(player):
 """Return list of best (maxmin payoff) player types."""
 # initialize mapping (playertypes -> payoffs)
 pt2po = dict()
 # find minimum payoff for each encountered playertype
 pt2po[player.playertype] = player.get_payoff()
 for n in player.get_neighbors():
 pt, po = n.playertype, n.get_payoff()
 try:
 if pt2po[pt] > po:
 pt2po[pt] = po
 except KeyError:
 pt2po[pt] = po
 # find best playertype (max of minimum payoffs)
 maxmin = max(pt2po.itervalues())
 best_playertypes = [pt for pt in pt2po if pt2po[pt]==maxmin]
 return best_playertypes

def random_pairs_of(players):
 """Return all of players as random pairs."""
 # copy player list
 players = list(players)
 # shuffle the new player list in place
 random.shuffle(players)
 # yield the shuffled players, 2 at a time
 player_iter = iter(players)
 return izip(player_iter, player_iter)

def compute_neighbors(player, grid):
 """Return neighbors of `player` on `grid`."""
 player_row, player_col = player.gridlocation
 nrows, ncols = grid.nrows, grid.ncols
 players2d = grid.players2d
 # initialize list of neighbors
 neighbors = list()
 # append all neighbors to list
 for offset in grid.neighborhood:
 dc, dr = offset #note: x,y neighborhood
 r = (player_row + dr) % nrows
 c = (player_col + dc) % ncols
 neighbor = players2d[r][c]
 neighbors.append(neighbor)
 return neighbors

def count_player_types(players):
 """Return map (playertype -> frequency) for `players`."""
 ptype_counts = defaultdict(int) #empty dictionary, default count is 0
 for player in players:
 ptype_counts[player.playertype] += 1
 return ptype_counts

Appendix B

This appendix contains some material for teachers and students. It begins with some brief
guidance on how to get up and running with Python, and how to use the code in the present
paper. It then outlines a few graduated projects that can be used for further self-teaching.
Finally, it suggests some resources for more advanced projects. Please note that hyperlinks in
the following text point to useful resources.

Getting Started

Windows users can install Python in a few minutes by following the online installation
instructions on the official Python website. (Others can too, but they will probably find Python

http://www.python.org/
http://wiki.python.org/moin/BeginnersGuide/Download

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 30 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

is already installed.) After installation, a new user should learn to use IDLE, the cross-
platform graphical programming environment included with Python. The next step is to work
through sections 3, 4, and 5 of the Python Tutorial. Finally, work through section 9.3 of the
Python Tutorial. You should then be ready to work with the code in the present paper.

Using the Code

Code presented in this paper is directly usable, once Python is installed and an interpreter is
started. I will assume you installed Python and are using IDLE, as described above. Then take
one of two approaches to executing the code. Approach 1: in IDLE's interpreter window, enter
the code samples directly at the interpreter prompt. Approach 2: copy the code into an IDLE
program window, and save as pd.py. Then use the Run menu to run the code. Start with the
code first introduced, and paste subsequent code at the bottom. Whenever you need one of
the utilities from Appendix A, paste it at the top of your file. (You can also find the objects
and functions in the code online as the module simple_game.py.)

Learning Python

The official Python website contains extensive documentation, including the Python Library
Reference. It is important early on to learn Python's built-in functions. (Two of the most
important will be help and dir, which can provide considerable information about any object
based on Python's introspection capabilities.) There is also a very active and helpful user
forum, whose participants include students, teachers, hobbyists, and programming
professionals.

There are many good Python books. Readers with little programming experience should find
Zelle (2003) to be very helpful. Experienced programmers may want to proceed directly to the
well written and helpful Python Reference Manual. In the end, the only way to learn a
language is to use it. The exercises below provide a starting point.

Graphics

There are several excellent graphics packages for Python. The figures in this paper are
created using the Matplotlib graphics package, which has a very simple to use pylab module.
After the statement import pylab, you can create a lineplot for two series x and y as simply as
pylab.plot(x,y). A two-dimensional array A can be given an image representation as easily as
pylab.matshow(A). (This can be used for visualizing the evolution of player types on a grid.)
Matplotlib supports interactive graphics and GUI embedding.

