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Abstract: Agent based modelling is nowadays widely used in transport and the social science. Forecasting
population evolution and analysing the impact of hypothetical policies are o�en the main goal of these devel-
opments. Suchmodels are based on sub-models defining the interactions of agents either with other agents or
with their environment. Sometimes, several models represent phenomena arising at the same time in the real
life. Hence, the question of the order in which these sub-models need to be applied is very relevant for simula-
tion outcomes. This paper aims to analyse and quantify the impact of the change in the order of sub-models on
an evolving population modelled using TransMob. This so�ware simulates the evolution of the population of
a metropolitan area in South East of Sydney (Australia). It includes five principal models: ageing, death, birth,
marriage and divorce. Each possible order implies slightly di�erent results mainly driven by how agents’ age-
ing is defined with respect to death. Furthermore, we present a calendar-based approach for the ordering that
decreases the variability of final populations. Finally, guidelines are provided proposing general advices and
recommendations for researchers designing discrete time agent-basedmodels.
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Introduction and Motivation

1.1 Complex systems characterized by a large number of entities interacting with each others is a very attractive
framework tomodel a large number of phenomena arising in our societies. Examples of such systems that can
involvemillions of agents include transportation, social interactions, the spread of contagious diseases and the
evolution of populations.

1.2 Agent-basedmodels, ormicrosimulations, are tools that are nowwidely used tomodel and simulate such com-
plex systems. Thebaseunit of thesemodels is theagent representinganentity of thepopulationunder scrutiny.
As such, each agent is characterised by attributes and behavioural rules mimicking the real entity, and can in-
teract with each other as well as with their environment. Even though the behavioural and interactions rules
defined for each agent are typically simple, the resulting emerging behaviour of the system is o�en non-linear
and di�icult to predict.

1.3 Using agent-based model to simulate the evolution of a population consists of two major steps, each of them
having its own set of challenges :

1. the generation of the synthetic population: the goal of this step is to generate a baseline population of
agents which is statistically as similar as possible to the population of interest. The synthetic population
generation has been extensively studied in the literature in the last two decades since the seminal work
of Beckman et al. (1996). Manymethods and algorithms have been designed depending on the available
data for the generation process (Gargiulo et al. 2010; Barthelemy & Toint 2013; Huynh et al. 2016; Ye et al.
2017). We refer the reader to (Lenormand & De�uant 2012; Lovelace & Dumont 2016; Ye et al. 2017) for a
review of existing approaches as well as their performances and drawbacks.
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2. thedynamic evolutionof thepopulation: in this step, thedynamic evolutionof the baseline population
of agents is simulated in order to forecast the future population. This is done by defining a set of mod-
els, rules and interactions for the agents. A large number of agent-basedmodels aiming to reproduce the
evolution of a population have been developed over the years, such as ILUTE (Miller et al. 2004), MOBLOC
(Cornelis et al. 2012), VirtualBelgium (Barthélemy 2014) and its extension VirtualBelgium in Health (Du-
mont et al. 2017b) and TransMob (Huynh et al. 2015).

1.4 The second step usually involvesmany di�erent models. For instance, we can havemodels to simulate ageing,
births and deaths in the population, the evolution of the socio-professional status (i.e. student, retired, active,
inactive) and the marital status (single, married, de-facto,...) of the individuals, their health etc.

1.5 It is clear that the ordering in which such models are executed can have a significant impact on the final fore-
casted population as well as other factors such as the choice of the pseudo-randomnumber generator, its seed
and the quality of the data. Hence finding the ordering which allows to produce the most accurate results is a
critical issue (Dumont et al. 2017a). Despite its importance, to the best of our knowledge this problem has not
yet been properly investigated in the literature. Indeed, the order is arbitrarily fixed in every application, with-
out detailing why a particular order has been retained. This gap in the literature motivated this work aiming at
providing reasons behind the selection of a particular order over others.

