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Abstract

In this work we propose a new model for spatial games. We present a definition of mobility in
terms of the satisfaction an agent has with its spatial location. Agents compete for space
through a non-cooperative game by using mixed strategies. We are particularly interested in
studyig the relation between Nash equilibrium and the winner strategy of a given model with
mobility, and how the mobility can affect the results. The experiments show that mobility is
an important variable concerning spatial games. When we change parameters that affect
mobility, it may lead to the success of strategies away from Nash equilibrium.
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 Introduction

1.1
Over the last years, the role of spatial self-structuring in the study of games has drawn a lot
of attention. Particularly, games with spatially explicit factors have proven to be useful for
modelling biological and economic environments (Nowak and Sigmund 2000). The purpose of
such games is to assess the effects that spatial structures have on adaptation strategies of
agents, mainly in the study of the evolution of altruistic behaviour. Adding a spatial
component to the models (usually in the form of grids) often displays different features from
models with well-mixed populations. For example, the evolution of interspecific mutualism
cannot be explained by an unstructured population through the iterated continuous Prisoner's
Dilemma (Scheuring 2005).

1.2
Most of the games on grids use a straightforward extension of non-spatial games, with each
cell containing a single agent that interacts with its neighbourhood. If the agents interact only
with fixed neighbours, there will be no need to recognize and remember the opponents
(Nowak et al. 1995). This arrangement allows the same game to be repeated, and the results
influence how the agents populate the cellular space. As an example, Nowak and May study
the spatial Prisoner's Dilemma, in which a cell is given to the strategy with highest payoff in
the neighbourhood, if it is greater than the current payoff (Nowak and May 1992).

1.3
A spatial arrangement may lead to different results because it changes the way with which
agents interact, from well-mixed confronts to local competitions. But there is a second
characteristic of space that may affect the development of spatial models: the mobility.
Agents can move in the space, changing their spatial locations and making the local relations
dynamical.

1.4
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The literature of spatial models presents two definitions of mobility. First, analytical models
using replicator-diffusion equations often call mobility the spread of a strategy in the space
(Ferrière and Michod 2000). The second definition works with the mobility of an individual
agent, which can move to an empty neighbour cell. Examples of such models can be found in
studies of cooperation (le Galliard 2003 et al.; Epstein 1997), linguistics (Kosmidis et al.
2005), and evolution of cancer (Mansury et al. 2006).

1.5
In all works that involve numerical simulation, the mobility of an agent is an automated
action, which always depends on a social opportunity as, for instance, an old neighbour has
left an empty cell. Moreover, that happens even if the current spatial location is favourable to
the agent. However, instead of moving to the neighbour cell as soon as possible, a "rational"
agent would ask: why should I move if I am getting good results? That is a common strategy
adopted in spatial models which do not use games, such as in Zhang (2004) and Beltran et al.
(2006). In these works, the agent compares the current satisfaction with the satisfaction in the
new spatial location, moving when its satisfaction increases with the change.

1.6
In this work, we explore the question of mobility within the context of non-cooperative
games, more precisely using the chicken game. We propose a new spatial model by defining
mobility in terms of the satisfaction of an agent with its current spatial location. Agents use
mixed strategies to compete, and decide to move according to their payoffs. An agent does
not depend on a social opportunity for leaving its spatial location: it can move to a new spatial
location even if it is already populated with other agents. Agents have complete freedom to
move; there is no cost or constraint to do so. In this framework, instead of competing with
their neighbours, the agents compete with each other within the same cell.

1.7
Contrary to what happens in the literature of spatial games, in this work we have a clear
separation between the concepts of cell and agent. There are many real world situations
where it is useful to consider agents moving from one cell to another. Such cases are
common in geographical space, where a cell is usually a container that has properties which
might be different from its neighbours. Take the case of land use change models. Land use
change cells differ not only in their locations, but also in properties such as topography, water
availability, and temperature. In these and similar cases, a cell can contain a small community
of agents. Agents interact with their community (inside the cell) and if dissatisfied, they will
try to find a more friendly community elsewhere in space. Combining interaction within cells
and movement between cells allows new insights when modelling games in space.