The Matplotlib license allows royalty-free use, modification, and distribution even for
commercial projects. The Matplotlib website contains binary installers, extensive
documentation, and full code for a very large number of examples. There is also an active
and helpful Matplotlib mailing list.

Suggested Exercises

1. Run the RandomMover game. (Make sure you include the RandomMover definition above
any code that uses this class!)

2. Modify the RandomMover game code. Create an empty list named history. Use a for
statement to produce 20 moves from each player. (Do not forget to indent the loop
body.) In the loop body, append each new pair of moves to your history list. Once you
have your list of moves, produce a corresponding list of payoffs, as well as an average
payoff for each player. To produce the average payoff, use the function mean defined in
Appendix A. (Make sure you put this function definition above any code that uses it.)

3. Run the SimpleGame with RandomPlayer game. (Make sure you include the RandomPlayer

http://hkn.eecs.berkeley.edu/~dyoo/python/idle_intro/index.html
http://docs.python.org/tut/
http://docs.python.org/tut/
http://econpy.googlecode.com/svn/trunk/abs/games/simple2p/simple_game.py
http://jasss.soc.surrey.ac.uk/11/3/8.html#appendix-a
http://python.org/doc/
http://docs.python.org/lib/built-in-funcs.html
http://docs.python.org/lib/lib.html
http://www.python.org/
http://groups.google.com/group/comp.lang.python/
http://docs.python.org/ref/ref.html
http://wiki.python.org/moin/PythonBooks
http://jasss.soc.surrey.ac.uk/11/3/8.html#zelle-2003-python
http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/pylab_commands.html
http://matplotlib.sourceforge.net/license.html
http://matplotlib.sourceforge.net/
http://sourceforge.net/mail/?group_id=80706
http://jasss.soc.surrey.ac.uk/11/3/8.html#appendix-a

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 31 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

and SimpleGame definitions above this code!)
4. Modify the SimpleGame with RandomPlayer game to produce the numbers for a table

like Table 1. If you want to format the table nicely, learn how to use Python's string
formatting operations.

5. Learn about the Game of Chicken (Rapoport and Chammah 1966). Repeat the previous
exercise with a payoff matrix representing the Game of Chicken. Learn about the Battle
of the Sexes (Rapoport 1966). Repeat the exercise with a payoff matrix representing the
Battle of the Sexes. See (Rapoport and Guyer 1966) for a taxonomy of 78 different
games that you can explore in this framework.

6. Modify CDIGame with SimplePlayer to produce the numbers for a table like Table 3.
7. Use SoupRound to produce numbers for a table like Table 4. You can just run repeated

rounds in a loop, but you might consider creating a new class, SoupTournament, which
runs this tournament. You can use the count_player_types utility in Appendix A.

8. Use GridRound to produce numbers for a figure like Figure 1. You can just run repeated
rounds in a loop, but you might consider creating a new class, GridTournament, which
runs this tournament. If you have installed Matplotlib (or another plotting package), use
the data you just generated to produce a figure like Figure 1.

9. There is a widely used alternative approach to modeling the location of a player on a
grid. Recall that our GridPlayer has as data a gridlocation object that is extremely
simple: it is just a tuple of row and column coordinates. Many researchers use instead a
more complex object, which has this tuple and a grid as data, and which itself has a
get_neighbors method. A player's interactions with the grid are then mediated by its
gridlocation object, which is often called a “location” or “patch”. Bian (2003) offers a
pointed critique this alternative approach. Experiment with it and assess this critique
for yourself.

After working through these exercises, the reader should be able to implement many of the
models discussed in the agent-based game simulation literature and to use these as a
springboard for developing original models. Readers who wish to work on the prisoner's
dilemma may find Gotts et al. (2003) to provide useful additional background and context.

Notes
1 Key citations for these toolkits include Minar et al. (1996) for SWARM, Gulyas et al.
(1999) for MAML, Parker (2001) for Ascape, Wilensky (1999) for Netlogo, North et al.
(2005) for Repast, Bremer (1987) for GLOBUS, Hughes (1999) for IFs, and McFadzean et al.
(2001) for the Trade Network Game.

