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Abstract

Humans have a long history of activity in Mediterranean Basin landscapes. Spatial heterogeneity
in these landscapes hinders our understanding about the impacts of changes in human activity on
ecological processes, such as wildfire. The use of spatially-explicit models that simulate processes
at fine scales should aid the investigation of spatial patterns at the broader, landscape scale. Here,
we present an agent-based model of agricultural land-use decision-making to examine the
importance of land tenure and land use on future land cover. The model considers two 'types' of
land-use decision-making agent with differing perspectives; 'commercial' agents that are perfectly
economically rational, and 'traditional' agents that represent part-time or 'traditional' farmers that
manage their land because of its cultural, rather than economic, value. The structure of the model
is described and results are presented for various scenarios of initial landscape configuration.
Land-use/cover maps produced by the model are used to examine how wildfire risk changes for
each scenario. Results indicate that land tenure configuration influences trajectories of land use
change. However, simulations for various initial land-use configurations and compositions
converge to similar states when land-tenure structure is held constant. For the scenarios
considered, mean wildfire risk increases relative to the observed landscape. Increases in wildfire
risk are not spatially uniform however, varying according to the composition and configuration of
land use types. These unexpected spatial variations in wildfire risk highlight the advantages of
using a spatially-explicit agent-based model of land use/cover change.
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1.1
Humans are the primary cause of wildfire in the landscapes of the Mediterranean Basin. For
example, 95% of all wildfires in Spain are the result of human activity (Moreno et al. 1998).
Changes in human activity and land-use practices in these landscapes have the potential to modify
the magnitude, timing and frequency of wildfires (collectively known as the wildfire regime) as a
result of changes in land-cover compositions and configurations. For example, recent increases in
forest land cover in the northern Mediterranean Basin have been attributed, in part, to the
abandonment of traditional low-intensity agricultural practices (Mazzoleni et al. 2004). Land
Use/Cover Change (LUCC) of this type is likely to increase the biomass available to burn in the
landscape, potentially leading to increased wildfire sizes.

1.2
Previous models that consider the spatial interaction of vegetation dynamics (the establishment,
growth and competition between plant species) and wildfire regimes have seldom considered the
influence of human activity on these interactions. The few models that have considered human
activity have done so by considering general scenarios of human impact, imposed exogenously
(e.g., Baker 1995; Perry and Enright 2002). However, an agent-based approach provides
significant advantages over scenario-based approaches. These advantages include the
representation of emergent (spatial) patterns of LUCC from hypothesized behaviour and the
provision of mechanisms for dynamic feedback (Wainwright 2008).

1.3
Here we present an Agent-Based Model of Land Use/Cover Change (ABM/LUCC) that is used to
evaluate potential changes in wildfire risk for a Mediterranean landscape. Our ABM/LUCC
simulates a traditional Spanish agricultural landscape that is undergoing social, demographic and
cultural change. Specifically, agricultural location theory is complemented by the elicitation of
agent behaviour specific to the study area from local agricultural actors, to produce an agent-based
model of agricultural decision-making. We then use maps of land-cover composition and
configuration that emerge from the interaction of agents' land-use decision-making to assess
potential impacts on wildfire risk.

Modelling agricultural land-use patterns

2.1
Classical agricultural location theory was developed to explain the spatial location of agricultural
land-uses and practices. The von Thünen (1826) model assumes that an individual has perfect
knowledge of prices and costs, perfect economic rationality on the part of producers (i.e., the
product that provides greatest profit is always chosen), and homogeneity of all other environmental
factors (including soil fertility, labour availability etc.). Using this model, von Thünen showed that
generalised land uses with varying economic yields and transport costs form concentric rings
around a single central market. Chisholm (1962) introduced von Thünen's theory into rural
geography to explain spatial patterns of agricultural land use by examining relative and absolute
locations and distances of a variety of production entities at multiple organisational levels and
spatial scales. Many critics have noted the importance of Chisholm's work (Cliff et al. 1997), but
also highlight the incompleteness of such a spatially-dependent theoretical framework (e.g. Moran
1994; Munton 1994). Munton (1994) highlighted that there are many other important factors
alongside transport costs associated with the distance of a location to a market in determining the
spatial allocation of agricultural land-uses. These factors include trade agreements, agricultural
subsidies, and land-tenure history, among others. Harvey (1966, p. 370) summarised, "the only
way we can understand regional variations in agriculture will thus be through an understanding of
decision-making processes; and decisions are never simply economic ones". It is from such
criticisms that recent agent-based approaches have emerged as a means of considering the
influence of individual agents' behaviour on LUCC.
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2.2
Several recent reviews of the use of ABM/LUCC highlight the increasing interest in their
application (Parker et al. 2003; Bousquet and Le Page 2004). These models typically represent
feedbacks between decision-making agents and a cellular model of the physical landscape (Parker
et al. 2003). This model framework provides several representational improvements over classical
agricultural location approaches. First, the approach is process-based and considers the behaviour
of the actors making the decisions that influence land-use patterns. Second, by considering agents'
actions spatially-explicitly, ABM/LUCC allow the dynamic representation of interactions between
socio-economic and biophysical processes. Consequently, agents' behaviour, and in turn the spatial
distribution of land uses, can be interpreted in a spatially-explicit manner across a range of scales
(depending on what actor the agent represents and the grain at which the landscape is represented).
The spatially-explicit and agent-based characteristics of ABM/LUCC mean that the socio-
economic and biophysical processes and structures being represented can be examined at their
appropriate scales. Thus, this model framework allows an improved representation of the impacts
of heterogeneous spatial decision-making conditions on individual land holders' decisions.

2.3
Many studies using ABM/LUCC have focused on conversion of virgin tropical forest to other non-
forest land uses and covers (e.g. Evans et al. 2001; Deadman et al. 2004; Huigen 2004; Manson
2005). In contrast, agriculture has a long history in the Mediterranean Basin (Grove and Rackham
2001; Wainwright and Thornes 2004), and contemporary processes of LUCC are generally not the
result of the conversion of forest or woodland to agricultural uses.

Figure 1. The fragmented and heterogeneous spatial structure of a traditional Mediterranean
agricultural landscape. The aerial photograph from the study area spans approximately 1.6 km (1
mile) and contains numerous land-use and cover types including pasture, crops and urban areas.