1.8
We are particularly interested to study the relation between the Nash equilibrium and the
winner strategy of a given spatial model with mobility, and how the definition of mobility can
affect the results. In a nutshell, we try to answer the following questions: is Nash equilibrium
the best strategy in a competition for space where the agents can move according to the
results of the games? If not, in which cases, and how can it help to define the best strategy?
Also, how does the proposed definition of mobility possibly affect the results?

 Related Works

Non-cooperative Games and Nash Equilibrium

2.1
A non-cooperative game is an n-person game where the actions of each player are
independent, without any collaboration or communication with the other players. In an n-
person game we have, for each player:

1. a finite set of pure strategies (actions);
2. a payoff function, that maps all n-tuples with the individual pure strategies to real

numbers.

2.2
One mixed strategy is a collection of non-negative numbers adding up to 1, corresponding to
probabilities of using each of the pure strategies. The mixed strategy defines the tendencies
of a player. Each time it plays, it will choose randomly one of its pure strategies, based on the
probabilities defined by the mixed strategy.

2.3
For example, let us take the chicken game. Two players have the choice to escalate ( E) or not
to escalate ( ∼E) a brawl. If none of them escalates, nothing happens. If only one escalates, the
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to escalate ( ∼E) a brawl. If none of them escalates, nothing happens. If only one escalates, the
other player runs away, and the winner receives 1 from the coward player. But, if both decide
to escalate, each player pays 10 due to medical care. This game is said to be symmetric,
because both players employ the same pure strategies and payoffs, as shown in Table 1.
Given that this game has only two pure strategies, we denote by sx, 0 ≤ x ≤ 1, the mixed
strategy of escalating with probability x.

Table 1: Game payoffs, in pairs (A, B)

B escalates B does not escalate
A escalates (-10, -10) (+1, -1)
A does not escalate (-1, +1) (0, 0)

2.4
Nash proved that, given any non-cooperative game of n players, there is always an
equilibrium point. This point is a set of mixed strategies for each player that, if a player
individually changes its mixed strategy, the best result it may get will be the same as in the
equilibrium (Nash 1951). No player has incentive to deviate one-sidedly from its strategy as
long as the other players remain in the equilibrium. This is known as the Nash equilibrium.

2.5
For example, let A and B be two players of the chicken game, with strategies sa and sb,
respectively. The expected payoff of player A is -10sasb + sa - sb. If A knew exactly the
value of sb, it would be possible to calculate the best action for it. If sb is greater than 10%,
the best choice for A is never to shoot (sa = 0), implying in a payoff of -sb. If sb is less than
10%, A should always shoot (sa = 1), because its payoff would be 1-11sb. But, if sb is exactly
10%, all strategies for A lead to the same payoff (-0.1). Therefore, if sa is also fixed at 10%,
no other strategy could augment its payoff against A by changing its own mixed strategy.
Applying the same reasoning for B, we arrive to the conclusion that when both players follow
s0.1 the game is at Nash equilibrium.

2.6
But this idea of equilibrium may cause controversy in some games. Most game theorists agree
on s0.1 as the rational solution for this game, but the argument is somewhat tenuous
(Sigmund 1993). In the chicken game, although deviating from the equilibrium does not
increase the utility of the player, it does not decrease as well, as long as the other player stays
in the equilibrium. Therefore, it is not a strict equilibrium.

2.7
A clear explanation can be found when it is played not only by two players, but within a
population. Maynard Smith viewed this game in a population-dynamical setting (Maynard
Smith 1982). In his model, a large number of players meet randomly in contests where they
have to decide whether to escalate or not. If the estimated overall probability is greater than
0.1, it is better not to escalate. If it is less than 0.1, it is better to escalate. But if it is exactly
0.1, then there is no better strategy than s0.1. In this sense, self-regulation leads to s0.1 -
self-regulation not between two players, but within a population. Nash has also proposed a
similar interpretation for the equilibrium points, the mass-action (Nash 1950), which was
forgotten for decades in his unpublished thesis. In this work, we will study how this non-
strict equilibrium behaves in a spatial context with the agents' mobility based on the results
of the games.