2 This paper emphasizes game simulation—specifically, the prisoner's dilemma—because
of some useful pedagogical advantages. More fundamentally, it allows for extremely simple
initial model and the graduated introduction of natural extensions. The resulting model
matches key characteristics of many ABS models: agents are heterogeneous, behavioral
differences are fundamental to the model dynamics, and each agent's behavioral decisions
(choices of strategies) respond to the behavior of other agents. This implies a coevolution
of behavioral environment and behavior that is typical of ABS models. However, the game-
theoretic orientation of the example implies an emphasis on behavioral strategies at the
expense of more detailed modeling of other environmental characteristics. This sets this
example apart from ABS models where location has a more physical interpretation and
movement is an important behavior.

3 As a specific example, the interested reader may wish to compare the code in the
excellent prisoner's dilemma tutorial using Objective-C and Swarm offered by Stefansson

http://www.python.org/doc/2.5.2/lib/typesseq-strings.html
http://jasss.soc.surrey.ac.uk/11/3/8.html#rapoport-chammah-1966-abs
http://jasss.soc.surrey.ac.uk/11/3/8.html#rapoport-guyer-1966-gs
http://jasss.soc.surrey.ac.uk/11/3/8.html#rapoport-1966-tpgt
http://jasss.soc.surrey.ac.uk/11/3/8.html#appendix-a
http://matplotlib.sourceforge.net/
http://jasss.soc.surrey.ac.uk/11/3/8.html#bian-2003-em
http://jasss.soc.surrey.ac.uk/11/3/8.html#gotts-polhill-law-2003-air
http://jasss.soc.surrey.ac.uk/11/3/8.html#bremer-1987-globus
http://ascape.sourceforge.net/
http://www.econ.iastate.edu/tesfatsi/tnghome.htm
http://jasss.soc.surrey.ac.uk/11/3/8.html#gulyas-kozsik-corliss-1999-jasss
http://www.ifsmodel.org/
http://ccl.northwestern.edu/netlogo/
http://jasss.soc.surrey.ac.uk/11/3/8.html#mcfadzean-stewart-tesfatsion-2001-ieee
http://repast.sourceforge.net/
http://jasss.soc.surrey.ac.uk/11/3/8.html#wilensky-1999-netlogo
http://www.swarm.org/
http://jasss.soc.surrey.ac.uk/11/3/8.html#parker-2001-jasss
http://jasss.soc.surrey.ac.uk/11/3/8.html#minar-burkhart-langton-askenazi-1996-wp
http://jasss.soc.surrey.ac.uk/11/3/8.html#north-howe-collier-vos-2005-macal
http://www.maml.hu/
http://jasss.soc.surrey.ac.uk/11/3/8.html#hughes-1999-sg
http://jasss.soc.surrey.ac.uk/11/3/8.html#stefansson-2000-luna-stefansson

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 32 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

(2000) with the code below. The code below differs in the following ways: it is the complete
code for the simulations (not just the object interfaces), it is more compact, it is much
easier to read and understand for someone new to the language, and it is more easily
extended. While there are still no formal standards for readabiilty comparisons, discussions
of readability generally place Python in the first rank.

4 Note that we have not mentioned inheritance, which is often considered a defining
characteristic of object-oriented programming. (However, this paper will illustrate the use
of inheritance.) A detailed discussion of object-oriented programming is beyond the scope
of this paper; see Kak (2003) for an accessible treatment.

5 This is essentially a strong form of signature-based polymorphism often known a “duck
typing"; it is not simply function overloading or subtype polymorphism. There are different
kinds of polymorphism and no completely standard vocabulary to discuss them. See Kak
(2003) for an accessible discussion.

6 Object orientation cuts much deeper than this, and many important objects in our
models will not have obvious real world counterparts. For example, we may have objects
representing bundles of player characteristics, or objects representing aggregates of
actors, or objects storing a summary “history” of a dynamic model.

7 Programmers accustomed to braces-delimited blocks are sometimes initially put off by
whitespace-delimited blocks, but for newcomers to programming it proves intuitive and
natural.