2.4
In this paper we consider LUCC in a traditional Mediterranean agricultural landscape, EU Special
Protection Area number 56 (SPA 56) 'Encinares del río Alberche y Cofio', in central Spain.
Fragmented land tenure in SPA 56 is a result of repeated land division between family heirs over
many generations. Furthermore, central Spain's semi-arid climate (mean annual rainfall is 400 –
800 mm depending on altitude), high intra- and inter-annual rainfall variability, irregular and often
sharp relief, variable soil quality and high mean altitude (over 700 m ASL) make for adverse
farming conditions in many areas. These conditions have led to a "mosaic of farming landscapes
with an uneven production capacity and a complex social and environmental composition" (Peco
et al. 2000 p.146). This spatial mosaic of agricultural land-use results, in turn, in a spatially
heterogeneous land cover (Figure 1) with consequences for spatial ecological processes such as
wildfire and vegetation seed dispersal. Social and economic trends have driven recent
abandonment of agricultural land in SPA 56 (Romero-Calcerrada and Perry 2004; Millington et al.
2007), leading to increased wildfire risk (Millington 2005). Improved understanding of the
consequences of agricultural land-use decision-making on land-use and land-cover patterns will
aid wildfire-management operations. In particular, we use the model presented here to investigate
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how scenarios of different initial land-use and land-tenure influence trajectories of LUCC and the
subsequent consequences for wildfire risk. Other Agent-Based Models (ABMs) have been
developed to examine agricultural decision-making, policy and change in European landscapes
(Balmann 1997; Mathevet et al. 2003; Happe et al. 2006). However, we believe that our model is
the first ABM to consider contemporary agricultural land-use decision-making and wildfire in the
Mediterranean Basin.

Model Structure

3.1
To develop an appropriate model structure and parameterisation, five semi-structured interviews
were undertaken in November 2005 with local stakeholders from within SPA 56, each of whom
had knowledge of specific regions of the study area due to their occupation and, in most cases,
place of residence. Interviewing the actors represented in an ABM is a useful way of developing
system understanding to ensure agent behaviour is representative of actual behavioural patterns
(Matthews and Selman 2006). Interviewees were selected from a range of institutional contexts,
and included private individual land owners, a local agricultural co-operative official and a local
council (ayuntamiento) official. Interviewees were specifically asked about local agricultural land
use and associated income sources. Attitudes toward recent LUCC, and the understood causes,
were also explored (see Millington 2007). Responses from these interviews were used to specify
the agricultural land-use decision-making process of local stakeholders. Specifically, two
distinctively different 'types' of farmer emerged from the interviews, each representing different
worldviews: commercially-minded ('commercial') and traditionally-minded ('traditional') farmers.
These two types of agent take different land-use decision-making approaches to establish whether
an area of land (i.e., a pixel) will be in one of three possible land uses: crops (vineyards, orchards),
pasture (goats and sheep) or non-agricultural land. Agents perceive the landscape as a grid of
finite land units (i.e., pixels) on a seasonal basis (i.e., four time-steps per year). Pixels with
orthogonal neighbours owned by the same agent are considered to be pixel 'clusters' (i.e., farmers'
fields). The status of each agent (age, wealth, etc.) is monitored at each time-step (Figure 2).
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Figure 2. Procedure of the agent-based model of land-use decision-making. During each time-
step seasonal functions are executed; annual functions are executed every fourth time-step (i.e.,

four seasons are simulated per year).

Rationale for Farmer Types

3.2
It became clear during interviews with local farmers and farming officials that the representation of
actors as perfectly economically rational agents would not adequately represent all farmers in the



landscape. There is a clear distinction between: (i) commercial farms that operate in an
economically rational, profit-maximising manner, and (ii) those that operate on a part-time basis or
merely to maintain traditional agricultural practices and landscape aesthetics. One local vintner in
SPA 56 suggested:

"Whoever has a vineyard nowadays is like a gardener... they like to keep it, even if
they lose money. They maintain vineyards because they have done it all their life and
they like it, even having to pay for it. If owners were looking for profitability there
would be not a single vineyard... People here grow wine because of a matter of
feeling, love for the land..."

3.3
Thus, at least some land owners maintain their farm as a 'hobby' for cultural reasons with little
regard for its financial rewards. The economically-rational agent is not an appropriate
representation of these 'traditional' farmers. Furthermore, many farms across SPA 56 are run to
provide supplementary household income. For example, in one area a farmer stated that of the 80
livestock farmers in the area only 20 made their living solely from farming. The remainder make
their primary income from alternate sources (light industry or building services nearby) but still
keep some land and livestock active:

"Part-time workers? Yes, most of them... Here there are only retired people and their
children, who work somewhere else, and help their retired parents with the labouring.
There is no way to live on wine production."

3.4
This part-time work must be represented by the behaviour of agents of the model. In general, we
might say that these traditional and part-time farmers are less concerned with the economic state of
the market, and their activities will be relatively insensitive to changes in it. In contrast, those
farmers whose farm is their sole source of income treat their land as a commercial enterprise:

"There are some young farmers, 5 or 6 of whom are less than 25 years old, that are
making important investments. If someone wants to live from livestock farming, they
need to have an entrepreneurial vision, a business mentality, like in any company."

Such farmers will adopt those land-use and farming practices that maximise their income.
Different behaviours (i.e., model rules) are therefore required to characterise 'commercial' versus
'traditional' agents (Table 1). Attributes and decision-making rules common to both agent types are
now described (see Table 2 for list of all attributes and parameters). Subsequently, attributes and
rules unique to each agent type are discussed in detail.

Table 1: Comparison of attributes of 'traditional' and 'commercial' agents.
Attributes were derived after interviews with local actors within the study
area.

Attribute Traditional Agent Commercial Agent
Commitment 'Part-time' or 'Hobby' farmer 'Full-time' businessman
Age Any, greater than 19 years Maximum 65 years

(retirement age)
Land
Exchange

Will not exchange land Will buy/sell land to
achieve profit

Land Uses Maintains land in 'traditional' uses Whatever land use
maximises profit

Financial Profit is not primary determinant Aims to maximise profit



Attitude of behaviour

Table 2: Attributes and parameters considered in the model. Attributes and
parameters are presented for agents, pixels, farms, and those that are universal
within the model. Units CU are arbitrary 'Currency Units'.

