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Abstract:

Agent-based simulationmodellinghasbeenused inmanyepidemiological studies on infectiousdiseases. How-
ever, because agent based modelling is a field without any clear protocol for developing simulations the re-
searcher is given a high amount of flexibility. This flexibility has led to many di�erent forms of agent-based
epidemiological simulations. In this paper we review the existing literature on agent-based epidemiological
simulation models. From our literature review we identify key similarities and di�erences in the existing sim-
ulations. We then use these similarities and di�erences to create a taxonomy of agent-based epidemiological
models and show how the taxonomy can be used.
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Introduction

1.1 In recent years it has begun to become apparent that the methods currently used in designing, evaluating and
implementing public health policy do not work (Bruch & Atwell 2015). This is especially the case in epidemiol-
ogy, for example, epidemiological forecasting models for fatal diseases such as AIDS have been known to fail
because individuals adapt their behaviour to the epidemic (Epstein et al. 2008). One of the reasons for this
type of failure is the reliance on equation-based models to model the spread of an infectious disease in a pop-
ulation. Equation based models are relatively simple to implement and have been shown to produce results
that generallymimic that of an outbreak scenario (Skvortsov et al. 2007), however, themodels assume that the
population being modelled is homogeneous (Friás-Martínez et al. 2011) which is a serious limitation. In order
to include multiple populations, an equation-based model requires a large number of complex equations and
each subpopulation or category in the model will have a separate set of parameters. This will make a model
very complicated and di�icult to understand and solve.

1.2 Agent-based simulation models are an alternative to equation-based models and can model much richer sce-
narios than the latter. An agent-based simulation model allows agents to interact with other agents and the
environment based on a set of rules (Bruch & Atwell 2015) and agent-based models can be an essential part of
an epidemiological studywhen it is not feasible to run an experiment (Hernán 2014). For example, agent-based
simulation models can show what happens in cases where there is failure in uptake of measures of disease
prevention (Homer & Hirsch 2006).

1.3 Withanagent-basedmodel each individual agent canbegivendi�erentattributesandmakedi�erentdecisions.
This allows themodel to capture interactions andbehaviour at the individual level (Bobashev et al. 2007). In the
case of epidemic models agent-based models allow for high fidelity modelling on a global, national and com-
munity scale (Skvortsov et al. 2007). Individualmobility and social networks are essential parts of the spread of
an infectious disease and agent-based models are able to capture these interactions when an equation-based
model fails to (Friás-Martínez et al. 2011).
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1.4 One advantage of using agent-based models over approaches such as equation based models is that agent-
based models allow for more flexibility and a large amount of freedom in terms of the simulation design. This
level of flexibility and freedom comes with a cost: many models in the literature propose their own agent in-
teraction structure (Richiardi et al. 2006). Combined with the application to many fields this leads to a wide
range of agent-based models and descriptions (Friás-Martínez et al. 2011). This leads to di�iculty in finding a
general definition for agent-based models. To combat the issue of definition, for the purpose of this review we
define an agent-basedmodel as a computer simulation that involves agents in an environment with a time and
spatial component. Agents must interact with each other and with the environment. One important feature of
an agent-based model is that the agents di�er. The di�erence can be in assigned attributes such as age, gen-
der, or health status; or the di�erence can be in how the agents act. The actions of agents are governed by a
behaviour control program. At each time step an agent decides what it will do: the actions can be as simple as
definingwhich direction an agent will move in based on some simulated perception or the actions can bemore
complicated such as searching for agents with certain characteristics within a given radius and interacting with
them (Mac Namee & Cunningham 2003).

1.5 Because of their ability to model individual behaviours and interactions, agent-based models are well suited
to epidemiological simulations, especially those involving infectious diseases. In our reviewwe focus on infec-
tious disease epidemiology. The majority of diseases that are handled in the simulations are acute diseases,
however there are some infectious diseases in our review that lead to chronic conditions. As we are only focus-
ing on the initial infection and spread of the disease, we do not consider models simulating chronic disease.

1.6 Because there is no set methodology for agent-based models there is a wide variety of epidemiological agent-
basedmodels with di�erent levels of detail, results and uses. Thismakes it di�icult not only to understand and
compare di�erent models and also makes it di�icult for researchers to know where to start when first creating
their own simulations. A taxonomy of agent-based infectious disease models could help in both of these sit-
uations. To our knowledge, at the present time no work has attempted to create a taxonomy for the existing
epidemiological agent-based models. This literature review will analyse the current body of work on epidemi-
ological agent-based models with the goal of classifying the existing simulations and to create a taxonomy for
agent-based epidemiological models.

1.7 This paper will proceed as follows. Section 2 will review the existing literature on agent-based epidemiolog-
ical models and will discuss the important components that need to be considered when creating an agent-
based epidemiological model for infectious diseases. In Section 3 we will use the knowledge of agent-based
epidemiological models we gained fromperforming the literature review to create a taxonomy for agent-based
epidemiological models for infectious diseases. Section 4 will show how the taxonomy can be used to classify
models and how it can be used to help researchers in creating their ownmodels.

A Review of Epidemiological Agent-Based Models

2.1 Agent-based models are an important tool in studying the dynamics of infectious diseases. In many cases it
is impossible to run an experiment to see how a disease will a�ect a population in the real world so an agent-
based model can be used instead. Simulations are already being used to help decide on policy in the models
by Barrett et al. (2008), Aleman et al. (2011) and Lee et al. (2008). Other models are being used to understand
past outbreaks to be better prepared in the future such as Merler et al. (2015)’s model of the Ebola outbreak in
Liberia and Friás-Martínez et al. (2011)’s model of the H1N1 outbreak in Mexico City.

2.2 As new infectious diseases emerge, agent-based models can be used as an aid to help understand how a pop-
ulation can be a�ected and how we should react to an outbreak. To do this it is necessary to have a strong
understanding of all possible factors in disease spread. Much of the research being done nowwith agent-based
models helps us to get to that point. For example, Epstein et al. (2008)’s work on fear leading to agents fleeing
the area of an outbreak and spreading the disease further could play an important role in future simulations of
emerging diseases.