8 Many statically typed languages lack type inference, which leads to programs that appear
cluttered with type declarations and explicit casts. Some researchers justify this cost with a
claim that static typing provides a crucial check for programming errors. Attempts to
resolve this cost-benefit tradeoff have been at the center of many contentious arguments,
which we do not address here.

9 Note that, as a result of Python's strong object orientation, these types are easily
subclassed and extended when needed. For a detailed and generally excellent introduction,
see the Python Tutorial.

10 Like many programming languages, Python uses zero-based indexing: if seq is a
sequence, then seq[0] returns the first element of seq. To illustrate zero-based indexing in
more detail, consider the statement payoffmat = [[(3,3),(0,5)] , [(5,0),(1,1)]] (which
occurs in our code examples below). This is a list of two lists of two tuples each. Since we
index sequence elements by postfixing an integer in brackets, payoffmat[0] is
[(3,3),(0,5)]. Similarly, payoffmat[0][1] is (0,5). (This tuple will represent two player
payoffs given moves 0 and 1.) Zero-based indexing can initially feel odd to those with no
programming experience (even though we often use it, e.g., when referring to someone's
age or buidling floors). In practice, it proves extremely convenient.

11 Here we access the playertype attribute of each player by using the “dot notation”
common in object oriented languages. Python offers mechanisms to control the getting and
setting of attributes, such as properties, which we do not introduce the in this paper.

12 An attentive reader might wonder why the generator example has only a single pair of
parentheses. When a generator expression is the only argument of a function, Python
allows us to omit its parentheses.

13 The advantages of garbage collection in reducing development time are considered very

http://jasss.soc.surrey.ac.uk/11/3/8.html#stefansson-2000-luna-stefansson
http://jasss.soc.surrey.ac.uk/11/3/8.html#kak-2003-oop
http://jasss.soc.surrey.ac.uk/11/3/8.html#kak-2003-oop
http://docs.python.org/tut/
http://www.python.org/doc/2.2.3/whatsnew/sect-rellinks.html#SECTION000340000000000000000

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 33 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

large, which explains the growing popularity of the Boehm-Demers-Weiser conservative
garbage collector among C and C++ programmers, as these languages do not have built-
in garbage collection.

14 Random number generation uses the Mersenne Twister by default. Details can be found
in Matsumoto and Kurita (1998), which contains a much cited algorithm for the Mersenne
Twister.

15 See for example the ctypes module, f2py, NumExpr, SWIG, weave, and especially Pyrex
and Cython.

16 In this paper we use only classic classes. (For more detail, see the Python tutorial.)

17 It is of course also possible to use a static method in this case. (We will not introduce
static methods in this paper.) Our purpose here is pedagogical: RandomMover is constructed
to illustrate this behavior of bound methods. Note that, like any other argument name, self
is a name that is local to the function definition. We could freely choose another name for
this argument of our function, but other Python programmers reading our code will expect
us to follow the established convention.

18 The function uniform is provided by the random module of the Python standard library.
Each call to random.uniform returns one draw from a uniform distribution over the specified
interval. (Alternatively, the function random.random takes no arguments and returns one
draw from a standard uniform distribution. Here we choose the more explicit name for
pedagogical reasons.)

19 The expression RandomMover() evaluates to a RandomMover instance. A class in Python is a
callable object; when called it returns an instance of the class.

20 Since our players are RandomMover instances, moves and therefore payoffs will change
each time we play a game. If we need enforce replicability across runs, we could force the
game to always produce an identical result by appropriately seeding the random number
generator.

21 Unlike Java, Python does not explicitly use abstract classes and interfaces to enforce
protocol availability. (While it is easy enough to create roughly equivalent classes, there
would be no compiler enforcement.) Future versions of Python will facilitate enforcement of
protocols.

22 Readers with programming experience can think of __init__ as roughly playing the role
of a constructor in C++ or Java. (While __init__ is not technically a constructor, this is often
an adequate parallel.)

23 Note the particularly simple syntax for providing a default value: a default assignment
(p=0.5) takes place in the function-definition header.

24 Recall that no list or tuple is created by the generator expression. The transpose
function, defined in Appendix A, does explicitly create two tuples of player payoffs (pay1
and pay2). These are not really needed (we use only their means), but here we nevertheless
create them explicitly for presentational clarity.