Spatial Games

2.8
Recently, new models with different neighbourhood topologies have been proposed to study
games in the space. The proposals include variations of grids, graphs, and some in between
structures (Biely et al.2007; Cassar 2007; Duran and Mulet 2005; Soares and Martinez 2006;
Vainstein and Arenzon 2001; Vukov and Szabò 2005; Wu et al. 2006). Ohtsuki and Nowak
(2006) have shown that, in the limit of weak selection, models with different topologies can
be described only by changing the payoff matrix . Although these models have different
topologies, agents have the same characteristics: they are fixed in the space, have only a pure
strategy, play with neighbours, and may spread their strategies to the neighbourhood
according to the result of the games.

2.9
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Commonly, the result of the game is only used for defining a new spatial arrangement, but it
by itself does not have a future effect in the model. Feldman and Nagel (1993) propose a
model where cells are not updated by a new strategy at the end of the turn. Instead, each cell
must pay a fee each turn to stay in the model, and a neighbour strategy will replace it only if
its savings end. Epstein (1997) studies the evolution of cooperation in a model where agents
may be removed from the model if they reach zero or less wealth, since the payoff matrix has
negative entries.

2.10
Beltran and others (2006) propose a model where agents move in a lattice trying to minimize
their dissatisfaction. The satisfaction is a function of the difference between the real distances
it keeps from the other agents and the ideal distances it wants to keep from them. Zhang
(2004) studies a segregation model, where agents may exchange their spatial locations
according to a definition of satisfiability. In both models, only one agent can be within a cell
in each time step.

 The proposed model

3.1
The model takes place in a cellular space. A cellular space is an environment with cells
connected by neighbourhood relations. The simplest example of a cellular space is a grid,
with square cells having four touching neighbours. The objective of using the term cellular
space instead of graph is to distinguish the meaning of a neighbourhood: instead of
connecting individuals, as in typical spatial games, a cellular space simply connects cells,
defining a spatial proximity relation.

3.2
The cellular space is always populated with individuals called agents. Each agent belongs to a
single cell, which has enough space for it to live. Initially, each cell contains a set of agents,
which have to compete for the space through a non-cooperative game. Whenever an agent is
playing a non-cooperative game, we call it a player, but one agent has other characteristics
besides those of players in the sense of a non-cooperative game (pure and mixed strategies),
as it will be seen below.

3.3
The basic assumption of our model is that when an agent arrives at a cell (as well as in the
beginning of the model), it is satisfied with its cell, and thus no agent will move unless it is
dissatisfied. Two agents within the same cell may play a non-cooperative game competing
for it, and the result of each game affects directly their individual satisfaction with the current
cell. This is the only memory an agent has, and it is called local satisfaction. The local
satisfaction starts with a positive value when an agent arrives at a cell. Whenever it reaches
zero or less, the agent randomly picks a neighbour cell and moves to it, looking for a better
cell to compete for. Given that, the movement of agents in a cellular space can be
characterized as a random walk.

3.4
Each agent also has a global satisfaction, starting with a positive value significantly greater
than the local satisfaction. As the local satisfaction, it is affected by the payoffs of the games.
All agents have the same global satisfaction at the beginning of the model. An agent that got
dissatisfied many times and its global satisfaction reaches zero or less leaves the model. In
the models we propose in this work, the global satisfaction does not affect the agents's
behaviour.

3.5
To create a metric for measuring satisfaction, we say the satisfaction of an agent is measured
by its capital. Local satisfaction represents the limit of capital one can dispend for a cell.
Global satisfaction corresponds to the initial capital assigned to an agent, thus it leaves the
model when its money ends.