2.3 There are four main components of an epidemiological agent-based model: disease, society, transportation,
and the environment. When creating an agent-basedmodel for infectious disease epidemiology onemust con-
sider how theywillmodel eachof the four components. Inmodelling the disease it needs to bedeterminedhow
the infectious disease is transmittedbetweenagents andhow thediseaseprogresses in an infected agent. Mod-
elling society involves simulating the population while modelling transportation determines how the agents
willmove through the environment. Modelling the environment involves creating the space inwhich the agents
will interact. Although we separate them for the purpose of understanding the agent-based epidemiological
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model, the components are intertwined. For example, modelling the disease will determine if a susceptible
agent who comes into contact with an infected agent becomes infected, however the contact between agents
is determined by the how transportation is modelled. In reviewing the literature we focused on how di�erent
models treat these four main components, and how they papers present model validation.

2.4 We find common themes in the literature on how the fourmain components are dealt with. For example, creat-
ing amore generalmodel that can easily be adapted tomultiple diseases versus creating amore specificmodel
for a given disease. As detailedmore in the sections below, di�erentmethods have both advantages and disad-
vantages. While specific models are o�en more robust and based on more extensive data they can take more
time to run and are less adaptable. General models while adaptable are sometimes to simple and cannot be
related to a real world scenario. It is the right combinations of specific and general components that makes a
successful model. The combinations along with their advantages and disadvantages are discussed in the tax-
onomy section. For example, a general disease and general society model are simple to create and run, but do
not produce results that can be used for anything besides simple disease dynamics research.

2.5 Validation is an important part in designing anymodel. However, it is not always clear how to validate an agent-
based model. Although some authors attempt to detail their validation process, many papers fail to mention
validation at all or only briefly mention that it was done. The methods or lack of methods used to validate the
di�erent models are described in the validation section below in more detail.

Modelling disease

2.6 The agent-based modelling literature tends to treat infectious diseases in one of two di�erent ways. Research
is either done to create a general model where the disease parameters can be changed to show how various
diseases will spread through di�erent populations or the research focuses onmodelling a specific disease and
o�en a specific outbreak of that disease. A general disease model should be adaptable to multiple diseases of
the same form of transmission, typically airborne transmission. These general diseasemodels make sense in a
scenariowhere themodellers want to create a tool to study future potential outbreaks. This way themodel can
be adjusted to di�erent disease dynamics based onwhat disease is to be studiedwithout creating a newmodel
each time. For example, Barrett et al.’s (2008) Episimdemics was created for the US without a specific disease
so that it could be adjusted for di�erent possible outbreaks. It has been used to help determine policy in the
face of a pandemic in the US.

2.7 A specific disease model allows for a model to better capture specific disease dynamics. While general dis-
ease models typically stick to airborne transmission, specific models can take into account other transmission
methods such as water borne infections. Specific disease models can also take into account factors that might
influence the spread of a given disease such as including infection during funerals in themodel of Ebola spread
in Liberia by Merler et al. (2015).

2.8 Regardless of the specific or general nature of themodel, the diseasemodelwill havemany of the same compo-
nents. The breakdown of the components can be seen in Figure 1. Disease models for agent-based models are
broken up into two parts: between host transmission and within host progression. Between host transmission
occurswhena susceptible agent comes into contactwith an infective agent, and thebetweenhost transmission
component of a disease model simulates how a disease is transferred when this occurs. The within host pro-
gression component of a disease model simulates how, when an agent becomes infected, they move between
the di�erent states of the infection (for example exposed, infective, and recovered). Both parts of the disease
model are important in accurately simulating how a disease will spread.

2.9 The transmission dynamics are a key factor in how the disease spreads between individuals. Disease can be
spread throughhuman-to-humancontact, to humans from foodordrinkingwater, or betweenhosts of di�erent
species, for examplemosquitos to humans. When an agent comes into contact with an infected agent, infected
food or drinking water or an infected species, a probability distribution is used to determine transmission. The
transmission can be a�ected by a number of factors outlined in Figure 1: transmission dynamics, society, trans-
portation and environment, and behaviours. A number of agent-based models dealing with specific diseases
contain di�erent transmission dynamics based on the disease being modelled. Some of these models are for
diseases such as cholera ormalaria that are not spread through human contact but through contaminated food
anddrinkingwater or through insect bites. In themodel byCrooks&Hailegiorgis (2014) for the spreadof cholera
in a refugee camp agents excrete a certain amount of the cholera bacteria based on the stage of infection that
they are in. Water contamination is determined through a hydrology model where the flow of rain water af-
fects the total amount of pollutant and if an agent drinks contaminated water they have a certain probability
of becoming infected. Malaria is spread bymosquitoes thus any simulation for malaria would have to take into
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Figure 1: The components of the disease model

account not only human movements but also mosquito movements (Linard et al. 2009). In addition, models
can alter di�erent transmission dynamics by agents for example bymaking some agents super spreaders, indi-
viduals who are more infectious than other individuals (Duan et al. 2013).

2.10 The parameters of the society beingmodelled have amajor e�ect on how a disease will spread between hosts.
A densely populated areawill result inmore contacts between agents, and thus a greater likelihood of infection
(Perez & Dragicevic 2009). The social networks of agents also influence the disease spread. In their model of a
disease spreading through a small Australian town, Skvortsov et al. (2007) found that themajority of infections
in theirmodel occurred at the schools. Thiswas because every agent at a schoolwas in contactwith every other
agent at the school. The large social networks of agents in the model led to a higher infection rate.

2.11 Agents’ behaviours can also have an e�ect on the between host progression of a disease. For example, if the
agents respond to an outbreak or possible outbreak by fleeing they may be spreading the disease at a greater
rate than if they stayed home in isolation (Epstein et al. 2008). Alternatively, if agents choose to isolate them-
selves once infected, they reduce the number of contacts theymake and thus reduce the number of agents the
disease spreads to (Dunham 2005). Di�usion of information about a disease can lead to agent’s taking part
in preventative behaviours such as getting vaccinated or taking medicine, such as flu prophylaxis, that will re-
duce the chance of infection (Mao 2014). When modelling the Ebola epidemic in Liberia, Merler et al. included
change in agents behaviours based on information about the disease. In the real epidemic as people learned
that Ebola spread at funerals and to health care workers and other non-Ebola patients in hospitals the number
of safe funerals increased and health centres that only treated Ebola patients opened thus reducing transmis-
sion of the virus. This was reflected in the model with the number of hospital beds changing as time went on
and the probability of becoming infected at funerals decreasing (Merler et al. 2015).