25 Scodel et al. (1959), Axelrod (1984), and Nowak and Sigmund (1992) are prominent
examples. Following O'Riordan (2000), we will call this matrix the “canonical” payoff.

http://www.hpl.hp.com/personal/Hans_Boehm/gc/
http://jasss.soc.surrey.ac.uk/11/3/8.html#matsumoto-kurita-1998-acmt
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://cens.ioc.ee/projects/f2py2e/
http://www.scipy.org/SciPyPackages/NumExpr
http://www.cython.org/
http://www.swig.org/Doc1.3/Python.html
http://wiki.python.org/moin/weave
http://docs.python.org/dev/lib/module-ctypes.html
http://docs.python.org/ref/node33.html
http://docs.python.org/tut/
http://docs.python.org/lib/module-random.html
http://www.artima.com/weblogs/viewpost.jsp?thread=155123
http://jasss.soc.surrey.ac.uk/11/3/8.html#appendix-a
http://jasss.soc.surrey.ac.uk/11/3/8.html#nowak-sigmund-1992-nature
http://jasss.soc.surrey.ac.uk/11/3/8.html#oriordan-2000-jasss
http://jasss.soc.surrey.ac.uk/11/3/8.html#scodel-minas-ratoosh-lipetz-1959-jconres
http://jasss.soc.surrey.ac.uk/11/3/8.html#axelrod-1984

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 34 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

26 Additionally, an evolutionary aspect arises when strategy success influences strategy
persistence. We will address this in subsequent sections. (In this paper we use ‘evolve’ only
to denote structured change over time. See Hodgson and Knudsen (2006) for an extended
discussion.)

27 Since games know their players, the players_played attribute is somewhat redundant, but
it proves convenient. Availability of a reset method will also prove useful later, when we
introduce evolutionary considerations.

28 Using the super class's initialization is a very useful technique, although here it is
primarily illustrative.

29 We could also endow players with memory of the move history, which might even
deviate unreliably from the game history or be limited in capacity. We do not explore these
possibilities in the present paper.

30 While most (29/36) pairs of players will quickly reach an “equilibrium”, in the sense that
each player finds a single move to repeat, a CD-C/CD-D pair will switch moves every
iteration for as long as they play.

31 Although we emphasize the simplicity of this setup, note that it can be mapped to the
Hodgson and Knudsen (2006) definition of a complex system.

32 Readers with programming experience will notice that a SoupPlayer is not initialized with
this attribute. Instead, the attribute is created dynamically the first time we call
choose_next_type. In the present paper, we do not take up the controversies over dynamic
attribute creation, other than to note here that if you do not like it you do not have to use
it. (It is also possible in Python to block this feature in any user-created class.) In this
paper we also directly access data attributes, which simplifies the presentation
considerably. Those concerned that this violates OOP encapsulation practices will wish to
look at how Python allows the use of properties to trap attribute references.

33 It is common (and simple) to add randomness to the evolutionary game we are
illustrating by introducing a concept of “selection pressure”. Typically, a player will have a
selection_pressure attribute which determines the probability of adopting the
next_player_type. Selection pressure in this context is typically the probability of switching
to a best strategy. In the present paper, we simplify the presentation by (effectively)
adopting a selection pressure of 1.

34 This can raise the question: how randomly can we sort players into pairs? One common
strategy is concatenating lists of each type of player and then permuting them (Stefansson
2000). We will adopt this approach as appropriate for the “evolutionary soup” model in this
paper, but it is worth noting that some interesting computational problems are posed by
shuffling. These have been heavily studied because of the role of shuffling in card games.
With only 52 cards in a deck, there are 52! (or almost 2226) different possible shuffles.
Suppose we were working with a simple RNG algorithm based on a 32-bit random number
generator: this yields 232 possible shuffles (one for each seed). This is radically less than
the number of permutations. Only a small fraction of the possible shuffles are achievable.
(Even modern generators with long periods can face this problem. The Mersenne Twister
MT19937 for example, claims a period of 219937-1, but might be implemented with a 32
bit seed. Naturally the Python implementation allows a much larger seed size.)