Name Unit Range of
Values

Description

Agent
age Years 20 – 100 Agent's age
perspective - Commercial,

Traditional
Agent worldview, determining
behaviour

personal_choice - 0 – 1 Propensity of an agent to become a
'commercial' farmer

wealth CU 0 – ∞ Agent's total accumulated value
profit CU 0 – ∞ Farm profit for this season
max_bid CU 0 – ∞ Maximum bid an agent will offer

to buy a pixel of land
poor_profit CU 0 – Length

of model
replicate

Number of years that annual profit
has been below the poor_profit
threshold

est_profit CU -∞ – ∞ Agent's estimated profit for the
next year

ann_profit CU -∞ – ∞ Total farm profit for the current
year

mf_size Pixels 0 – Area of
landscape

Number of pixels agent can
manage before incurring farmCost
on additional pixels (age
dependent)

est_valueC CU -∞ – ∞ Estimated valueC for the next year
est_valueP CU -∞ – ∞ Estimated valueP for the next year
est_costC CU -∞ – ∞ Estimated costC for the next year
est_costP CU -∞ – ∞ Estimated costP for the next year
est_farmCost CU -∞ – ∞ Estimated farmCost for the next

year
prev_est_valueC CU -∞ – ∞ Estimated valueC for the last year
prev_est_valueP CU -∞ – ∞ Estimated valueP for the last year
prev_est_costC CU -∞ – ∞ Estimated costC for the last year
prev_est_costP CU -∞ – ∞ Estimated costP for the last year
prev_est_farmCost CU -∞ – ∞ Estimated farmCost for the last

year
Pixel
frag_value - 0 – 1 Fragmentation value indicating

relative size and proximity of pixel
to the rest of the farm

lcap - 0 – 2 Land capability measure, higher



values are more suitable for
agricultural uses

state - Crops,
Pasture,
Non-
Agricultural

Land use pixel is currently in

t_in_state Years 0 – Length
of model
replicate

Duration pixel has remain in its
current state

set_price CU 0 – 10 CU agent is willing to sell the
pixel for

road_dist Pixels 0 – lsp_max Distance to the nearest road
prop_farm - 0 – 1 Proportion of farm that the pixel

cluster (field) in which the pixel
lies composes

Farm
max_dist Pixels 0 – lsp_max Greatest distance between two

pixels owned by the same agent
Universal
propT - 0 – 1 Proportion of agents in the

landscape with a 'traditional'
perspective

propC - 0 – 1 Proportion of agents in the
landscape with a 'commercial'
perspective

valueC CU 0 – 10 CU accrued from one pixel of
crops for one season

valueP CU 0 – 10 CU accrued from one pixel of
pasture for one season

costC CU 0 – 10 Cost of maintaining one pixel of
crops for one season

costP CU 0 – 10 Cost of maintaining one pixel of
pasture for one season

farmCost CU 0 – 10 Cost incurred per pixel in farms
greater than max_farm_size or
mf_size

convC CU 0 – 1 Cost to convert a pixel from crops
to pasture

convP CU 0 – 1 Cost to convert a pixel from
pasture to crops

convNA CU 0 – 1 Cost to convert a pixel from non-
agricultural to pasture or crops

lsp_max Pixels Maximum distance possible across
the landscape

poor_years Years 0 – Length
of model
replicate

Number of years of profit less than
or equal to loss_resilience that an
agent will sustain before retiring

loss_resilience % 0 – 100 Profit threshold used to count
poor_years



current_market_price CU 0 – ∞ mean_tot_pixel_profit _ 40
max_farm_size Pixels 0 – Area of

the
landscape

Number of pixels agent can
manage before incurring farmCost
on additional pixels

mean_tot_pixel_profit CU -∞ – ∞ Mean pixel profit for the season
across all pixels owned by
commercial agents

Common Agent Attributes

3.5
Each agent owns a farm, composed of a number of pixels which may be in any one of three land-
uses in a single time-step. Agents have an explicit age (measured in years, one year is equal to
four time-steps). The probability that an agent dies in a given year is based upon human life-tables
that specify the probability of mortality of an individual given their age and country of residence
(HLTD 2002). A random uniform deviate in the interval [0,1] is generated and if less than the
probability specified for the agent's age, the agent is deemed to have died during this year. Upon
death there is a probability that an agent will have an heir to inherit the farm and continue its
maintenance; the calculation of this probability is dependent upon the type of agent (see below).

Commercial Agent Attributes

3.6
If a commercial agent dies there is an heir to inherit the farm when the following statement is true:

IF (U[0,1] < (propC + personal_choice)
) (S1)

where U[0,1] is a uniform random deviate in the interval [0,1], propC is the proportion of agents
in the landscape that are commercial, and personal_choice is a parameter added to ensure that
when there are no other commercial agents in the landscape there is still a chance that an heir will
want to continue the business. Thus, the personal_choice parameter accounts for the personal
choice of the heir and the parent's individual influence over the heir's attitudes (which are likely to
be just as, if not more, important than the proportion of the local community that has the
'commercial worldview'). This value may be positive (the heir is inclined to continue the business)
or negative (the heir is disinclined to continue the business). The probability of inheritance
considers the proportion of commercial agents in the landscape as this is likely to be an important
factor in determining whether an heir wants to continue their parent's business. If an heir inherits
the farm, a new personal_choice value is set as ±10% of their parent's. The heir's age is randomly
set to a value between 20 and 40, ensuring that the value is less than the dying agent's age minus
20 (assuming that farmers do not have children before the age of 20). However, if the agent is
younger than 40 it is assumed that either they do not have an heir, or if they do that the heir is not
old enough to assume the ownership of the farm. If there is no heir, ownership of all pixels is
released (i.e., enter an un-owned state) and the farm is assumed to be abandoned.

3.7
As an alternative to bequeathing the farm to an heir at death, commercial agents may chose to
retire. If the commercial agent has reached retirement age (65 years) a check is made to establish if
the agent has an heir in the same manner as above (S1). If there is no heir, the agent adopts the
traditional perspective. This transition is made because it is assumed that having farmed their land
for all of their life, a farmer is unlikely to want to simply give up their land for nothing (a
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sentiment that interviews suggested to be strong). Commercial agents' land-use decisions are based
on several factors related to profitability: market conditions, land-tenure fragmentation, transport
costs and land productivity. Crop and pasture yields are not represented explicitly in the model and
so real-world data for market conditions (i.e., profits and costs of production) are not used.
Furthermore, economic market fluctuations (i.e., responses of prices to supplies and demand) are
not modelled explicitly. Rather, hypothetical scenarios of crops and pasture 'values' and 'costs' (of
production) are used to simulate landscapes situated in buoyant, depressed or other economic
situations. Market values and costs, along with other parameters influencing agent behaviour, are
tuned to represent 'business as usual' (baseline) market conditions (Table 3).