2.12 Within host progression does not have asmany outside influences as between host transmission. Themake-up
of the society has no e�ect on how an agentmoves from exposed to infected or infected to recovered. Similarly
behaviours of other agents have no e�ect on within host progression. While an infected agent deciding to stay
home from school or work might reduce the chances of other agents becoming infected, other agents’ actions
will have no e�ect on the progression of a disease within an agent (Mao 2014). On a basic level all of the within
host progression models are similar. A disease will move between states based on a probability distribution.
Many of the agent-based models use a form of the SIR model to simulate disease progression (Dunham 2005;
Friás-Martínez et al. 2011;Merler et al. 2015; Perez&Dragicevic 2009; Rakowski et al. 2010a; Crooks&Hailegiorgis
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2014). The SIR model categorizes individuals into susceptible, infected or recovered states and looks at move-
ment of individuals between these. Variations of the SIR model can include additional stages such as exposed
(Keeling&Rohani 2008). Although the SIR formof the diseasemodel can be used for a specific disease it is o�en
usedwhen a simulation is created for a general disease. A fewmodels takemore complicated disease dynamics
into account moving away from the basic SIR type model. In modelling tuberculosis (TB), Tian et al. (2013) in-
clude states particular to TB including high and low risk latently infected agents, latently infectedwith previous
treatment agents, undiagnosed infectious andnon-infectious agents, active TBagents, andactive undiagnosed
infectious and non-infectious TB with previous treatment agents.

2.13 Although other agents do not have an e�ect on within host progression, the infected agent’s behaviours can
have an e�ect on the progression. Preventative behaviours can reduce the chance of an agentmoving between
susceptible and infectedor increase the chanceof anagentmovingbetween infectedand recovered (Mao2014).
In some models having been vaccinated can reduce the chance that an agent moves from exposed or latently
infected in the case of tuberculosis (Tian et al. 2013).

2.14 The factors a�ecting the transmission or progression can vary between the models but typically fall into the
categories of progression dynamics, behaviours and society factors. However, the general disease models will
have simple transmission and progressionmodels while specific models tend to havemore complicated trans-
mission and progression models that reflect the given disease. The more factors added into the model the
more realistic it will be. This, however, comes at a price and increased model complication leads to increased
computational resource requirements.

Modelling society

2.15 In the spread of an infectious disease one of the main components that can have an e�ect on the course of
the outbreak is the structure of the society. The number of people or agents, the household structure, number
of students in each school, number of schools and workplaces are all things that need to be considered when
simulating a society. It must be determined if the model will simulate an existing society or if it will be more
general. We consider any simulation that uses real data to model a society a specific society model and any
model that generates a society without the use of real data a general society model. General society models
can be made by randomly placing agents in an environment. For example, the model by Dunham (2005), was
created by generating 50 genderless and ageless agents and having them commute back and forth from their
home locations to their work locations. Similarly Perez & Dragicevic (2009) created a society by randomly as-
signing genderless and ageless agents to a residential area and then randomly dividing that population into
workers and students. The advantage of creating a general society model is that it does not require the large
amounts of data necessary to simulate a real society. Because the data is not needed it will take less time for a
modeller to begin the process of creating the simulation and the initialization of the simulation will need less
computer power and time.

2.16 In order to create a simulated society model based on a real society simulation designers typically take census
data from the population they are planning on recreating or from a similar population. For example, Skvortsov
et al. (2007) used census data to determine the age/sex breakdown of the actual population of an Australian
town and had the model build families based on average family size obtained from the census data. To model
the spread of influenza through Poland, Rakowski et al. (2010a) use census data to assign individuals to a family
based on age and relationships: a child will only be assigned to a house if an adult is already living there and
the probability that two adults will live in the same house depends on the attraction which is determined by
the di�erence in age between them. The scale of a specific society simulation can range from a small town
(Skvortsov et al. 2007), to a community (Lee et al. 2008), to a region (Aleman et al. 2011) or to a country (Ajelli
et al. 2010). As it is important to capture the social networks of an individual to determine the path of a disease
spreading through a society, some models can di�erentiate between close contacts (other agents at home or
work) and occasional contacts (agents in service places such as shops) (Crooks & Hailegiorgis 2014). The social
networks of agents in the society can also be broken down into weekday and weekend networks as it is more
likely that an agent will interact with co-workers during the week and with friends during the weekend (Friás-
Martínez et al. 2011).

2.17 Specific societies have amore obvious interpretation anduse: their results canbe applied to a givenpopulation
to helpmake decisions about future outbreaks or learn frompast outbreaks. However, in order to create such a
simulation data is needed and themore realistic a simulation is themore detailed data that is required. General
society simulations may not require any data at all and thus can be easier to create in situations where data is
scarce or hard to access.
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2.18 The scale of themodelmust also be considered: for a simulation of a specific society the scale (country, region,
city etc.) will be determined by the society being simulated. However, for a general model it is necessary to
determine how many agents will be used in the simulation. The scale chosen for the society can also have
an e�ect: the larger the scale the more computing time the simulation will take to run. However, small scale
societies, particularly small scale general society simulations, may not have as much realistic interpretability
as it would be di�icult to find a real world application for such a model. The way that society is simulated will
influence the rest of themodel including how transportation is simulated and how the results of themodel will
be interpreted and used.

Modelling transportation

2.19 Themajorityof agent-basedepidemiological simulationmodels contain some formofmovementor transporta-
tion of agents through the model environment, and choices must be made about how to simulate this. The
majority of simulations drive agent movements based on the society model and the agent behaviour rules.
Typically an agent will simply move from the house to which they are assigned to their workplace every day.
Some more sophisticated models, however, also include destinations such as markets, shopping malls, pubs,
friends’ homes, health centres and religious centres(Crooks & Hailegiorgis 2014; Mao 2014; Perez & Dragicevic
2009; Simoes 2006) and simulate agents movements between these locations following a weekly schedule.

2.20 The transportmodel in a simulationgoverns theway inwhichagentsmovebetweendi�erent locations. Simula-
tions canuse a very simple transportationmodelwhere agents simplymovebetween locations in a straight line
at a constant speed (Dunham 2005). More realistic transport models use geographic data containing informa-
tion about transport infrastructure to plan routes between destinations following footpaths and roads. Some
models require the agents to select the shortest route (CITE) while others allow less optimal travel (Crooks &
Hailegiorgis 2014; Perez & Dragicevic 2009). It is possible to havemore specific data tomodel movements such
as cell phone data where an individual’s real movements can be tracked based on where a phone call or other
telephone service is used (Friás-Martínez et al. 2011). However, this kind of data is not easily accessible to all
researchers. Some of the most sophisticated transport models include public transportation, as public trans-
portation can be a crowded locationwhere diseases are transmitted (Rakowski et al. 2010a; Aleman et al. 2011).