35 Note that there is still some drift in the numbers of CDD and DDD player types. Both

http://jasss.soc.surrey.ac.uk/11/3/8.html#hodgson-knudsen-2006-jebo
http://jasss.soc.surrey.ac.uk/11/3/8.html#hodgson-knudsen-2006-jebo
http://www.python.org/doc/2.2.3/whatsnew/sect-rellinks.html#SECTION000340000000000000000
http://jasss.soc.surrey.ac.uk/11/3/8.html#stefansson-2000-luna-stefansson
http://www.cigital.com/papers/download/developer_gambling.php

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 35 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

player types are always playing defect, so they earn equal payoffs. After a CDD player plays
a game against a DDD player, it will evolve based on a random choice from these two
equally good strategies. Similarly for the DDD player.

36 A player's grid and gridlocation attributes are created dynamically by set_grid. See the
earlier discussion of dynamic attribute creation.

37 The GridRound class does not substantially profit from inheriting from SoupRound. The
primary reason we use inheritance here is to illustrate method overriding in Python classes.

38 It is not always appreciated that a two-dimensional grid is just a convenient and
intuitive conceptualization of relationships that are easily characterized in terms of a one-
dimensional array. The class implementing the grid therefore need not rely on any kind of
two-dimensional container. We use a two-dimensional container (a list of lists) because it
is easier to understand and provides fast and convenient indexing. Our grid will be a torus,
in the sense that side wraps to side and bottom wraps to top. (Such topologies are
sometimes described as having periodic boundaries.)

39 This is known as the von Neumann neighborhood of radius 1, where a von Neumann
neighborhood of radius r corresponds to the closed ball of radius r under the 1-norm. The
work of Jun and Sethi (2007) in a different setting finds that neighborhood topology affects
evolutionary outcomes, a finding that is easily explored here simply by changing the list of
offsets.

40 The plots in the present paper are created with the Matplotlib package for Python. See
Appendix B for details.

41 Recall that we are evolving the players deterministically. See the earlier discussion of
“selection pressure”.

42 One less obvious consideration may matter as well. Note that all agents in our
tournament update their playertype synchronously, after all have played all their games for
a round. In a evolutionary grid experiment without reactive strategies, Huberman and
Glance (1993) contend that asynchronous contests and updating favor defection, while
Nowak, Bonhoeffer, and May (1994) find this consideration not to be determinative.
Unfortunately, ‘asynchronous updating’ is polysemic and the literature often presents
results without the generative algorithms, making it difficult to address claims about the
importance of asynchronicity. All results in the present paper derive from synchronous
updating algorithms, as is evident from the code presented.

43 Note an implication, underemphasized or perhaps missing in the literature, when payoffs
are such that a expansionary formation of CD-C players is possible. With a randomly
populated grid, increasing the grid size will make the realization of such a formation
increasingly likely. On a very large grid, this becomes essentially inevitable.

44 In a somewhat different setting, Jun and Sethi (2007) explore a related issue, finding
that a “cost-benefit ratio” influences evolutionary outcomes when individuals bear costs to
produce benefits that are equally shared by the entire neighborhood. Zhao et al. (2007)
explore the effects of varying the payoff a cooperator gets from a defector on a very simple
evolutionary grid when the prisoner's dilemma games are not iterated (ruling out most of
the strategy selection inherent in the IPD).

http://jasss.soc.surrey.ac.uk/11/3/8.html#jun-sethi-2007-jee
http://matplotlib.sourceforge.net/
http://jasss.soc.surrey.ac.uk/11/3/8.html#appendix-b
http://jasss.soc.surrey.ac.uk/11/3/8.html#huberman-glance-1993-pnas
http://jasss.soc.surrey.ac.uk/11/3/8.html#nowak-bonhoeffer-may-1994-pnas
http://jasss.soc.surrey.ac.uk/11/3/8.html#jun-sethi-2007-jee
http://jasss.soc.surrey.ac.uk/11/3/8.html#zhao-szidarovszky-szilagyi-2007-jasss

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 36 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

References

AXELROD R (1984) The Evolution of Cooperation. New York, NY: Basic Books.

AXELROD R (1997) The Complexity of Cooperation: Agent-Based Models of Competition and
Collaboration. Princeton, NJ: Princeton University Press.