3.6
Agents differ in one characteristic: the mixed strategy. We divide the agents in groups of
equal size. Two agents within a group share the mixed strategy, but they cannot
communicate nor identify each other. Although the agents compete individually, they
represent a strategy that is going to be studied in a spatial context. To represent the fittest
agents along the model execution, the agent with higher global satisfaction in a cell will be its
owner, because, at least at first sight, it has more chance of surviving than any other in that
cell. If two agents have the same amount of money in a given cell, the agent that stands there
for a longer time is its owner. In the first turn of the model, we divide the owners equally
among each group.
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among each group.

3.7
The model has a finite number of turns, each one with two steps. The first step sets up and
carries out the games. Supposing the game has two players, we randomly choose pairs of
agents in each cell, and then carry out the game with each pair. Cells with an odd number of
agents have one random idle agent, and no agent will play more than once in each turn. The
same logic can be applied to games with more than two players.

3.8
The second step defines the dynamical part of the model. Once each agent already knows its
payoff, it updates its local and global satisfactions with the payoff. Then, it checks if any
satisfaction has reached zero or less to perform a movement or leave the model. The model
runs until it reaches a stable state, which happens when there is at most one agent in each
cell, or when their satisfaction stops to decrease. Whenever the model arrives at one of these
situations, we say that it is at equilibrium.

3.9
There are two differences between the general model proposed here and the ones proposed
in the literature. First, and most importantly, the model separates agents from space. The
agents compete for space but they are not equivalent to the space itself. Neighbourhood
relations point to where an agent can go, trying to find a better cell to fight for. Second, an
agent plays with a random opponent inside the same cell and, as agents can move, the
chance of two agents meet more than once can be very small. Given that, we only allow mixed
strategies, and no meta-strategies such as Tit-For-Tat (Axelrod 1980) or Pavlov (Nowak and
Sigmund 1993), because this model is not a repeated game.

3.10
A model of games on cellular space can be formalized as a 9-tuple: M = ( C, n, S, p, A, s, k,
g, l), where

C is the cellular space in which the games take place,
n is the number of players involved in the non-cooperative game,
S is the set of actions (pure strategies) each player can take,
p: X → ℜ, X ={( x1, …, xn)| xi ∈ S }, is the payoff function,
A is the set of groups of agents,
s: A x S → [0,1], ∀ sa ∈Α, Σ b ∈ S s ( sa, b) = 1, represents the mixed strategies,
k ∈ Ν, is initial number of agents of each given group,
g ∈ ℜ, is the global satisfaction threshold,
l ∈ ℜ, is the local satisfaction threshold.

Therefore, given sx, we have s ( sx, E) = x and s ( sx,∼E) = 1 - x. An agent using a mixed
strategy commits to a randomization device. Each time the agent plays, it chooses a pure
strategy based on the probabilities specified by the mixed strategy.

3.11
As an example of model, the following denotes the traditional chicken game: Mc = ( Cc, 2, { E,
∼E }, u, { sa, sb }, s, 1, ∞, ∞). The cellular space Cc has a single cell containing two agents,
each one coming from a different group, one from sa and the other from sb. They have the
same set of possible actions, "escalate" and "not escalate," and the same payoff matrix u
(shown in Table 1), but they do not have to follow the same mixed strategy. Both agents
always stay in the only cell and never leave the model.

3.12
In this work, we are particularly interested in applying the chicken game within this general
model. The expected payoff of this game is almost always negative, only in the case where
both players never escalate the expected payoff is 0. Therefore this game fits in with the
requirement of reducing their satisfaction to make them move. C is always a squared grid with
20 x 20 cells, such that the possible movements of an individual are at most to four
neighbours (up, down, left and right). Cells on the edges have only three alternatives for
movement, and cells on the corner have only two.

 A first experiment

4.1
As first experiment, we divide the agents equally in the following three groups:

1. Always use the pure strategy seemingly more profitable, escalate, because it is the only
way to earn something, and the opponent will have a payoff at most as bad as its;
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2. Choose randomly a pure strategy in each game (escalate with chance of 50%);
3. Follow Nash equilibrium, escalating with chance equal to 10%.