2.21 Movement can be a�ected by the agent’s choices and behaviour. For example, if an agent is infected a model
can allow the agent to decide if they are going to take a sick day (Dunham 2005). A model by (Crooks & Haile-
giorgis 2014) went further allowing agents to set goals based on an agent’s attributes and needs that determine
movement. Travelling longer distances can also be considered. A model for the spread of mumps in Portugal
(Simoes 2006) not only considers neighbourhood and intra-region travel, but also has a component for inter-
region travel. In modelling influenza epidemics in Poland, Rakowski et al. (2010a) assign a certain number of
agents at each time step to traveller status. These agents then choose their end points, transfer cities, and
co-travellers. Co-travellers and the number of co-travellers are chosen randomly to simulate both public and
private transportation. Themovements of agents can have a great e�ect on the outcomeof a simulation. Move-
mentswill determinewho an agent contacts and thus a�ect how a diseasewill spread. Some of the advantages
of including transport in the model is the ability to capture the location of infections. This could help iden-
tify potential ’hotbeds’ of infection such as schools. It also allows for more realistic interactions outside of an
agent’s family or friends network.

2.22 There are some infectious diseasemodels that do not include transportation of any kind. Thesemodels rely on
contact networks to determine the spread of the disease. Agents who are in networks with other agents have
a probability of coming into contact and spreading the disease. Tian et al. (2013) use such a model for their TB
analysis andOlsen & Jepsen (2010) similarly create amodel without transportation tomodel the spread of HPV.
If the disease dynamics are not as reliant on agents’ day to day movements then not including transportation
in the model will lead to a faster run time for the model.

Modelling the environment

2.23 The environment is an essential part of the agent-based model as it is where the agents move and interact.
However, the level of complexity of the environment can vary based on the needs of the model and the trans-
mission dynamics of the disease. An environment model can be as simple as a spatial grid upon which agents
are placed as in Duan et al. (2013) and Dunham (2005). Such as environment can be seen in Figure 2. Simple
environment models are easy to set up and run, however, they give little more information on the contact pat-
terns of agents then you would get from a equation based model while models with added environment are
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Figure 2: An example of a model with a grid like environment. Source: Duan et al. (2013)

more capable of capturing heterogeneous mixing. Slightly more complicated environments can include build-
ings forworkplaces and schools, roads, and residential areas. An example of this type of environment fromMao
(2014) is shown in Figure 3. Lee et al. (2008) creates an environment that includes schools and residential areas.
Thesemodels have an advantage over the grid environmentmodel as realistic movement patterns can be sim-
ulated and high infection areas can be determined. Lee et al. use theirmodel to determinewhen school closing
policies should go into e�ect andhow long the closings should last. Such analysis could not be donewith a sim-
ple grid environment: the inclusion of the schools and workplaces allows the modellers to accurately capture
where agents become infected. Along with the buildings and roads many models also use other GIS data in-
cluding elevation data to create their environment such as themodels by Ajelli et al. (2010), Barrett et al. (2008)
Crooks & Hailegiorgis (2014) and Simoes (2006). This allows for an accurate representation of the town, city,
country etc. that is being modelled. Figure 4 shows the environment in Crooks and Hailegiorgis’s model with
elevation data.

2.24 However, some models require a more detailed environment beyond roads and buildings as the environment
can have an impact on disease transmission. Sophisticated environment models can also include factors such
as temperature or precipitationor other populations that help to spreadadisease canbe included in themodel.
Linard et al. (2009) not only include mosquitoes in their malaria model but also temperature, water levels and
vegetation levels. In order tomodel the spread of cholera through a refugee camp, Crooks & Hailegiorgis (2014)
include a hydrology model as cholera is a disease spread through the consumption of infected water. Adding
the additional environmental factors is essential tomodel some diseases, such as cholera andmalaria, but the
transmission dynamics of other infectious diseases can also be influenced by environmental factors. For exam-
ple, influenza outbreaks most o�en occur in the winter months. Including environmental factors in an agent
basedmodelmay capture factors in disease transmission thatmay have otherwise been ignored. However, the
more factors that are included in the model the more complicated it becomes. As agent-based models tend to
be computationally intensive additional factors can lead to di�iculties in running the model.

Model validation

2.25 One of the most important issues for agent-based modelling is validation. If a model is not validated, any sur-
prising results cannot be completely trusted. There is currently no exact definition or methodology to test the
validity of an agent-based model (Richiardi et al. 2006). For epidemiological models, it is possible to simulate
an infectious disease outbreak that has occurred in the past. In these cases validation can be possible through
comparing the simulatedoutbreakwith the real outbreak (Olsen&Jepsen 2010;Merler et al. 2015; Crooks&Hai-
legiorgis 2014; Perez & Dragicevic 2009). This gives confidence that themodel correctly simulates the dynamics
of the disease and the society, allowing the researcher to make the assumption that the model will simulate
future outbreaks correctly providing insight into the disease behaviour. For a common infectious disease such
as influenza, data sources such asGoogle flu trend statistics can be used to supplement lab-confirmed reported
cases in validation as the Google data will pick up some cases that are not reported (Mao 2014). It is possible to
use other statistics besides prevalence to validate an agent-basedmodel. For example, if realmovement data is
available a comparison can bemade between the real movements of individuals and themovements of agents
(Friás-Martínez et al. 2011).
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Figure 3: An example of a model with an environment that includes maps and roads. Source: Mao (2014)

Figure 4: An example of amodel with an environment that includes other GIS data. Source: Crooks & Hailegior-
gis (2014)

2.26 However, if the model is not simulating a past outbreak or epidemic (which is o�en the case with a general
diseasemodel) there are ethical, logical, and practical constraints to getting data for validation: it is not feasible
to run an experiment to determine how an infectious disease will spread through a population (Hernán 2014).
One alternative to using real data for validation is cross validation: the output of an agent-basedmodel can be
compared to the output of another widely used model such as an equation-based SIR model. The number of
susceptible, infected and recovered individuals over the simulated period can be compared between the two
models. Although it is likely that the numbers will not match exactly due to di�erences in model assumptions,
if the infection curves, representing the number of susceptible, infected and recovered individuals at each time
step, follow a similar trajectory it is likely that there is some validity in the agent-basedmodel. If a simple agent-
basedmodel is validated with equation-basedmodels it is possible for the researcher to add additional factors
into the agent-basedmodel. The results of the expandedmodel canbe analysed knowing that the basic disease
dynamics of the model were validated (Skvortsov et al. 2007; Rakowski et al. 2010a). One other alternatives
to validation is determining adequacy (Apolloni et al. 2009). Adequacy is the idea that the appropriate and
informed decisions aremadewhen creating themodel. When considering adequacy it is important to question
if any new input in the model decreases uncertainty and if the input significantly changes the model (Xia et al.
2013).