1.6 In order to achieve this goal, wewill test every feasible order of themodels implemented in TransMob, an agent-
basedmodel used to simulate the dynamics of ametropolitan area in South East of Sydney, with demographic
evolution. The resulting populations will then be compared among them in order to characterize the impact of
theorderingof themodels. In addition, the sensitivity of TransMob to the seedof the randomnumber generator
used by the models will also be tested. Finally, we will propose a method to decrease the impact of the order
by randomly assigning dates of births and deaths for every individuals.

1.7 A preliminary analysis of the importance of the order for TransMob is described in (Dumont et al. 2017a). The
statistical analysis hereby presented improves previous research by describing the importance of the order. In
addition, we present an original, calendar-based approach to attenuate the impact of ordering.

1.8 The remainder of the paper is organised as follows. Section 2 gives a brief overview of TransMob, its agents and
evolutionarymodels. In Section 3we investigate the impact of theboth the ordering of themodels and the seed
on the simulated populations. We then present in Section 4 amethod to reduce the number of feasible orders,
which also helps to lower the variability of the simulated populations. The performance of the new approach
is investigated in Section 5. Concluding remarks and future perspectives are then discussed in Section 6.

TransMob

2.1 This Section briefly introduces TransMob, an agent-basedmodel for simulating the dynamics of ametropolitan
area in South East of Sydney, Australia. This microsimulation integrates six major modules1 interacting with
eachother: syntheticpopulationgenerationandevolution, perceived liveability, travel diary assignment, tra�ic
micro-simulator, residential location choice and travel mode choice. The interactions between those modules
are described in (Huynh et al. 2015).

2.2 Each simulated individual, or agent, is characterised by several attributes, including age, gender, household
relationship, household type, identificationof the synthetichouseholdhe/shebelongs to, and the identification
of the census collection district the synthetic household resides in. Complete details on the generation and the
attributes of the synthetic population can be found in (Huynh et al. 2016).

2.3 In this work, we will focus on the models responsible for the demographic evolution within the synthetic pop-
ulation module. TransMob evolves the synthetic population developed in (Huynh et al. 2016) with a time step
of one year for a predefined time horizon, which is set to ten years in this work. A snapshot of the synthetic
population is then generated every first of January.

2.4 The approach consists of five dynamical processes executed in this specific order: ageing, dying, giving births,
divorcing andmarrying. It is clear that out of these five processes, only ageing is deterministic (every individual
age). On the other hand, the remaining processes are stochastic, i.e., they occur randomly depending on prob-
abilities extracted from available data. Moreover, for death, divorces and marriages, the probability of these
events is conditioned by age and gender, while the probability of giving birth is conditioned by the number of
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Figure 1: Transmob: Flowchart of the evolutionary models.

previous pregnancies and the age of the female agent. The overall procedure is illustrated in Figure 1. Depend-
ing on the event, the structure of the household can be updated. For additional information, these evolution
algorithms are fully detailed in (Huynh et al. 2013).

2.5 For each simulated year, a probability for each possible event is assigned to each synthetic agent. As any other
stochastic simulation, these probabilities are then used to determine which events are triggered. As these sim-
ulations are not deterministic, several runs could result in slightly di�erent final populations. To control this, a
seed can be chosen for the random number generator used by TransMob.

Sensitivity of the Microsimulation

3.1 Having introduced TransMob, we now consider di�erent factors that can have a significant impact on the fore-
casted population. This section contains an overview of the e�ect of both seed and order on the final simulated
population. A preliminary analysis of the influence of these two factors is included in (Dumont et al. 2017a). Our
aim is to better investigate if the di�erences in the simulation are due to the order and/or the seed.

3.2 As mentioned previously, the order of the models in TransMob was originally predefined (Huynh et al. 2015).
Considering that the major aim of this paper is to analyse the impact of an order change, we will first focus on
testing each feasible order. It should be noted that simulating birth before ageing implies a double generation
of babies, since the initial baseline population already includes 0 year old individuals. Therefore, only orders
specifying ageing before birth are considered, resulting thus in 60 feasible orders.