AXELROD R and Hamilton W D (1981) “The Evolution of Cooperation”. Science 211, March 1981.
pp. 1390--1396.

BIAN L (2003) “The representation of the environment in the context of individual-based
modeling”. Ecological Modelling 159, January 2003. pp. 279-296.

BONABEAU E (2002) “Agent-based Modeling: Methods and Techniques for Simulating Human
Systems”. Proceedings of the National Academy of Sciences 99, May 2002. pp. 7280--7287.

BRAGT D, van Kemenade C and La Poutré H (2001) “The Influence of Evolutionary Selection
Shemes on the Iterated Prisoner's Dilemma”. Computational Economics 17, June 2001. pp. 253--
263.

BREMER S A (1987) The GLOBUS Model: Computer Simulation of Worldwide Political and Economic
Developments. Boulder, CO: Westview Press.

COHEN M D, Riolo R L and Axelrod R (1999) “The Emergence of Social Organization in the
Prisoner's Dilemma: How Context Preservation and Other Factors Promote Cooperation”. Santa Fe
Institute Working Paper 99-01-002. http://www.cscs.umich.edu/old/pub/papers/car2.ps

GILBERT N and Bankes S (2002) “Platforms and Methods for Agent-Based Modeling”. Proceedings
of the National Academy of Sciences 99, May 2002. pp. 7197--7198.

GOTTS N M, Polhill J G and Law A N R (2003) “Agent-Based Simulation in the Study of Social
Dilemmas”. Artificial Intelligence Review 19, March 2003. pp. 3--92.

GULYÁS L, Kozsik T and Corliss J B (1999) “The Multi-Agent Modelling Language and the Model
Design Interface”. Journal of Artificial Societies and Social Simulation 2, October 1999.
http://jasss.soc.surrey.ac.uk/2/3/8.html

HAHN F (1991) “The Next Hundred Years”. Economic Journal 101, January 1991. pp. 47--50.

HODGSON G M and Knudsen T (2006) “Why We Need a Generalized Darwinism, And Why
Generalized Darwinism Is Not Enough”. Journal of Economic Behavior and Organization 61,
September 2006. pp. 1--19.

HUBERMAN B A and Glance N S (1993) “Evolutionary Games and Computer Simulations”.
Proceedings of the National Academy of Sciences 90, August 1993. pp. 7716--7718.

HUGHES B B (1999) “The International Futures (IFs) Modeling Project”. Simulation and Gaming 30,
1999. pp. 304--326.

JUN T and Sethi R (2007) “Neighborhood Structure and the Evolution of Cooperation”. Journal of
Evolutionary Economics 17, October 2007. pp. 623--646.

KAK A (2003) Programming with Objects: A Comparative Presentation of Object Oriented
Programming with C++ and Java. Hoboken, New Jersey: Wiley-Interscience.

LUNA F and Stefansson B (2000) Economic Simulations in Swarm: Agent-Based Modelling and

http://www.cscs.umich.edu/old/pub/papers/car2.ps
http://jasss.soc.surrey.ac.uk/2/3/8.html

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 37 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

Object Oriented Programming. Norwell, MA: Kluwer Academic Publishers.

LUTZ M (2007) Learning Python. Sebastopol, CA: O'Reilly Media.

MATSUMOTO M and Kurita Y (1998) “Mersene Twister: A 623-Dimensionally Equidistributed
Uniform Pseudo-Random Number Generator”. ACM Transactions on Modeling and Computer
Simulation 8, 1998. pp. 3--30.

MCFADZEAN D, Stewart D and Tesfatsion L (2001) “A Computational Laboratory for Evolutionary
Trade Networks”. IEEE Transasctions on Evolutionary Computation 5, October 2001. pp. 546--
560.

MINAR N, Burkhart R, Langton C and Askenzai M (1996) “The Swarm simulation system: a toolkit
for building multi-agent simulations”. Santa Fe Institute Working Paper 96-06-042.
http://www.swarm.org/archive/overview.ps

NORTH M J, Howe T R, Collier N T and Vos R J (2005) “Repast Simphony Development
Environment”. In Macal C M, North M J and Sallach D (Eds.) Proceedings of the Agent 2005
Conference on Generative Social Processes, Models, and Mechanisms, Argonne, IL and Chicago,
IL:

NOWAK M A, Bonhoeffer S and May R M (1994) “Spatial Games and the Maintenance of
Cooperation”. Proceedings of the National Academy of Sciences 91, May 1994. pp. 4877--4881.