2.27 Although validation is an important step in creating any model, authors do not always include the validation
process in their papers. For example, Barrett et al. (2008) mention that the model has been validated but do
not describe the validation process. Some papers such as Dunham (2005) do not refer to validation at all. While
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other papers only briefly mention the comparison to real data in the results or discussion section of the article
such as in Crooks & Hailegiorgis (2014) and Perez & Dragicevic (2009).

Designing a taxonomy

2.28 Basedonour analysis of the literaturewe found that for each component there aredi�erent categories of agent-
based epidemiological infectious disease models. For example, simulations could have a specific or general
disease model. These categories can fit together in di�erent ways: such as a general society component be-
ing paired with a specific disease component. To better understand how the models fit together we used the
descriptions for di�erent levels of the modelling diseases, society, transportation and environment from our
review to create taxonomy. The taxonomy can be used to classify the 20 models in our review and can also be
used to help classify additional models. Although validation is an important step in the agent-basedmodelling
process we do not include it in our taxonomy because we focus on the components of the simulation instead.

Taxonomy

3.1 In order to understand a simulation and its potential uses it is important to note how the components are com-
bined. A taxonomyofepidemiological simulationmodelsbasedon the level of specificityof thedisease, society,
transportation and environmentmodel can be created to aid in the classification of agent-basedmodels for hu-
man infectious diseases. A taxonomy can help researchers understand where to place their model in the body
of existing work and can help them choose what level of complexity they need in their model.

3.2 Figure 2 illustrates the taxonomy we propose. The models are then broken down into two categories: general
and specific disease models. Those two categories are then broken down to general or specific society simu-
lations, if the model includes a transportation model, and the environmental factors in the model. The grey
branches and boxes of the taxonomy that are outline in grey are those combinations of component types that
we did not find in our literature review and based on an analysis do not think would be feasible combinations.
For example, we do not feel it wouldmakes sense to have an environmentmade up ofmaps ormaps plus other
factors if the model has a general society model. This is because the maps that would be used would be based
on the society that is being modelled and in this case no specific society would be modelled. The following
sections will describe the di�erent components in the taxonomy.

Diseasemodel

3.3 The taxonomy as seen in Figure 2, breaks the disease model component of a simulation down into specific
versus general disease models. General disease models are those that use basic SIR disease dynamics in the
model with parameters that can be adapted for various airborne diseases. Simulations with a general disease
model prove useful for planning and creation of policy as only one simulation needs to be created to analyse
the e�ects of di�erent outbreaks. The general disease model also allows researchers to save time if they want
to switch their model from showing the e�ects of an influenza outbreak to a measles outbreak or any other
disease with similar transmission dynamics. This is the case with Barrett et al. (2008)’s Episimdemics, Aleman
et al. (2011)’s model for Ontario and Lee et al. (2008) model for Alleghany County, Pennsylvania.

3.4 O�en a model will focus on a specific disease because there is some reason that a general model will not cap-
ture the disease spread accurately enough. This can be the case if the infection dynamics of a disease are not
typical, for example Ebola can be transmitted at funerals and cholera is transmitted through drinking water.
Agent-based models have been based on specific outbreaks such as the Ebola outbreak in Liberia. Not only
does thismodel include specifics to how Ebola spreads, such as contact at funerals, but themodel is specific to
Liberia including the number of hospital beds thatwere used for Ebola patients over the course of the epidemic
(Merler et al. 2015) However, many of the agent-basedmodels that focus on a specific diseasemodel influenza.
The transmission dynamics of influenza are closer to a general model than some other diseases such as TB or
malaria and as such a SIR type model can be used. These models either focus on a specific strain of influenza
such as H1N1 or H5N1, or treat influenza generally (Friás-Martínez et al. 2011; Dibble et al. 2007; Rakowski et al.
2010a). Specific agent-based models can also be used to determine how given interventions a�ect the spread
of a virus. Among other topics agent-based models have been created to determine the e�ects that the gov-
ernment mandates had on the spread of the H1N1 virus in Mexico and how vaccination programs a�ect the
incidence rate of Human papillomavirus (HPV) in Denmark (Friás-Martínez et al. 2011; Olsen & Jepsen 2010).

JASSS, 20(3) 2, 2017 http://jasss.soc.surrey.ac.uk/20/3/2.html Doi: 10.18564/jasss.3414



Environment Model

Agent-Based Models
for Infectious Diseases

Disease
Model

General

Disease
Model

Specific

Society
Model

General

Society
Model

Specific

Society
Model

General

Society
Model

Specific

Trasport
Model

Yes

Trasport
Model

No

Trasport
Model

Yes

Trasport
Model

No

Trasport
Model

Yes

Trasport
Model

No

Trasport
Model

Yes

Trasport
Model

No

Maps
PlusMapsNone Maps

PlusMapsNone Maps
PlusMapsNone Maps

PlusMapsNone Maps
PlusMapsNone Maps

PlusMapsNone Maps
PlusMapsNone Maps

PlusMapsNone

Figure 5: Taxonomy of Epidemiological Agent-Based Models.
Grey branches and boxes outlined in grey are those combinations of component types that we did not find in our literature review and based on an analysis do not think
would be feasible combinations.

JASSS,20(3)2,2017
http://jasss.soc.surrey.ac.uk/20/3/2.htm

l
Doi:10.18564/jasss.3414



Society model

3.5 The next stage in the taxonomy is the society model. Society models can be described as specific if they were
created to model and actual society using real data and general otherwise. It is most o�en the case that a
specific disease model is paired with a specific society model, as the idea behind such a model is typically to
capture the dynamics of a past or current outbreak. In order to do this it is not just necessary to accurately
model the disease but the society as well. However, there are cases where a specific disease is paired with a
general societymodel. Thiswould occur in caseswhere themodelmight be used for disease dynamics research
where an overly realistic society is not needed such as in Duan et al. (2013)’s model looking into the possibility
of identifying super spreaders.