Table 3: Parameters for 'business as usual' model configuration. These initial
conditions and parameter values specify the 'business as usual' (baseline)
scenario (see Table 2 for definition of parameters). Results from this
parameter set are used as the standard by which to evaluate the outcomes of
the model experiments we conducted.

Parameter Value
Agent Age Uniformly random deviate in the interval [20, 65]
Conversion Costs Non-Agricultural, 0.3; Pasture, 0.2, Crops, 0.1;
Land Use SPA 56 1999 land use (3 uses, 109 patches)
Loss Resilience -5%
Poor Years 5 years
Land Tenure SPA 56 2005 land tenure (519 agents, 1213 patches)
Market Values valueC = 5.0 valueP = 2.5, costC = 1.0, and costP=1.0
Personal Choice Uniformly random deviate in the interval [-0.5, 0.5]
Perspective Randomly assigned with equal probability

3.8
The spatial biophysical heterogeneity and land-tenure history of SPA 56 has resulted in a
fragmented agricultural landscape. A farm in which land parcels are spatially contiguous with
large land agglomeration will provide greater economies of scale than land owned by a agent that
is composed of smaller, fragmented and spatial distributed parcels of land. Thus, commercial
agents in the model consider land fragmentation when they calculate their estimated and actual
profit:

Fragmentation Value = 1 - ( prop_farm /
max_dist ) (1)

where prop_farm is the proportion of the total farm area composed by the pixel cluster (i.e., field)
in which the pixel under consideration lies, and max_dist is the maximum distance between the
pixel under consideration and another pixel owned (and in use) by the same agent. Thus, when
prop_farm is large and max_dist is small, the fragmentation value of the pixel is low. This index
penalises pixels in small clusters at great distances from other pixels owned by the agent. Distance
to the nearest road or track is considered as a proxy for incurred transport costs. Direct distance to
market is not considered as it is by von Thünen's model because there are multiple market locations
for our study area. The cost of distance to the nearest road for each pixel is normalised by the
maximum distance possible across the whole study area (giving a range for this value of
[1/max_dist] to 1).

3.9



Pixel productivity is represented by a land capability index (Romero-Calcerrada 2000), which
evaluates the potential of a pixel for agricultural uses by considering slope, soil type, erosion risk,
moisture availability and frost risk. Pixels with greater land capability values have greater yields
and are thus more profitable.

3.10
Considering these factors, commercial agents calculate profit and costs, at each time-step and for
each pixel, for the three possible land-uses as follows:

Crops profit = (valueC × lcap) - (2 ×
frag_value × costC ) - (road_dist /
lsp_max)

(2)

Pasture profit = (valueP × lcap) - costP -
(road_dist / lsp_max) ) (3)

Abandoned cost = 0.1 (4)

3.11
In crop land areas, the greatest profit is earned by pixels with a high land capability, low
fragmentation value, and low distance to the nearest road, when the value for crops is high and the
cost of production is low. Pasture profit is calculated in a similar manner to crops, the difference
being that the fragmentation value of the pixel is not considered. The rationale for this approach is
that land for grazing does not afford much advantage by being clustered in large patches. Small
areas of land may be used for grazing just as easily as large. However, the distance to the nearest
road or track is important, as this will facilitate movement of livestock between areas of pasture
and to the market. There is no immediate value provided by owning land in an abandoned state.
However, the costs of doing so are also minimal; all land is assumed to be owned rather than
rented, as is largely the case in SPA 56. As the land may become profitable in the future, and long
term planning or forecasting of the state of the market is not represented in the model, the cost per
abandoned pixel per season is minimal compared to the costs of active agricultural land-uses (i.e.,
non-abandoned pixels).

3.12
Profit is calculated annually for each pixel and summed across the commercial agent's entire farm.
If the total farmed area exceeds a 'maximum single farmer area' (max_farm_size), for each pixel
exceeding this area a further cost is subtracted from the total farm profit. This cost reflects the
infrastructure and labour required to farm an area greater than that possible by a single farmer with
no hired labour. This maximum area that can be maintained by a single farmer (and their family)
not employing hired labour is set, in accordance with values suggested by interviewees, at 40,000
m2 (0.04 km2, 44 pixels).

3.13
During each season commercial agents estimate the next season's profit based on the land they
currently own. Commercial agents' estimates of the values and costs for crops and pasture pixels
for that next season are based on the values and costs of the current and previous seasons and the
accuracy of the agents' estimates in the previous season. Each agent independently estimates the
value of crop land for the next season by:

Est_ValueC = valueC +
actual_value_diffcC + U[0,0.5] ×
(valueC - prev_est_valueC)

(5)

where actual_value_diffcC is the difference between the previous value of crops and the current
value of crops, prev_est_valueC is the previous estimated value of crops. This method ensures
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agents can estimate future prices reasonably well when values and costs change slowly, but
perform less well when changes are rapid.

3.14
If the land-use configuration of the land currently owned can be modified to improve profit, land-
use conversions are made. A hierarchy of land-uses restricts some land-use conversions. In this
hierarchy crop land is above pasture, which in turn is above abandoned land. An unlimited number
of pixel conversions down the hierarchy may be made in any one season. Only one conversion up
the hierarchy may be made in any one season. Conversion up the hierarchy (e.g., from abandoned
to crop land) requires both time and money, and thus the rate at which these changes can be made
is restricted in the model. Conversions down the hierarchy require considerably less resources and
are achieved by reducing maintenance levels.

3.15
At each year's end, commercial agents assess the profitability of their farms. If annual profit is
equal to, or less than, a specified proportion of their wealth (specified for all agents by the
loss_resilience parameter), the 'poor profit' year counter is increased by one. After a given number
of years of poor profit (specified by the poor_years parameter) a commercial agent becomes a
traditional agent when the following statement is true:

IF (U[0,1] < (propT + personal_choice)
OR age > 50) (S2)

3.16
The first element of the statement is similar to the check made when an agent dies or reaches
retirement age (S1). However, in this case the proportion of traditional agents in the local
neighbourhood is considered as this will be a prime determinant on whether the commercial agent
is susceptible to the 'traditional worldview' and wants to continue to farm, despite it not being their
primary income. The second statement checks the age of the agent. If the agent is 50 or older they
automatically become a traditional agent. This switch in perspective is based on the assumption
that a younger farmer will want to move onto another job because they still have 'time on their
side' to start a new career. If the farmer is older than 50, it is assumed that they will be less
inclined (or skilled) to endeavour to find a new full-time career and will therefore maintain the
farm as a supplementary income. If both statements are false, the farm is abandoned.