3.3 Our analysis also considers the sensitivity of the microsimulation with respect to the choice of the random
seeds. Hence we will perform 20 simulations using di�erent seeds for each feasible order2, resulting in 1,200
experiments simulating 10 years.

3.4 Figure 2 illustrates the average yearly population and the quantile interval IQ95 defined by the 2.5 and 97.5 per-
centiles (i.e. containing 95% of the simulations). This graph supports the intuition that the di�erence between
several runs increases over the simulated years. We can see that for the last year IQ95 = [212, 151; 214, 509] is
narrowwith themaximum relative deviation between the average and one extremity of the interval being 0.6%
of the population.

Impact of the seed

3.5 This subsection aims at determining if some random seeds influence the process in a specific direction. For ex-
ample, one specific seed could systematically results in an older population. Using a statistical analysis based
on the well-known ANOVA method (Chambers et al. 1992), Dumont et al. (2017a) concluded the independence
between the seed and the retained variables. We hereby confirm this result, see for instance Figure 14 in Ap-
pendix A which illustrates that the seed does not influence the final results.

Impact of the order

3.6 Does the order in which the procedures are applied influence the tendency of the results? The idea is now to
determine if some orders result in a larger/younger population. A preliminary analysis indicates that the order
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Figure2: Le�panel: Averageand range IQ95 for 10 simulatedyears, 20 randomseedsand the60possibleorders.
We can see that IQ95 is becoming larger through the years, even if staying relatively small. For instance, for the
last year IQ95 is [212, 151; 214, 509]. Right panel: Evolution of the range of IQ95. The observation made in the
le� panel is confirmed as one can see that the range is increasing over the years.

significantly influences results (Dumont et al. 2017a). To identify the di�erences between the orders, two types
of variables need to be introduced:

1. indicators of the final population: the number of men, women, as well as the number of individuals in
each age class (less than 30 years old, between 31 and 60, andmore than 60 years old);

2. indicators of the order: the position of each process in the chosen order. For example, if we simulated
ageing, then death, then marriage, then birth and finally divorce, the indicators of order are : position of
ageing = 1; position of death = 2; ...

3.7 For the first set of indicators, the logarithm has been applied for each variable to reduce the impact of excep-
tionally large populations. By adding these transformations, our results significantly improved.

3.8 To quantify these di�erences, a classification is applied on the indicators of the final population. (Dumont et al.
2017a) show two distinct classes. Hence, a k-means classification (Hartigan & Wong 1979) with k = 2 followed
by a principal component analysis (Wold et al. 1987), or PCA for short, is executed to visualize the di�erent
classes. The graphs in 2 and 3 dimensions in Figure 3, confirm the two very distinguishable sets of points. Note
that the three first components computed by the PCA already explain 99,18% of the total variance.

Figure 3: PCA to illustrate the classification of the simulation for 20 seeds and 60 orders. Each dot represents
one simulation. Two clearly separated classes can be identified.

3.9 Two well-separated classes can be identified in the results of the simulation. The next step is to identify the
discriminant factors for these two classes. We checked that each order over the 20 seeds always lie inside the
same class. Thus, only the order categorized simulations. The process to identify patterns for orders belonging
toeachclasswas successfully as shown inFigure4. Indeed, thepositionofageing relatively to theoneofdeath is
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determinant. When ageing is before death, the simulation ranks into the second class (red) and in the opposite,
death before ageing results in the first class (black). Intuitively, this can be explained by the fact that the death
probability depends on age. Indeed when ageing, the probability to die increases.