3.6 In some cases, such as with Barrett et al. (2008)’s EpiSimdemics a general disease model is integrated with a
specific society model. Such a model would be used as a public health tool where the e�ects of any possible
new outbreak can be modelled on the given society. These models are most o�en used for planning for future
outbreaks or epidemics as a public health tool for decision making. EpiSimdemics is a model that was created
to scale to social networks with 100million individuals. The parameters of themodel can be altered in order to
model di�erent infectious diseases. Anothermodelling tool was created for the Greater Toronto area in Canada
to determine the best mitigation strategies in the case of a potential epidemic (Aleman et al. 2011).

3.7 General diseasemodels can also be combinedwith a general societymodel. Although the results of themodels
cannot be directly applied to a given society, these types of models can be used for research purposes. For
example, models can show how factors such as fleeing from fear might change the course of the outbreak and
how the di�erences in the number of individuals in di�erent categories (susceptible, infected and recovered)
over time compared to the results of an equation-basedmodel will broadly show the e�ect that spatial mixing
has on the outbreak of a disease. Themodels by Epstein et al. (2008) and Dunham (2005) are both examples of
these types of models.

Transportationmodel

3.8 We consider two levels of transportation for the taxonomy: models with transport and models without trans-
port. Although there could potentially be finer levels created based on the complexity in the transportation
model we felt that the boundaries between these levels were too fuzzy to be useful.

3.9 Models without transport tend to be matched with specific disease models as not including transportation in
the model is most useful when the disease dynamics can be modelled with contact network structures versus
day to day interactions. This is o�en the case with blood/bodily fluid borne diseases such as HIV or HPV, for
example Olsen & Jepsen (2010)’s model for the spread of HPV in Denmark. In such cases adding transportation
into the model would only serve to slow the simulation down. Models without transport can be paired with
either a specific or general society based on the aim of the model.

3.10 Models with transportation are paired with both general and specific disease models. The types of diseases
that are transmitted with airborne transmission that can be substituted into a general model are o�en rela-
tively contagious and a transportation model helps to better capture the spread of the disease by identifying
random contacts outside of an agent’s family or friends. Epstein et al. (2008) use a general disease model and
a transportation model to determine how agents fleeing during an epidemic will lead to greater spread of the
disease. Similarly transportation can help capture the dynamics of disease spread for models of specific dis-
eases. For example, Crooks & Hailegiorgis (2014) use agents’ movements to determine if, when and where an
agent is drinking contaminated water that may lead to a cholera infection. Vector borne diseases can also be
reliant on movement, if an agent travels to an area with a higher concentration of the vector population it will
be more likely that the agent will be infected (Linard et al. 2009). Pairing a transport model with a specific dis-
ease model helps to capture dynamics of many infectious disease that may have been modelled incompletely
without movement.

3.11 Similar to the models with no transport, models with transport can be matched with either specific or general
societymodels. The choiceof societywouldbedeterminedby the researchers and their goals for themodel. For
example, Olsen & Jepsen (2010) wanted to study the e�ects of the HPV vaccine on the population of Denmark.
To do this they needed to include a specific society because theywanted their results to be specific to Denmark,
however, because the HPV is a sexually transmitted disease themodel does not need to include transportation
as daily interactions on the road or in work or school will not spread the disease.
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Environmental model

3.12 The taxonomy breaks the environmental model down to three levels: no added environment, maps, andmaps
plus other environmental factors. Other environmental factors could be anything from temperature and pre-
cipitation to a vector population or a hydrology model. Models with other environmental factors added into
the model are usually combined with a specific disease model since the environmental factors added into the
model should be factors that are related to the disease. For example, themodel by Crooks &Hailegiorgis (2014)
is a model for the spread of cholera in a specific refugee camp and includes hydrology models and precipita-
tion models as they are essential to the spread of the disease. In most cases these models are also paired with
a specific society since the environmental factors are based onwhat is seen in the real world. Models with envi-
ronmental factors are also typically pairedwith amodelwith transportation. A simulationwith specific disease,
specific society and high level environment would create a simulation where the results can be easily applied
to a real life scenario. However, the models will also be data heavy which could lead to slow initialization and
computing time.

3.13 Environmental models that include roads, buildings and/or maps are nearly always paired with a specific soci-
etymodel. Thismakes sense in the idea that in order to add roads or amap in the environment the researchers
would need to choose whichmap or which roads to use based on the society that is beingmodelled. Addition-
ally, models with an environment that ismade up ofmaps or roads will usually include transportation. There is
not much point in creating an environment with roads if the agents do not move along them. Suchmodels are
matched with either a general or a specific disease model.

3.14 Modelswith no added environment are thosewhere the simulation is solelymade up of agents interactingwith
each other in an open space. These types of environments can be in simulations that do not include transporta-
tion but focus on a specific disease, such as Olsen & Jepsen (2010)’s model. Because the agents will not move
through the environment there isn’t asmuch of a need to create any detail in the environment for the agents to
interact with. Other models with no added environment will include transportation. Most o�en these models
are dealing with a general society and either a specific or general disease model.

Applying the taxonomy

4.1 Table 1 puts the 20models analyzed in our literature review into the classification system. If the disease model
or the society model is a specific model the name of the disease or society is also included in the table.

4.2 The table also includes the possible use of themodel. Based on themodels reviewed, there are four main uses
for agent-based models of infectious diseases: disease dynamics research, agent-based modelling research,
epidemic planning, and lessons learned. Disease dynamics research focuses on learning information about
how a diseasewill transmit in a circumstance that would otherwise be hard to learnwithout a real life outbreak
scenario. For example, how finding and treating super-spreaders can help to lessen an epidemic and how ef-
fective contact tracing can help stop outbreaks of TB (Duan et al. 2013; Tian et al. 2013). Agent-basedmodelling
research is concerned with finding new ways to use agent-based models and newmethods for creating agent-
based models. For example, Bobashev et al. (2007) explore how to combine agent-based and equation based
models. A model used for epidemic planning such as Barrett et al. (2008)’s Episimdemics model is created to
learn the best strategies to deal with outbreaks prior to an outbreak occurring while lessons learned is the idea
ofmodelling a past outbreak in order to learn fromwhat happened in the past and to determine if themeasures
taken to stop the spread of the disease were successful. For example, Friás-Martínez et al. (2011) modelled the
2009 H1N1 outbreak in Mexico City in order to determine if restrictions onmovement a�ected the course of the
epidemic.