3.17
At the end of each year commercial agents can bid to buy abandoned pixels contiguous to pixels
they already own. All such abandoned pixels are examined to assess whether their ownership and
conversion would increase the agent's profit in the next season. The neighbouring abandoned pixel
that will increase profit most is then bid for. A 'conversion cost' is factored into the cost of
purchasing land. This conversion cost is a product of a conversion factor for the current land use
(Table 3) and the duration a pixel has been in its current state. The duration of time in current state
is used because it is an indicator of: (i) biomass levels of non-agricultural lands and (ii) how
'established' an area of land is from a historical agricultural land-use perspective. The maximum
bid an agent will offer is given by:

max_bid = 4 × pixel_profit × (65 – age) (6)

where pixel_profit is the estimated increased profit it will afford (multiplied by four seasons to
give profit for a year) and age is the age of agent. The second constant is included to account for
the age of the farmer, as this gives a rough guide to the number of years of profit the pixel (if
bought) will provide to the farmer until retirement. If the bid is larger than the asking price of the
current owner, ownership passes to the bidding agent and land-use is changed to the most
profitable state. The buying agent's wealth is decreased by the asking price (not the maximum bid),



and the seller's increased commensurately. If two agents bid for the same pixel, the highest bid
wins (assuming it is greater than the asking price) and the maximum bid is the value that changes
hands. The asking price of an agent is set as the current wealth of that agent divided by the total
number of pixels owned by that agent. If the pixel is abandoned but un-owned the asking price is
set to the 'current market price':

Current Market Price = 40 ×
mean_tot_pixel_profit (7)

where mean_tot_pixel_profit is the mean pixel profit for the season across all pixels owned by
commercial agents in the landscape. The constant gives an estimate of potential profit to be made
by that pixel (in the current market state) over the next decade (i.e., 40 time-steps). If a bid is not
as large as the asking price, ownership stays with the current owner and the pixel remains in the
abandoned state. Whatever the result of a bid, once all agents' bids have been considered, the next
season then begins.

Traditional Agent Attributes

3.18
Traditional agents follow similar rules to commercial agents regarding their succession following
death but: (i) are not assumed to retire, (ii) do not consider any profit-making activities, and (iii)
do not seek to buy land from neighbours. If a dying traditional agent is older than 40, the farm is
inherited by a new farmer as a commercial agent when the following is true:

IF (mean_tot_pixel_profit + propC - (age
/ 100)) > 0 (S3)

This statement assumes that the heir will be willing to become a commercial farmer when: (i) the
profit in the landscape is generally high, (ii) there are other commercial farmers in the landscape
(i.e., they see that others are finding it possible to make a living from their land), and (iii) their age
is low (and therefore they are assumed to be more willing to take a risk and 'give it a go'). Age is
scaled to the order of mean_tot_pixel_profit and propC.

3.19
If statement S3 is false then an heir may inherit the farm as a traditional agent. There is an heir to
inherit the farm when the following statement is true (similar to S1):

IF (U[0,1] < (propT + personal_choice)
) (S4)

3.20
The probability that a traditional agent has an heir is based on the proportion of traditional agents
in the neighbourhood (propT), not because this is the mechanism that dictates whether there is an
heir, but because this is likely to be an important factor in determining whether an heir wants to
continue in the footsteps of their parent. The personal_choice parameter reflects the heir's personal
attitude. Again, the heir's age is randomly set to a value between 20 and 40, ensuring that the value
is less than the dying agent's age minus 20. If both checks (S3 and S4) are false the farm is
abandoned.

3.21
Just as commercial agents consider a threshold area (max_farm_size) greater than which they must
pay for extra maintenance costs (for hiring labour etc.), traditional agents consider a maximum
farm size beyond which they cannot maintain the land. If total farm size is larger than this



maximum size, the appropriate number of pixels (with the lowest land capability values of pixels at
the edges of clusters in the farm) is abandoned. This maximum farm size decreases with age once
the agent reaches retirement age (65 years), representing their decreasing ability to maintain land
(despite potential help from relatives). This rate is given by:

mf_size = max_farm_size × exp((65 –
age)/wt)) (8)

where mf_size is the maximum farm size of the retired agent, age is the age of the agent in
question, and wt is a shape parameter (default value = 8, chosen in rough accordance with
interviewees' understanding). Thus, the area of land a farmer is able to maintain is assumed to
decrease exponentially with age after retirement.

Implementation

3.22
The ABM/LUCC was originally developed in NetLogo (Wilensky 2005) then recoded into C++
(both versions of the model are available online at
http://www.landscapemodelling.net/JASSS08.html). Although the NetLogo modelling environment
is very useful for developing agent-based models thanks to its simple syntax and visual output,
recoding in C++ reduced execution time considerably. We use the ABM/LUCC in this paper to
examine the effects of initial land-tenure and land-use composition and configuration on LUCC.
Subsequently, we use the land cover maps produced to examine wildfire risk. A subset of the
original SPA 56 study area data (Millington et al. 2007), containing 519 agents on a grid
measuring 101 × 101 pixels (i.e., 9.2 km2), is considered for these model analyses. The effects of
land use and land tenure are examined using random maps of the same dimensions. The
ABM/LUCC considers three land use types; crops, pasture and non-agricultural. We consider two
state variables to examine the model: (i) proportion of the land used for crops and (ii) proportion
of the land used for pasture. These are the two main state variables that agents make decisions
about. Measures of landscape pattern, including number of land use patches, mean patch area and
a landscape contagion index, are also examined. Anonymous land-tenure maps are from the
Ministerio de Hacienda (2005), Madrid. Agent attributes are generated randomly. Agents are
randomly assigned an age between 20 and 65, and perspective (traditional or commercial)
following a uniform random distribution. Agents are assigned a random wealth such that the
population wealth distribution follows a power-law (with exponent = -1.5).