Figure 4: Patterns resulting from the relative order of death and ageing and the associated division into classes

3.10 Having the classes established, an analysis of the final populations per class is performed and the results are
reported in Figure 5. Two well-separated sets of points clearly appear for each combination of indicators in-
volving the number of individuals being more than 61 years old. On the one hand, the red class stands for all
simulationswith less elderlies. On the other hand, the black class contains populationswith a larger number of
elderlies. Moreover, in each graph involving the total number of individuals, we observe that the red dots tend
to represent populations smaller than the black ones.

Figure 5: Graph of all pairs of final population indicators per class. Each dot represents a simulation.

3.11 We can also notice two almost parallel lines for the combination of the total population and individuals less
than 30 years old. This means that by staying on the same class, any increase of the final population implies a
constant increase in the number of less than 30 years old persons. However, the two classes arewell-separated.
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This indicates that for two simulations producing the samepopulation size, populations in the red class include
more peoplewho are less than 30 years old. Similar conclusions applywhen focusing on the number of individ-
uals less than30 years oldper gender, even if this is less prominent. For individuals between31 and60years old,
no clear distinction canbemadebetween classes. In summary, the black class contains larger populationswith
more elderlies and less young people. Note that the average age per class confirms this as shown on Figure 15
in Appendix B.

3.12 In summary, the order significantly influences the final population. Indeed, performing ageing before death
results in a smaller and younger population.

3.13 At this level, the position of the other processes in the dynamical evolution loopdoes not significantly influence
results. The following section proposes a method removing these two events from the possible orders, which
enables the analysis of the impact of the order of the three remaining processes.

Reduction of theNumber of PossibleOrders: A Calendar-Based Approach

4.1 Considering that the positions of death and ageing bias the simulation, we decided to propose an alternative
method to reduce this impact. By proposing another way to consider ageing and death, the possible remaining
orders involve onlymarriage, divorce and birth, reducing the feasible orders from 60 to 6.

Method

4.2 To avoid the high influence of the position of death and ageing, our proposition is to assign a specific date for
these events for each synthetic individual. Thismeans assigning a date of death and a birthday for ageing. This
technique can be easily extended to other processes as dates could be assigned to every event.

4.3 First, the model responsible for death is executed. For each person not dying during this simulated year, the
remaining models stay unchanged. However, each individual dying in this year is assigned a date of death and
he/she will remain in the population, possibly performing other actions if they arise before his/her death. If an
event concerning this agent is planned to happen, we check that this arises before the death. For this, a date is
randomly chosen for this event and it is considered only if prior to death.

4.4 Secondly, a date of birth is also assigned to each individual. Figure 6 illustrates the changes induced by adding
this birthday. Colours represent the probabilities of occurrence of a specific event depending on age. We can
see that the standard approach with ageing at the end (or at the beginning) considers the age at 1st of January
(or 31th December) for the whole civil year, whereas the calendar-based approach adapts the probabilities for
each individual at their birthday. Probabilities are thus adapted at the same moment for everybody with the
standard approach while the calendar-based approach changes probabilities at a di�erent moment for each
person, depending on their birthday..

4.5 It can be noted that the computational cost is di�erent from adopting a time step of one day. Indeed, a daily
time step implies considering each process for each individual for each simulated day, whereas our approach
still considers each process only once a year for each individual.

4.6 The proposedmethodology is possible only if we can establish the probability of the event occurring in the year
depending on the age of the agent and its birthday.

4.7 The naive approach consists in considering that the probability of an event occurring during a civil year can
be refined using a convex combination of the probability of the event to happen at the present age and at the
age +1. For a person of ageA at the beginning of the year andBD days from 1st of January to its birthday, the
probability of an eventE occurring during the year can be calculated by

P (E) = P (E only before BD or E only a�er BD) = P (E only before BD ) + P (E only a�er BD)

since "E only before BD" and "E only a�er BD" are disjoints. For the sake of simplicity, the naive approach
is to approximate "E only before/a�er BD" with "E before/a�er BD" without checking that the event is not
happening in the other period of the year; this assumption gets exact in the limit of events arising only once per
year. By making the assumption that the distribution of the event occurring each day of the year is known,

P (E before BD ) = P (

BD⋃
i=1

E on day i ) =
BD∑
i=1

P (E on day i )
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Figure 6: Illustration of the addition of a birthday. Each colour corresponds to an age conditioning the proba-
bilities used by a given process.

and

P (E a�er BD ) = P (

365⋃
i=BD+1

E on day i) =
365∑

i=BD+1

P (E on day i ).