4.3 Using the table to find similarities in themodels that have the sameuse canhelp tobetter use the taxonomy. For
example, determining that a lessons learnedmodel always contains a specific disease and specific society will
direct researchers to that branch on the taxonomy and help them tomake decisions on the other components
they need to include in the model.

4.4 Models that focus on a specific society with either a general or specific disease tend to be used for epidemic
planning. A number of the models reviewed, (Crooks & Hailegiorgis 2014; Rakowski et al. 2010a), attempt to
accurately simulate the spread of a specific disease so that themodel could be used in the future to determine
best practices. Othermodels suchas, Barrett et al. (2008) andAlemanet al. (2011) use a general disease to create
a model that can be used for multiple outbreaks. Results published from a study using the Simdemics model
show that a combination of school closures, individual adaptive behaviour, and targeted antiviral distribution
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could reduce the impactof an influenza-likepandemicby87%and the income loss fromsuchapandemicwould
decrease by 82% compared to a base case (Apolloni et al. 2009). The EpiSimdemics model is able to simulate
detailed information on a disease spreading through a population including the individuals infected, where
they were infected andwho infected them. The information EpiSimdemics provides allows for identification of
the severity of the epidemic as a whole and in certain subpopulations. The model has been used for multiple
studies including those on pandemic planning for the US Department of Defence and the US Department of
HealthandHumanServices. Lookingat thee�ectsof sequesteringmilitary sub-populationsduringapandemic,
the EpiSimdemicsmodel determined that counter-intuitively sequestrationmay lead tomore infections. It was
determined thiswas because certain diseases canbe infectious before being symptomatic and althoughoverall
contacts would decreasewith sequestration contacts in a smaller group of individuals, thosewhowere sharing
military quarters, would increase: resulting in infectious individuals being in close contact with susceptible
individuals for a long period of time (Barrett et al. 2008). The general disease model combined with specific
society and transportationmodels allows for the user of themodel to change the infection dynamics based on
what situation theywould like to study. This saves thee�ort of recreatingamodel for the samepopulationevery
timea studyneeds tobedoneandgives theuser the advantageof having apreviously validatedmodel. Another
similar planning result obtained from a specific disease model is a cost-e�ectiveness analysis. Olsen & Jepsen
(2010) use an agent-based model to determine cost-e�ectiveness ratios for HPV vaccinations and determine
that while a new vaccination programwill incur costs, in the long term it will save treatment costs and improve
quality of life and survival.

4.5 If a researcher wished to create a model for epidemic planning they could go to the taxonomy and look at the
branches that contain specific society. Looking at the taxonomy, if they alsowished to include a general disease
model theywould know that a transportationmodel should be included and theywould only need to decide on
no added environment ormaps. Alternatively if theywanted to include a specific diseasemodel, the researcher
could need to decide if they wanted to include transportation in their model based o� of the transmission of
the disease being modelled (human-to-human, food or water to human, vector to human). Deciding to not
include transportation would also result in not including any added environment, while deciding to include
transportation would require a decision on what level of environment would need to be added.

4.6 From the table, models that are for lessons learned from a past outbreak tend to be created with a specific
diseaseandspecific societymodel. Forexample, Frias-Martinezcreatedamodel for theH1N1outbreak inMexico
city in order to evaluate the cities mitigation strategy (Friás-Martínez et al. 2011). Similarly Merler et al. (2015),
looked into the Ebola outbreak in Liberia to determine if safe funerals and Ebola patient only medical centers
a�ected the outbreak. Knowing this, if a researcher wanted to create a model that would be used for lessons
learned they could go to the taxonomy and follow the branch to specific disease and specific society. Based on
the disease being modelled and the type of transmission, they could then decide if the model should include
transportation and howmuch added environment to include.

4.7 Models that have a result focused on agent-based model research are o�en created to find a solution to some
of the problems in the field of agent-based modelling for infectious disease epidemiology. One of the main
barriers in the uptake of agent-based models is the time it can take to run a detailed simulation coupled with
the large amount of processing power needed. In order to overcome this barrier experimentationmust be done
to create more e�icient agent-based models. This is already occurring in cases such as Bobashev et al. (2007)
where an agent-basedmodel is combinedwith an equation basedmodel to improve e�iciency. As agent-based
models become faster and more e�icient, more detail will be able to be added to the models. Hopefully this
will result in larger uptake of agent-basedmodels to help determine policy and direct research. These types of
models will usually have a general disease, which would then require the modellers to decide if they wanted a
general or specific society and if they choose a specific society if they should add environment to the model.

4.8 Models that are created to look into disease dynamics research can be placed anywhere on the taxonomy. Re-
sults from disease dynamics research models include learning about the e�ects of super-spreaders on an out-
break (Duan et al. 2013), looking into the e�ects of fleeing an outbreak (Epstein et al. 2008), or what e�ect the
spread of fear and knowledge of the outbreak will have Mao (2014). As thesemodels can have a general or spe-
cific disease, a general or specific society, transportation or no transportation and any level of environment,
to decide what will work best for their model a researcher should go through each layer of the taxonomy and
determine what will work best for them. For example, to see the e�ects of fleeing on an outbreak, Epstein et al.
(2008) decided on a general disease model as they were not focusing on a specific disease but wanted to look
more generally at what happens and a general society again to see the general e�ects of fleeing that might
occur in any society. Once a general disease and society were chosen the options on the taxonomy include
transportation and no added environment.
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Paper Disease Society Transport Environment Use

Ajelli et al. 2010 General Specific
(Italy)

Yes Maps Agent-Based
Model Re-
search

Aleman et al. 2011 General Specific (On-
tario)

Yes Maps Epidemic
Planning

Barrett et al. 2008 General Specific
(USA)

Yes Maps Epidemic
Planning

Bobashev et al. 2007 General Specific
(World)

Yes No Agent-Based
Model Re-
search

Crooks and Hailegiorgis 2014 Specific
(Cholera)

Specific
(Dadaab
refugee
camp)

Yes Maps plus Epidemic
Planning

Dibble et al. 2007 Specific
(H5N1)

Specific
(USA)

Yes None Epidemic
Planning

Duan et al. 2013 Specific
(SARS)

General Yes None Disease
Dynamics
Research

Dunham 2005 General General Yes None Disease
Dynamics
Research

Epstein et al. 2008 General General Yes None Disease
Dynamics
Research

Frias-Martinez et al. 2011 Specific
(H1N1)