3.23
To examine the effects of land-tenure and land-use configuration, maps with random land-use and
land-tenure configuration were generated using the modified random clusters method (Saura and
Martinez-Millan 2000). This method specifies a percolation probability parameter P to generate
landscape maps with clusters of pixels of varying (uniformly randomly distributed) size. As P
increases, the number of patches in the landscape decreases and mean and maximum patch size
increase. The probability that a cluster spanning the entire landscape is generated approaches a
value of one at the critical percolation threshold Pc ≈ 0.59 (Saura and Martinez-Millan 2000).
Random land-tenure maps were initially generated for P = 0.20, P = 0.40, P = 0.45, P = 0.50, P =
0.55, P = 0.60, and P = 0.80 (Figure 3), resulting in landscapes with numbers of agents and land-
tenure parcels as specified in Table 4. Random land use maps were generated using the random
clusters method to examine the influence of original land use configuration. Maps LU1, LU2 and
LU3 (with P = 0.2, P = 0.4 and P = 0.5 respectively) were generated with similar land use
proportions to SPA 56 land use in 1999. Although similar in land use composition, these random
initial maps are spatially dissimilar to observed SPA 56 land use. For maps generated with clusters
spanning the landscape (i.e., P > Pc), land use proportions comparable with original SPA 56 land
use are not possible. Maps LU4 and LU5 were generated with total landscape proportions of ≈0.62
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for pasture and crops respectively (with P = 0.6) and maps LU6 and LU7 were composed entirely
of pasture and crops respectively (landscape proportion = 1.0).

3.24
Wildfire risk is estimated for final land-use maps using the semi-quantitative method described by
Millington (2005). This approach considers factors governing both wildfire ignition (distance to
roads, vegetation type and solar insolation) and wildfire spread (spatial configuration of
vegetation, vegetation type, topography and human management treatments). Notably, the risk
model uses the contiguity landscape pattern metric (McGarigal et al. 2002) to account for the
impacts of spatial configuration on the percolation of fire through the landscape. Each variable is
assigned a risk score according to its relative influence on fire ignition and subsequent spread.
These scores are then weighted and summed to produce a wildfire risk score for each pixel in the
landscape. The risk scores indicate the risk of that pixel burning relative to other pixels in the
landscape, and also allow a comparison of risk between land cover maps of the same landscape.

Figure 3. Examples of random maps generated with varying percolation probability parameter P.
Clockwise from top left, maps are generated with P = 0.2, P = 0.4, P = 0.6 and P = 0.8. The two

colours represent two different (hypothetical) land covers.
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Table 4: Parameter values for ABM/LUCC testing. Parameter values were
chosen to span the parameter space of the model. This allowed us to examine
the range of possible model states and investigate important parameters and
input data.

Scenario Variable Distribution of Values
LU1 Land use P = 0.2 (SPA land-tenure, 509 LU patches)
LU2 Land use P = 0.4 (SPA land-tenure, 291 LU patches)
LU3 Land use P = 0.5 (SPA land-tenure, 198 LU patches)
LU4 Land use P = 0.6 (SPA land-tenure, 94 LU patches, predominantly

pasture)
LU5 Land use P = 0.6 (SPA land-tenure, 83 LU patches, predominantly

crops)
LU6 Land use P = 0.8 (SPA land-tenure, 1 pasture patch)
LU7 Land use P = 0.8 (SPA land-tenure, 1 crops patch)
LT1 Land

tenure
P = 0.20 (511 Agents, 2653 LT patches)

LT2 Land
tenure

P = 0.40 (478 Agents, 1297 LT patches)

LT3 Land
tenure

P = 0.45 (442 Agents, 1005 LT patches)

LT4 Land
tenure

P = 0.50 (404 Agents, 791 LT patches)

LT5 Land
tenure

P = 0.55 (313 Agents, 480 LT patches)

LT6 Land
tenure

P = 0.60 (224 Agents, 296 LT patches)

LT7 Land
tenure

P = 0.80 (19 Agents, 19 LT patches)

Results

Initial Land Tenure

4.1
Land-tenure configuration is an important determinant of land-use decision-making in the model.
Obvious differences in land-use abundance are evident across the range of possible land-tenure
structures (Figure 4). There is an inverse relationship between percolation parameter P and pasture
abundance (Figures 4 and 5). That is, as initial mean land-tenure parcel size increases, the
simulated proportion of land devoted to pasture decreases. Model replicates highlight a large
decrease in pasture abundance between random initial land-tenure maps with P = 0.55 and P =
0.60 (LT5 and LT6 respectively, Figure 4). This decrease is commensurate with P becoming
greater than Pc, and is related to the maximum farm size rule.



Figure 4. Landscape land-use proportions and mean land-use patch area for random land-tenure
maps. An inverse relationship between abundance of pasture (solid line) and mean patch area

(bars) is evident. Abundance of crops (dashed line) peaks for median mean patch area. Scenarios
are specified in Table 4



Figure 5. Land-use maps from land-tenure scenarios. a) LT1, b) LT2, c) LT6 and d) LT7 As
initial mean land-tenure parcel size increases, land area devoted to pasture decreases

commensurate with increases in non-agricultural land uses.

Table 5: Agricultural landscape structure characteristics for land-tenure maps. Also presented are
final agricultural land-use proportions for corresponding model replicates. Land-tenure maps with
p ≥ 0.60 result in landscapes with very low agricultural land-use due to the large size of patches
and farms

Initial Land Tenure Final Agricultural* Land Use
Scenario Agent Parcels¶ MPA‡ Small Farms† Landscape Proportion Number of Patches
Baseline 2.34 8.41 1.00 0.44 64



LT1 5.18 3.85 1.00 0.45 484
LT2 2.78 7.87 0.96 0.48 452
LT3 2.27 10.15 0.87 0.47 444
LT4 1.96 12.90 0.76 0.48 359
LT5 1.53 21.25 0.43 0.40 310
LT6 1.32 34.46 0.21 0.11 199
LT7 1.00 536.89 0.01 0.01 20

¶Mean number of parcels per agent
‡Mean parcel area (pixels)
†Farms with size < max_farm_size (as proportion of landscape)
*Crops plus pasture

4.2
Initial mean number of land-cover patches per agent and mean land-tenure parcel area are
comparable to the observed SPA land-tenure (in 2005) and to scenario LT2 (Table 5). The most
area in agricultural land-use after a 50-year model replicate is 48% of the landscape (scenario
LT2), while agricultural land-use accounted for 41% of SPA 56 in 1999 (and 44% after a 50-year
model replicate using original SPA 56 land-tenure, Table 5). However, the model produces land
use maps that are patchier relative to initial land-use and original SPA 56 maps (except for LT7,
Table 5).

Initial Land-Use

4.3
Land-use scenarios tend toward a similar final land-use configuration but differ in their land-use
compositions (Figure 6). Scenarios LU1, LU2 and LU3 differ least from results for the model
initiated with the original SPA 56 land-use map. By contrast, scenarios LU4 – LU7 are driven by
initial dominant land-uses and result in markedly different land-use compositions.