4.2
Initially, there are three agents of each strategy competing in each cell, summing-up nine
agents by cell. Each agent starts the model with $200 and, inferring that loosing $10 twice
without earning any money is enough to turn an agent dissatisfied, we chose $20 to be the
local satisfaction. Therefore we have M 0 = (C, 2, { E, ∼E }, u, { s0.1, s0.5, s1.0}, s, 1200, 200,
20), where s 0.1 follows Nash equilibrium, s 0.5 plays by using a coin toss, and s 1.0 always
escalates.

4.3
This model is stochastic, and we are interested in the convergence more than in showing
numerical results. Clearly, M 0 always converges to the state where there is at most one agent
in each cell, but when we say convergence, we aim at verifying whether the results obtained
by each strategy in the simulations are similar.

4.4
We run the model 50 times to verify convergence and, although there are three stochastic
components in the model (movement, escalating, and confronts), the simulation results have
a low standard deviation. Also because of randomness, the simulations have different number
of turns until they end.

4.5
Figure 1 shows the results of one realization, and Figure 2 shows the spatial distribution of
the owners along a simulation. Clearly, the number of agents and the total amount of money
of each group decrease along the simulation, and the more ambitious a strategy is, the
sharper is the fall of the money and the number of agents following that strategy. Figure 1(c)
also shows the mean value and the standard deviation of the experiments, plotted as arrows
on the right side. There are some empty cells at the end of the simulation, which happens
because, when there are only two agents in a cell, both might escalate, lose $10, reach the
threshold, and decide to leave the cell.

Figure 1a. Results of the first experiment: a) Number of agents



Figure 1b. Results of the first experiment: b) Money by groups

Figure 1c. Results of the first experiment: c) Owners by groups

Figure 1d. Results of the first experiment: d) Owners in the first 15 turns



Figure 2. Example of a run of the first experiment

4.6
The results show that the group following equilibrium has achieved most of the cells, despite
the early misfortune shown in Figure 1(d). There are, nevertheless, some agents of other
strategies at the end of the model. Equilibrium agents got the best results at the end, but they
did not reached the majority by their own victories, it was indeed because the other strategies
have lost their money faster. It is possible to see clearly that more aggressive agents destroy
themselves rapidly and, therefore, following equilibrium yields a better chance of surviving.
But, when there are a few aggressive agents in the model, they can avoid themselves and
conquer some cells, justifying the growing number of cells conquered by s 0.5 at the end of
the simulation. As the non-equilibrium strategies lose money faster than equilibrium ones,
the initial money has a clear impact on the model, and agents following the equilibrium get
more advantage of its increase. Simulations with higher values of initial money have shown
that the difference between the number of cells of s 0.1 and s 0.5 becomes even larger.

4.7
Figure 3 shows the number of agents of each strategy that move during the first 150 turns of
the model. More aggressive agents reach the threshold more frequently, until they start to
leave the model. After the 30 th turn, the number of movements decreases until the model
stabilizes.

Figure 3. Movements of each group in the first 150 turns



 Model variations

5.1
In M 0, Nash equilibrium is the best strategy for the competition against the other two chosen
strategies. This section describes three other experiments, in order to verify whether the
equilibrium strategy fares better also in other arrangements. In the first variation, we assign
an infinite amount of money to each agent. In the second one, an extra amount of money is
assigned to both agents after they play a game. We analyse how the model behaves when
money is less constrained in both experiments. In the last experiment, we use eleven
strategies instead of only three.

Infinite amount of money

5.2
The initial amount of money can be large enough to keep all the agents alive until the end of
the simulation. With it, the model will never converge to a stable state, because the agents will
move indefinitely. We have the following model: Minf = (C, 2, { E, ∼E }, u, { s 0.1, s 0.5, s 1.0}, s,
1200, ∞, 20). As we can see in Figure 4(a), this model has a continuous repetition of the
instability previously shown in the first 30 steps of Figure 3. This instability is favourable to s
0.1, which owns more than 85% of the cells, from the 30 th turn until the end of the
simulation, as we can see in Figure 4(b). The Figure also shows the mean and standard
deviation of each strategy.