4.8 In this example, we now make the simplifying but unrealistic assumption that E has the same likelihood to
occur any day of the year. Thus, we have3

P (E on day i) = P (E|A) ∗ 1

365

with P (E|A) the probability of the event for an individual during the whole year while he is of age A. Finally,
the expression of the probability of an event during a civil year is given by:

P (E) = P (E|A) ∗ BD

365
+ P (E|A+ 1) ∗ 365−BD

365
.

Intuitively, this splits the year into two di�erent parts separated by the birthday, and each one having its own
probability forE which depends on the age. It should be noted that this imposes to assume that the probability
of the event is uniformly distributed through each day of the year once we fix the age of the agent. This could
be improved by approximating the probability of each day using, for example, a spline or a regression. With this
probability definition, ageing needs to be at the end of the process.

4.9 It can also be noted that even if we assumed a uniform distribution for the dates, we could easily use any kind
of distributions for eachmodel (e.g. an empirical distribution if the data is available).

4.10 When considering a uniform distribution of the dates for an event that can arise only once per year (each day
has same probability), this can be seen as a sequence of Bernoulli experiments for each day that succeeds if
the event happens. The formal analytical determination of this formula gives very similar results to the naive
approach developed in this section. The detailed analysis of the formal development is in Appendix D.

4.11 A schematic representation of the calendar-based approach is given in Figure 7.

Figure 7: Flowchart of the newmethod.

4.12 Since we change the procedures for ageing and death, the only remaining possible events aremarriage, birth
and divorce, leaving only 6 possible orders.
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4.13 The proposed approach of defining dates for events to avoid problems with possible orders is not limited to
ageing and death in population evolution. It can be applied in all fields using these types of agent-basedmod-
elling and dates can be generated for each model. We focus here on dates for ageing and death to analyse the
impact on the final population since we established above that these two processes strongly influence the size
and age of the final population. In our case, divorces are proposed only to couples andmarriage only to single
individuals. Thus these models concern only a part of the population. Even if performing one a�er the other
can slightly modify the set of individuals going through the other model, their impact is limited.

Analysis of the new orders

4.14 Similar to the analysis presented in Section 3.6, a classification of the indicators of the final population is also
performed using the new improved method. Figure 16 in Appendix C contains the elbowmethod to determine
the number of classes showing an evident elbow at two classes. These two classes are reported on the PCA in
Figure8. Theseparationof thepoints is lessobvious than forall previousorders. Indeed, noempty spacedivides
the two set of dots. This seems to indicate that the final populations are more homogeneous than previously.
However, it is worth analysing the influence of these classes on the final population.

Figure 8: PCA for the classification of the method with the dates. Each dot represents one simulation. The
separation between the two classes is less evident using the calendar-based approach.

4.15 Figure 9 indicates less evident di�erences between the classes than for the standard method. Nevertheless,
the first class (black) has a smaller population composed of less individuals under 30 years old. A slightly linear
relation stands between the total population and thenumber ofwomen,menand individuals less than 30 years
old. This means that the larger the total population is, the higher these indicators also are. Yet, the number of
individuals older than 31 years old does not follow this linear tendency.

4.16 Identifying the patterns in the same classified orders is the next step. A decision tree4 highlighted the impor-
tance of the position of marriage regarding to the birth. Nevertheless, this pattern is less determinant than the
one illustrated in Figure 4.