Figure 6. Land-use maps from land-use scenarios. a) Original SPA land-use, b) LU1, c) LU2, d)
LU5, e) LU7 and f) land capability. Key for land-use maps as in Figure 5. Simulated maps for

model replicates of land-use scenarios (b – e) converge toward a similar configuration, related to
land capability patterns (f). This land-use relationship is stronger between model maps than with

the empirical map (a)

4.4
Simulated land-use maps are more fragmented than their initial land-use configuration (except for
LU6 and LU7) and are characterised by more patches and lower contagion values (Table 6).
Contagion is a measure, from 0 (i.e., each pixel is a different patch type) to 100 (i.e., landscape is a
single patch) of the spatial aggregation of patch types in the landscape (McGarigal et al. 2002).
Thus, more patches and lower contagion indicates a more spatially fragmented ('patchy') landscape
than one with fewer patches and high contagion values. Simulated map configurations are similar
to the spatial configuration of land capability (Figure 6). Land capability values are significantly
different between land uses (Kruskal-Wallis tests for scenarios LU1 – LU7 all with p < 0.001). A
pixel-by-pixel comparison of simulated and initial land-use maps shows that resultant maps are
more similar to one another than to their initial configuration.

Table 6: Spatial metrics of land-use pattern for land-use scenarios. Spatial
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metrics examined are the number of patches (NP) and contagion (CONTAG).
Greater numbers of patches and smaller contagion values indicate a more
fragmented ('patchy') landscape. This is the case for simulation results
compared with initial land-use configuration in each case. Scenarios are
specified in Table 4

Initial Final
Scenario NP CONTAG NP CONTAG
Baseline 79 33.0 514 38.8

LU1 509 22.5 552 20.8
LU2 291 30.3 541 24.1
LU3 198 35.4 499 21.9
LU4 130 43.0 403 24.3
LU5 126 43.5 446 22.1
LU6 1 100.0 380 30.8
LU7 1 100.0 359 23.7

Consequences for Wildfire Risk

4.5
For all scenarios (except LU7), mean and standard deviations of wildfire risk for maps produced
by land-tenure and land-use scenarios are greater than observed SPA56 wildfire risk in 1999
(Table 7). Mean wildfire risk values are similar between scenario results, highlighting the
similarity of land-use configurations resulting from the scenarios simulated. However, there is a
marked difference in the locations of pixels with high and low risk of burning between land-tenure
and land-use scenarios (Figures 7 and 8).

Table 7: Estimated wildfire risk. Mean, standard deviation, minimum and
maximum values are reported for maps from each scenario and from the
original, observed landscape (SPA). Generally, mean risk is greater for
landscapes resulting from model scenarios. However, maximum values and
standard deviations are also greater, indicating that a few very high risk
locations are driving these increases

Wildfire Risk
Scenario Mean St. Dev. Min Max
SPA 108.2 31.2 31.6 203.8
LU1 121.5 44.4 20.0 240.3
LU2 118.1 42.6 16.0 234.4
LU3 119.6 43.4 20.0 238.4
LU4 118.4 42.1 23.3 234.6
LU5 128.6 43.3 18.1 242.6
LU6 158.7 36.1 16.9 248.5
LU7 172.7 21.9 44.3 252.4
LT1 108.3 42.7 15.0 228.6
LT2 120.6 43.6 22.1 239.3



LT3 120.5 43.3 20.0 238.4
LT4 115.9 41.9 20.0 240.3
LT5 115.7 42.7 20.0 239.8
LT6 113.4 43.9 20.0 240.4
LT7 83.9 27.7 20.0 192.4

Figure 7. Wildfire risk maps from land-tenure scenarios. a) LT1, b) LT2, c) LT6 and d) LT7.
Scenarios resulting in greater agricultural land use (a and b) produce different wildfire risk

patterns than those with lesser agricultural land use (c and d). Risk values are relative for each
map – darker colours indicate greater risk. The line of high-risk running roughly horizontally

across all maps is due to a road running through the landscape.

4.6
Simulated maps for land-tenure scenarios with lower values of P (Figures 7a and 7b) have greater
wildfire risk in the north of the study area relative to the central region (north of the road running
east to west as indicated by highest risk values). This spatial pattern is also the case for land-use
scenarios (Figures 8a and 8b). In contrast, wildfire risk for the original SPA land use map (Figure
8a) and simulated maps for land tenure scenarios LT6 and LT7 (with greatest value of P, Figures



7c and 7d) have greater risk in the central region than the northern. These differences highlight
that the context in which LUCC decisions are made has consequences for both the magnitude and
spatial distribution of wildfire risk.



Figure 8. Wildfire risk maps from land-use scenarios. a) Original SPA land use, b) LU1, c) LU2,
d) LU5 and e) LU7. Maps for b) to d) have similar spatial patterns, reflecting the convergence of
land-use scenarios to similar land-cover configurations (see Figure 6). Risk values are relative for
each map – darker colours indicate greater risk. The line of high-risk running roughly horizontally

across all maps is due to a road running through the landscape.

Discussion

5.1
The ABM/LUCC presented here synthesises knowledge from several sources, including
established formal agricultural location theory, other agent-based modelling projects, and the
knowledge of local actors within the study area. Given the current limited understanding of the
relationship between land-tenure and LUCC in the Mediterranean Basin, and in the face of limited
empirical data, the modelling undertaken here was heuristic in nature rather than predictive (as
others have suggested is currently most appropriate, Matthews and Selman 2006). Methods for
analysing heuristic models are less established than for explicitly predictive models but approaches
that rely less on formal predictive accuracy are emerging (Perry and Millington 2008).

5.2
Model results indicate that agricultural land-use decreases as initial mean land-tenure parcel size
increases (Figure 4). As the rules specified in the model favour crops on larger land-tenure parcels,
the observed decrease in pasture abundance might be expected to be due to the replacement of
pasture by crops. However, the proportion of the landscape used for crops peaks at an initial
random land-tenure landscape of P = 0.50 (Figure 4). For P ≤ 0.55 a dominance of pasture
indicates this land use is the most profitable for farmers. For P ≥ 0.60, land-tenure parcels are so
large that the maximum farm size rule becomes an influence on land-use decision-making. Thus,
fewer farmers farming a subset of larger farms results in decreased land-use (both pasture and crop
land-uses, Table 5 and Figure 5). Comparison of these land-tenure scenario results with the land-
tenure configuration of SPA 56 in 2005 indicates that the actual land-tenure configuration is near
that for which most land can feasibly be used (given model assumptions of traditional family
farms, little mechanisation etc.). The current land-tenure configuration of SPA 56 is very similar to
the initial land-tenure configuration of the model scenario resulting in the greatest area of
agricultural land use (LT2).