NOWAK M A and Sigmund K (1992) “Tit for Tat in Heterogenous Populations”. Nature 355, January
1992. pp. 250--253.

O'RIORDAN C (2000) “A Forgiving Strategy for the Iterated Prisoner's Dilemma”. Journal of
Artificial Societies and Social Simulation 3, October 2000.
http://jasss.soc.surrey.ac.uk/3/4/3.html

OSKAMP S (1971) “Effects of Programmed Strategies on Cooperation in the Prisoner's Dilemma
and Other Mixed-Motive Games”. Journal of Conflict Resolution 15, June 1971. pp. 225-259.

PARKER M T (2001) “What is Ascape and Why Should You Care?”. Journal of Artificial Societies and
Social Simulation 4, January 2001. http://jasss.soc.surrey.ac.uk/4/1/5.html

POUNDSTONE W (1992) Prisoner's Dilemma. New York, NY: Doubleday.

RAILSBACK S F, Lytinen S L and Jackson S K (2006) “Agent-Based Simulation Platforms: Review
and Development Recommendations”. Simulation 82, September 2006. pp. 609--623.

RAPOPORT A (1966) Two-Person Game Theory: The Essential Ideas. Ann Arbor, MI: University of
Michigan Press.

RAPOPORT A and Chammah A M (1965) Prisoner's Dilemma: A Study in Conflict and Cooperation.
Ann Arbor, MI: University of Michigan Press.

RAPOPORT A and Chammah A M (1966) “The Game of Chicken”. The American Behavioral Scientist
10, November 1966. pp. 10--14,23--28.

RAPOPORT A and Guyer M (1966) “A Taxonomy of 2 x 2 Games”. General Systems 11, 1966. pp.
203--214.

SCHELLING T C (1973) “Hockey Helmets, Concealed Weapons, and Daylight Saving: A Study of
Binary Choices with Externalities”. Journal of Conflict Resolution 17, September 1973. pp. 381--
428.

http://www.swarm.org/archive/overview.ps
http://jasss.soc.surrey.ac.uk/3/4/3.html
http://jasss.soc.surrey.ac.uk/4/1/5.html

30/06/2008 15:47Alan G. Isaac: Simulating Evolutionary Games

Page 38 of 38http://jasss.soc.surrey.ac.uk/11/3/8.html

SCODEL A, Minas J S, Ratoosh P and Lipetz M (1959) “Some Descriptive Aspects of Two-Person
Non-Zero-Sum Games”. Journal of Conflict Resolution 3, June 1959. pp. 114--119.

STEFANSSON B (2000) “Simulating Economic Agents in Swarm”. In Luna F and Stefansson B (Eds.)
Economic Simulations in Swarm: Agent-Based Modelling and Object Oriented Programming,
Boston:

TRIVERS R L (1971) “The Evolution of Reciprocal Altruism”. Quarterly Review of Biology 46, March
1971. pp. 35--57.

WILENSKY U (1999) “NetLogo”. Center for Connected Learning and Computer-Based Modeling.
Northwestern University . http://ccl.northwestern.edu/netlogo

ZELLE J M (2003) Python Programming: An Introduction to Computer Science. Wilsonville, OR:
Franklin Beedle and Associates.

ZHAO J, Szidarovszky F and Szilagyi M N (2007) “Finite Neighborhood Binary Games: a Structural
Study”. Journal of Artificial Societies and Social Simulation 10, June 2007.
http://jasss.soc.surrey.ac.uk/10/3/3.html

Return to Contents of this issue

© Copyright Journal of Artificial Societies and Social Simulation, [2008]

http://ccl.northwestern.edu/netlogo
http://jasss.soc.surrey.ac.uk/10/3/3.html
http://jasss.soc.surrey.ac.uk/11/3/contents.html
http://jasss.soc.surrey.ac.uk/admin/copyright.html