Figure 4a. Model with infinite Money: a) Movements of each group



Figure 4b. Model with infinite Money: b) Owners by groups

5.3
Supposing a non-spatial environment, with agents meeting each other with equal probability,
we can calculate the expected payoff of each strategy, deduce the number of movements, and
compare it with the mean number of movements of the simulation. The expected payoff of an
agent is the mean expected payoff against each group. The number of turns necessary for an
agent of a given group to reach the threshold for moving is straight from this value, since the
local satisfaction is $20. Then, as there are 1200 agents of each group, the mean number of
agents that would move each turn can be calculated. Table 2 shows these values, and in the
lower part there is the difference between the expected movements in a non-spatial model
and the mean value of the movements in the experiments with infinite money. Clearly this
value is less than in a non-spatial environment because each cell with an odd number of
agents has one idle agent. Agents in space also reduce the expectations of a non-spatial
environment because an agent that leaves a cell may find itself in a new one that happens to
be more convenient. But this reduction is not equal for each strategy: the more an agent
escalates, it can realize an unfavourable arrangement earlier, leaving the cell faster than the
other strategies. It justifies why the decrease is proportional to the probability of escalating.

Table 2: Impact of the escalating probability in the movement

s0.1 s0.5 s1.0
Against s0.1 -0.10 -0.10 -0.10
Against s0.5 -0.90 -2.50 -4.50
Against s1.0 -1.90 -5.50 -10.00
Mean -0.97 -2.70 -4.87
Turns before an agent moves 20.61 7.40 4.10
Expected movements by turn 58.22 162.16 292.68
Movements with infinite money 47.25 123.20 196.13
Difference 10.97 38.96 96.55
Decrease (%) 18.84 24.02 32.98

Extra gain

5.4
The second variation still concerns the reduction of the number of agents along the model.
But instead of increasing the initial amount of money, as in Minf, we give an extra gain of
capital to both agents at the end of each game, with the objective of keeping them alive. We
describe a model with extra gain k as: M gk = (C, 2, { E, ∼E }, u + k, { s 0.1, s 0.5, s 1.0}, s,
1200, 200, 20). As we increase all the payoffs by a constant value, the expected payoff of
each agent also increases with this value, and thus the equilibrium point does not change
(Nash 1950). We explore six models with different values of extra gain to verify how it affects
the results. They are: M g +0.1, M g +0.2, M g +0.4, M g +0.8, M g +1.6, and M g +3.2.

5.5
Figure 5 shows the number of agents in the six models at the end of the 3000th turn. After
that, the models have only some minor changes. The total number of agents that survive rises
with the extra gain, but agents with a higher escalating probability have a lower tax of
increase. Note that, contrary to the variation of infinite money, some agents are still being
removed from the model, as they reach the global threshold.



Figure 5. Agents of each group in the model with extra gain after turn 3000

5.6
As the extra gain increases, agents that escalate less often stop reaching the threshold for
moving and start to stand still, because they gain more money than lose. Figure 6 shows the
owners in the six models. The first strategy to lose mobility is s 0.1. Because of it, from gain
M g +0.2 until M g +0.8, it loses the majority to s 0.5. After the gain +0.4, s 0.5 also starts to
lose mobility, then cells, and finally in the model M g +1.6, it already has lost most of the cells
again to s 0.1. A bigger increase of extra gain does not lead s 1.0 to reach the majority,
because its agents have a major disadvantage of self-destruction. With higher extra gain, the
model becomes a set of local competitions without mobility, and therefore Nash equilibrium
is the best strategy. Using the results we can infer that Nash equilibrium is the best strategy in
the models without mobility, but there is an interval of extra gain that can affect the agents's
mobility, allowing other strategies to surpass Nash equilibrium. It happens because the Nash
equilibrium of this game is not strict. If there is only an agent of s 0.5 or s 1.0 within a cell of
only s 0.1 agents, then it can exploit the other agents, not by increasing its own payoff, but
indeed by reducing the expected payoff of its opponents.