5.3
At the outset of this paper we discussed the potential importance of individual actor circumstances
and spatial heterogeneity on agricultural land-use decision-making. Our simulated landscapes
tended to converge toward similar landscape states, in terms of land-use configuration and
composition, regardless of initial land-tenure or land-use configuration. Particularly, we find
statistically significant differences between land-use land-capability values for model results, but
not for observed values. This suggests that land capability plays a more important role in land-use
decision-making in the model than is in evidence in SPA 56. These findings question the
importance of space and actor context in agricultural decision-making as it is represented in the
model. Identifying cases in which spatial pattern is critical for understanding LUCC decision-
making, versus those in which it is not, is likely to reveal important differences between landscape
function. In turn, these differences will result in different trajectories of change.

5.4
Further investigation into the relative importance of land capability versus spatial patterns of other
factors (such as land tenure) for LUCC in the SPA 56 landscape may be pursued by engaging local
stakeholders. Evaluating model structure and results by returning to consult with local stakeholders
that were interviewed initially (as described above), creating an iterative model development
process, has been advocated for agent-based modelling projects (Parker et al. 2003). Although this
process is unlikely to directly address the model output issues discussed above (i.e., patchiness of
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maps produced by the model, importance of land capability), it does offer a way to identify
potential model improvements that are not apparent from comparing model output with empirical
data. An initial stakeholder evaluation of the model presented in this paper found that stakeholders
generally accepted that the model structure was representative of decision-making processes and
that outputs matched anticipated future change reasonably well (Millington 2007). However,
shortcomings in model structure were highlighted, most importantly the lack of representation of
urban change and an over-emphasis on the spatial aspect of agricultural decision-making
(Millington 2007). Recently, Romero-Calcerrada et al. (2008) found that human access to the
landscape is an important predictor of wildfire ignition. This finding reiterates the importance of
representing urban change in the model, particularly if the model is to be used to examine impacts
of human-driven landscape change on wildfire regimes.

5.5
We used our ABM/LUCC to examine the potential impacts of various scenarios of initial
landscape land-use and land-tenure configuration on wildfire risk. Mean wildfire risk for simulated
land-use maps was generally greater than for the SPA 56 landscape observed in 1999. This result
seems counter-intuitive given that the proportion of agricultural land-use increased for many
scenarios (Table 5), as did land-cover fragmentation (Table 6). This is counter-intuitive because
the scoring and weighting used in the wildfire risk calculations (Millington 2005) assumes
increased patchiness of less flammable land covers would result in decreased wildfire spread and
ignition, and therefore decreased wildfire risk. However, the greater mean values observed for
simulated maps are driven by greater maximum risk values of individual pixels in the simulated
landscapes, as reflected by greater standard deviations. Furthermore, the spatial distribution of risk
varies between simulation results according to agricultural land area. For scenarios that result in
greater agricultural land use than observed in the original SPA 56 landscape (i.e., LT 1 – LT4),
wildfire risk is greater in the north of the study area compared with the central region (Figure 7).
In contrast, for scenarios which result in decreased agricultural land-use (i.e., LT5 – LT7) risk is
greater through the central region – a pattern similar to that observed for the original SPA 56 land-
use map (Figures 7 and 8). These unexpected variations in spatial wildfire risk distribution
highlight the advantages of using a spatially-explicit ABM/LUCC. Understanding spatial variation
in wildfire risk due to human activity will be a vital consideration for wildfire managers in the
region (Romero-Calcerrada et al. 2008). This will be important, for example, when strategically
allocating wildfire fighting and mitigation resources at high-risk locations in the future.

5.6
Notwithstanding the convergence of simulated landscapes to similar land-use states, our results
highlight the role of spatially-explicit models in understanding the potential consequences of
LUCC. These consequences may be changes in the wildfire regime, as in this particular
investigation, but may also be any one of a number of landscape ecological processes such as soil
erosion or changes in endangered species habitat, both of which are issues in Mediterranean
landscapes. Furthermore, the wildfire risk modelling undertaken here was static, in the sense that
feedbacks in time between LUCC and wildfire occurrence were not considered. It may be the case
that when other processes (such as wildfire) are incorporated dynamically into the simulated LUCC
decision-making process, the spatial aspects of decision-making become much more important.

5.7
The work presented here is part of a wider modelling effort to explore the relationships between
LUCC and wildfire regimes in central Spain (Romero-Calcerrada and Perry 2004; Millington
2005; Millington 2007; Millington et al. 2007; Romero-Calcerrada et al. 2008). When linked with
a cellular-automata model of ecological succession and wildfire this ABM/LUCC will comprise an
integrated socio-ecological simulation model of SPA 56 (Millington 2007). The integrated model
will include the consideration of ignition as a result of human activity, and factors controlling
wildfire spread such as slope and wildfire management treatments (e.g., fire breaks). Integrating
the two types of model in this manner provides the opportunity to examine the fine scale

http://jasss.soc.surrey.ac.uk/11/4/4.html#romero-calcerrada2008
http://jasss.soc.surrey.ac.uk/11/4/4.html#millington2007
http://jasss.soc.surrey.ac.uk/11/4/4.html#millington2007
http://jasss.soc.surrey.ac.uk/11/4/4.html#romero-calcerrada2008
http://jasss.soc.surrey.ac.uk/11/4/4.html#millington2005
http://jasss.soc.surrey.ac.uk/11/4/4.html#romero-calcerrada2008
http://jasss.soc.surrey.ac.uk/11/4/4.html#millington2005
http://jasss.soc.surrey.ac.uk/11/4/4.html#millington2007
http://jasss.soc.surrey.ac.uk/11/4/4.html#romero-calcerrada2004
http://jasss.soc.surrey.ac.uk/11/4/4.html#millington2007
http://jasss.soc.surrey.ac.uk/11/4/4.html#millingtonetal2007


mechanisms and interactions between human activity and wildfire regimes. If developed
appropriately, the use of integrated models of this type will overcome the drawbacks of using
static scenarios of human behaviour and allow a richer interpretation of human-landscape
interactions (Wainwright 2008).
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