4.17 The relation between marriage and birth is very important in the model, since only married women can give
birth (see (Huynh et al. 2015) for more details on models and (Huynh et al. 2016) for the definition of "married"
women, which also includes de facto relationships).

4.18 Table 1 presents thenumber of simulations in each class for eachorder inmoredetails. One canappreciate from
the latter table that any given order can belong to both classes, even though there a clear tendency for one of
the class. This indicates that the seed has now a larger impact than previously and supports the observation
about the homogeneity of the final populations.

Comparison

5.1 In this section we compare the performance of the calendar-based approach against the classical one. The
main purpose of the new method is to reduce the variability of the final populations. For the comparison, the
final population indicators a�er 10 years are computed for 20 random seeds and for all feasible orders with and
without the introduction of dates of birth and death.
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Figure 9: Graph of all final population indicators per class for dates simulations. Each dot represents one simu-
lation.

First Model Second Model Third Model #Simulations in Class 1 #Simulations in Class 2

Marriage Divorce Birth 16 4
Marriage Birth Divorce 20 0
Divorce Marriage Birth 19 1
Divorce Birth Marriage 0 20
Birth Divorce Marriage 1 19
Birth Marriage Divorce 2 18

Table 1: Classification of orders with the addition of dates

5.2 The homoscedasticity of the total population indicator over the two groups with and without dates is tested.
Note that the group with calendar-based includes 120 simulations (6 orders and 20 seeds), whereas the other
group includes 1200 simulations (60 orders and 20 seeds). Due to the imbalance and small size of groups, a
careful choice of themethod to test homoscedasticity is required. (Parra-Frutos 2013) analysed di�erent statis-
tical tests and concluded that in unbalanced and small samples, the best ways to test homogeneity of variance
includes the James test, theWelch test and the Alexander and Govern test. (Dag et al. 2017) incorporated these
tests in a package for the R programming language (R Core Team 2018). The three tests allow to conclude the
non homogeneity of the variances with a confidence level of 0.95. The standard deviations are 645.05 for the
classical simulations and 529 for the simulations using dates. This indicates that the proposedmethod reduces
the variance between runs.

5.3 Figure 10 shows the average population and the IQ95 interval per year and per type of simulation are depicted
in Figure 10. Note the di�erence both in variances and averages. Addings dates produces sensibly larger popu-
lations on average, overlapping the top half of the IQ95 of standard simulations.

5.4 As previously mentioned, standard simulations are typically classified in two groups depending on the final
population size. Here, it is important to verify if calendar-based simulations match the class associated with
the largest final populations generated by the standard approach. Figure 11 focuses on the 5 last simulated
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Figure 10: Uncertainty analysis of standard and proposed models. Evolution of the total population for the
calendar-based and classical method. It can be observed that the calendar-based approach produces IQ95

with smaller ranges than the standard method. The calendar-based approach tends to generate slightly larger
populations.

years and shows the IQ50.

Figure 11: Uncertainty analysis of classified standard and proposed models. The calendar-based approach re-
sults in populations similar to the first class of standard simulations (ageing before death).

5.5 Results show that the calendar-based approach produces final populations similar to the ones in the first class
in terms of total population. Performing again the tests suggested by Parra-Frutos (2013) to examine the homo-
geneity of variance, we found that for the three tests that variances inside the first class and the simulations
using dates are not significantly di�erent.

5.6 Here, it is interesting to compare the distributions. As the assumptions for the classical ANOVA test are notmet,
we use the non-parametric Kruskal-Wallis test. The p-value of 0.47 indicates that no distribution stochastically
dominates the other. This confirmed that the relative di�erence between the average of the two groups is only
0.03%.