Figure 6. Owners by group with six values of extra gain

Eleven strategies

5.7
The third variation of the model explores a richer arrangement, trying to find out the best
strategy for the first model. This model has agents following eleven distinct mixed strategies:
s 0.0, s 0.1, …, s 1.0. The other parameters are the same as in M 0. Therefore we have the
following model: M 11 = (C, 2, { E, ∼E }, u, { s 0.0, s 0.1, …, s 1.0}, s, 1200, 200, 20).

5.8
Figure 7 depicts the result of one experiment. In Figure 7(a) we can see that all strategies start
with a similar number of cells, but quickly the ownership changes. In Figure 7(b) we can see
that successful strategies in the first turns do not necessarily end the model with a high
number of cells, as also shown in M 0. Some strategies are noteworthy. Agents that never
escalate ( s 0.0) quickly own half the number of cells, shown in the peak of Figure 7(b).
However, as the model evolves, they lose most of them and, when the model finishes, they
place at the 7 th position. Equilibrium agents are quite successful, but they finish the model in
the third position. The second place belongs to s 0.3, and the strategy that achieves the best
result is s 0.2.



Figure 7a. Results of a single run with eleven strategies: a) Owners in the first 15 turns

Figure 7b. Results of a single run with eleven strategies: b) Owners along the simulation

5.9
Figure 8 summarizes the cells each group owns. The red line points out the maximum
number of cells each group has achieved among all turns of all simulations. The blue line
shows the cells owned by each strategy at the end of the simulations, with mean and standard
deviation. The strategy s 0.0 has reached a maximum of 366 cells, and this value was omitted
to give more emphasis to the other strategies. Note that the final ownership is similar to a
gamma distribution. Also, there is no conflict in identifying the place of each group using the
standard deviation as error, unless for groups from s 0.7 to s 1.0, which have achieved almost
no cells.



Figure 8. Summary of the eleven strategies at the end of the simulations

5.10
We can roughly divide the simulation in three stages. In the first stage, from the 1 st to the 5
th turn, the aggressive strategies ( s 0.5 to s 1.0) dominate the model and share the majority
due to their initiative. The second stage emerges rapidly because they destroy themselves,
making the purely cooperative strategy ( s 0.0) arise until it reaches the majority around turn
20. Finally, in the third stage, when most of the aggressive agents have already left the
model, the more successful strategies slowly but ceaselessly conquer the cells dominated by s
0.0 agents. But, in the end, some cooperative agents still remain. They can only survive due to
the possibility of having empty cells, as described in the results of M 0. The behaviour of such
an agent consists in waiting until the simulation ends or someone forces it to leave the cell.
Although this strategy can be considered naïve, the results show that this cooperative
behaviour is nevertheless better than all the four more defective strategies ( s 0.7 to s 1.0),
and it almost draws with s 0.6.

5.11
The individual development of each strategy in all simulations is shown in Figure 9. The
groups from s 0.8 to s 1.0 have a development similar to s 0.7. We can see that each strategy
has similar results in all simulations. In the right part of each graphic, there is a vertical arrow
showing the maximum and minimum number of agents of each strategy at the end of the
simulations. Note that, in all strategies but s 0.0, the higher and lower points of the arrow
match the maximum and minimum number of cells achieved by those strategies. Although
there is an average of only 3 cells owned by s 0.0 at the end of the simulations, there are 12
agents in these cells, thus 4 times the number of cells owned by the group. Strategy s 0.0 is
the only one that supports more agents than cells, something that may happen only within a
purely cooperative behaviour, because agents of other strategies end up by escalating
sometime as the simulation progresses. Therefore, when we talk about surviving instead of
owning, this strategy gains one more position, surpassing s 0.6 and almost drawing with s 0.5.
Thus, there is not much difference between never escalating and acting without any strategy (
s 0.5), but it is better acting cooperatively than to adopt a tendency to escalate more often
than not to escalate.