Specific
(Mexico City)

Yes Maps Lessons
Learned

Lee et al. 2010 General Specific (Al-
legheny, PA,
USA)

Yes Maps Epidemic
Planning

Linard et al. 2009 Specific
(Malaria)

Specific
(South
France)

Yes Maps plus Epidemic
Planning

Mao 2014 Specific
(Influenza)

Specific (Buf-
falo, NY, USA)

Yes Maps Disease
Dynamics
Research

Merler et al. 2015 Specific
(Ebola)

Specific
(Liberia)

Yes Maps Lessons
Learned

Olsen and Jepsen 2010 Specific
(HPV)

Specific
(Denmark)

No None Epidemic
Planning

Perez and Dragicevic 2009 General Specific
(Burnby,
Canada)

Yes Maps Epidemic
Planning

Rakowski et al. 2010 Specific
(Influenza)

Specific
(Poland)

Yes Maps Epidemic
Planning

Simoes 2006 Specific
(Mumps)

Specific (Por-
tugal)

Yes Maps Lessons
Learned

Skvortsov et al. 2007 General Specific (Aus-
tralia town)

Yes Maps Epidemic
Planning

Tian et al. 2013 Specific (Tu-
berculosis)

Specific
(Saskathe-
wan,
Canada)

No None Disease
Dynamics
Research

Table 1: Simulation Classification Table.
The disease, society, transport, and environment columns place the papers in our taxonomy while the use col-
umndetails the intendeduses of themodel. Theuseof themodel althoughnot part of our classification system,
can be a�ected by where a model falls in the taxonomy.
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4.9 Although we have fit all of the models we reviewed into our taxonomy we are aware that no taxonomy can be
completely comprehensive and there may be models that do not fit nicely into our classification. Even if this
occurs we feel that our taxonomy is still a useful tool as it will work for the majority of agent-based infectious
disease epidemiology models and was created based on evidence from the literature. It should also be noted
that the taxonomy is not all inclusive and that there are other characteristics of the simulations that could be
included. The taxonomy should, however, aid readers and simulation designers alike in determining the use
of a simulation based on the di�erent components of the simulation are handled and what to expect from the
results.

Conclusions

5.1 Agent-basedmodels canbeauseful tool inhelping tostoporprevent thespreadofan infectiousdisease. Models
such as Barrett et al. (2008)’s Episimdemics are already being used to influence policy. Merler et al. (2015) and
Friás-Martínez et al. (2011) have studied past outbreaks to determine the success of interventions to help inform
in case of future outbreaks. However, in order to be e�ective a model should be based on appropriate data
and should be validated - both of which can prove to be a challenge. Data accessibility is a major obstacle
when creating an agent-based model. For example, although Friás-Martínez et al. (2011)’s use of cell phone
location data made their transportation model extremely accurate the majority of researchers will not be able
to access such a dataset easily. If agent-based models are to be routinely used as policy tools a consistent
validationmethod should be determined. Without such amethod itmay be di�icult to distinguish amodel that
will provide accurate results for a given population from amodel that will not.

5.2 The freedom and flexibility in agent-based model design allows many di�erent type of models to be created
even just in the fieldof infectiousdiseaseepidemiology. Yet the lackof clearprotocols in creatinganddescribing
agent-based models can lead to confusion in understanding the methodology of a given agent-based model.
Because of this it is essential to understand the di�erent types of agent-based epidemiology models and how
they relate to each other. The literature shows that similarities among existing agent-based infectious disease
epidemiology models exist and that there are di�erent ways to compare the simulations. These comparisons
tend to be driven by similarities or di�erences in the components of themodel, disease, society transportation
and environment, and how themodel handles the components.

5.3 For both disease and society we found that models in the literature tend to create either specific components
based on data or general components where parameters can be adjusted tomodel multiple diseases or results
can be applied to any society. The choice of general or specific disease model or a general or specific society
model will have an e�ect on the transportation and environment components used, advantages and disadvan-
tages of the model, possible uses of the model and the validation process.

5.4 As there aremany possible combinations of the disease, society, transportation, and environment components
of a model, each with potentially di�erent uses, validation techniques, advantages and disadvantages we felt
that the current literature wasmissing a classification tool. Using the knowledge we gained from our literature
reviewwe formulated our taxonomy. The taxonomy should aid readers andmodellers alike in determining the
use of amodel based on how the di�erent components of the simulation fit together. One of the problemswith
the current agent-basedmodelling literature is the lack of clear definitions and standards for agent-basedmod-
els in infectious disease epidemiology and the components of those models due to the flexibility and freedom
allowed in model design. We feel that creating a taxonomy can help to classify agent-based infectious disease
epidemiological models and is a move towards solving the problem of definition without sacrificing the flexi-
bility that attracts researchers to the agent-basedmodelling field.

5.5 Inaddition tohelpingclassify theexistingmodels in the literaturewe feel that the taxonomycanhelp researchers
in creatingmodels through determining which components are necessary for their intended use. For example,
if a model is being created for epidemic planning it will need to have a specific society component. Once the
components of a model are determined the taxonomy can help researchers identify the available methods for
validation. For instance, if a general disease model or general society is used it may not be possible to com-
pare the results to past outbreaks, while the use of a specific disease and a specific society makes the use of
past outbreaks as a validation method a possibility. We see this as a real benefit of the taxonomy. By helping
researchers identify the range of validation techniques that are suitable for a specific model the taxonomy can
help standardise the approaches to validation that are used for agent based models for epidemiology. As dis-
cussed earlier in this article, the fact that di�erent researchers employ very di�erent levels of validation of their
models is a recognised issue in agent-basedmodelling research so something to help standardisation could be
a real benefit.
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5.6 One of the biggest restrictions in agent-based modelling is computing power. Availability of computing re-
sources can have a large role in determining the level of detail of a model. In order to create more complex
and realistic models this limitation will need to be overcome. With recent advances in computing power, this is
already becoming a reality and the level of complexity in agent-based modelling is far surpassing that of past
decades. As the use of techniques taking advantage of theses advances increase the field of agent-basedmod-
elling should becomemore rich. For example, cloud computing allows access to high performance computing
clustersandwhenutilizedbyagent-basedmodellerswill providemoreaccurate faster results (Tayloretal. 2014).
Thismay allowmodellers to no longer have to simplify di�erent aspects of theirmodel andwill give themmore
freedom and flexibility in model creation making a taxonomy for model classification all the more important.
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