Figure 9. Ownership of strategies along all simulations

5.12
The majority achieved by s 0.2 and the second place achieved by s 0.3 can be explained by the
result of Minf, which states that, as an agent escalates more, it can realise a threatening
arrangement earlier. The counterpart of escalating more is the higher destruction of agents
within the same group. Nash equilibrium is the base for a stable relation, and it can be used
as a starting point for the best strategy. In this model, the best strategy uses the equilibrium,
but it adds some risk to get more mobility. The winning strategy mixes both characteristics;
its agents are not exploited by threatening agents and can conquer cells from s 0.0 faster
than equilibrium agents.

 Conclusions

6.1
The results of the experiments show that changing parameters of the model that affect the
mobility of the agents can lead to the success of strategies away from Nash equilibrium. The
results show that risky agents take more advantage of the space, because they realize
unfavourable arrangements earlier. But it may have a drawback of destructing players within
the same strategy, which leads the strategy to be penalized as a whole. Therefore there exists
a new equilibrium between these two factors. The evidence for this conjecture is shown in the
results of M 11, presented in Section 5. In this model, there are eleven different strategies
competing for space through a game with s 0.1 as equilibrium strategy, and the more
successful strategy was s 0.2, winning each of the 50 runs. Although we do not expect the
agents to be rational within this environment, Nash equilibrium is a good basis for the best
strategy.

6.2
In all the models but the last one, there is not any grouping of agents at the end of the
simulation because, if that occurs, the simulation has not ended yet. However, in the last
variation of the initial model, it is possible to have more than one agent within each cell
because we have one strategy that will never shoot ( s 0.0). This leads to groups of agents
following this purely cooperative strategy within the same cell, increasing the number of
agents following this strategy at the end of the simulations.

6.3
Clearly, the models can be enhanced with further refinements and sensibility analysis. For
example, all the models presented in this article have agents homogenously distributed over
the cells. In experiments not presented here, we studied models with the agents randomly
distributed over the cells at the beginning of the simulation. The results are similar to the
homogeneous case, with a straightforward increase on the standard deviation of the results,
because there is a fourth stochastic ingredient, besides the escalating decision, the confronts,
and the movement. We also tested the model using four neighbours by cell and found similar
results. In fact, these results have the same explanatory power as the models presented in
this work.



6.4
We can cite some questions to be investigated in future works. An open issue is to explore
evolutive models concerning population dynamics. New populations are generated from the
fittest agents of the previous simulation, with some mutation in their characteristics. Will
these populations competing for space evolve to Nash equilibrium? Perhaps, "we can only
expect some sort of approximate equilibrium, since […] the stability of the average
frequencies will be imperfect" (Nash 1950). Another question that can be investigated is the
evolution of cooperation within the context of mobility. Clearly a pacific agent does not need
to wait until losing $20 since it arrived at the cell to move to another cell. Therefore we would
have a more complex model, with the behaviour of agents differing not only by their mixed
strategies, but also by their different ways to decide their actions based on the previous
results. Within this environment, it is possible to investigate how the parameters of the model
can affect how agents are grouped or repelled spatially, and the path taken by the different
strategies.

 Availability

7.1
The model presented in this work was implemented in the TerraME modelling framework
(Carneiro 2006). TerraME is a development environment for spatial dynamical modelling that
links cell spaces to geospatial databases for data storage and retrieval. It uses the
geoprocessing library TerraLib for working with geospatial data (Camara et al. 2000), and Lua
language to create models (Ierusalimschy 2003). Because of its simplicity, Lua has a large
number of programmers in the game development community, an activity that has many
requirements in common with social simulation. The source code as well as the programs
necessary for running the simulation are available at http://lucc.ess.inpe.br/doku.php?
id=papers:mobility.
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