5.7 Considering that the size of the populations produced by the calendar-based approach and the first class of
standard methods were statistically similar, we then looked at the structure of the di�erent populations. In-
deed, the population size could be equal while their age structure di�ers. This is illustrated in Figures 12 and 13
where death and birth evolutions are displayed. Unlike expectations induced by the Figure11, Figure 12 shows
that the calendar-based approach produces a number of deaths in between the ones generated by the two
classes of standard methods. This indicates that the proposed approach actually produces populations that
are di�erent from the ones belonging to the first class. The evolution of the numbers of births in Figure 13
shows a di�erent picture. Indeed, the calendar-based approach generates a larger number of births compared
to the others twomethods.

5.8 This explains why the calendar-based approach and the first class of standard methods generate populations
of similar sizes. Therefore, it is possible to argue that the proposed calendar-based methodology is the most
appropriate approach.
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Figure 12: Evolution of the number of deaths per method.

Figure 13: Evolution of the number of births per method.

Conclusion and Discussion

6.1 A�er investigatingall the feasibleorderingsofmodels andpresentingapromisingcalendar-basedapproach,we
believe that our work made two contributions to the field of agent-based models for demographic evolutions
that could be extended to other agent-basedmodels.

6.2 First, thisworkshowedthe importanceof theorderof themodels inagent-basedmodelling, a�erhavingchecked
the stability against randomseeds. For TransMob, including fivemajor processes, i.e., ageing, death, birth,mar-
riage and divorce, we highlighted significant di�erences in the results of the simulation if death is performed
a�er or before ageing.

6.3 Secondly, we proposed to assign dates to key events and redefine the probabilities depending on these dates.
We found that thismethoddecreased the variability of the simulations. Furthermore, this is not restricted to the
evolution of synthetic populations. Indeed, for each process interfering with probabilities of other model, we
canassignadate for this event (either fromauniformdistributionamongst thedaysof theyearor fromadefined
distribution if you for examplehave theprevalenceofbirthperday in theyear). Thanks to thisdate, probabilities
of dependent events can be adapted with a weighted linear combination of the probabilities before and a�er
the determinant event.

6.4 The code associated to the calendar-based approach is available at the following address:
https://github.com/smart-facility/calendar-based-microsim.

6.5 The proposedmethod allows simultaneously to avoid any bias inducedby choosing a specific order, reduce the
variability of the results and approximate a daily time step with a reduced computational cost.

6.6 This work allows us to propose certain guidelines for future agent-based models (with a discrete time step).
Indeed, for one iteration of the evolution loop, we propose the following flow:

1. Processes implying to remove agents are evaluated to identify the agents that will disappear. However,
these agents are not removed directly. Instead, a date of removal of the agent is determined.
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2. Processes changing agent characteristics influencing the probabilities of other processes are executed
anddated. For individualsdisappearing this iteration,wecheck if eachevent is beforeor a�er the removal
date.

3. Remaining processes are launched with updated probabilities. For individuals disappearing this itera-
tion, we check if each event is before or a�er the removal date.

4. Agents disappearing during this iteration are removed.

6.7 It should be noted that this is a general proposition limiting the influence of the order. Unfortunately, some
questions are still unsolved. For instance, if processes are interdependent or if we have several processes in
third step, several orders are still possible.

6.8 Obviously, the proposed approach has certain limitations. For instance, there is need for additional data if one
wants todrawdates fromarealisticdistribution through theyearandeventsareunpredictable. Thepractitioner
shouldalsobeaware thatall theseagent-basedsimulationsarealwayshighlydependent to the typeandquality
of input data (garbage in - garbage out process). Finally, it should also be noted that this does not necessarily
allow to extend the time horizon of good predictions.

6.9 In future works, a more generalised analysis could be performed, considering additional (fictive) models with
probabilities generated randomly with respect to constrains such as dependencies with agent characteristics
and/or interdependencies with other modules and/or orders between modules. Any generalisation to agent-
basedmodels is a big challenge, since each case is di�erent and generating a population kangaroos in Australia
cannot be similar to simulating particles in an accelerator or examining demographic evolution.
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Notes

1TransMob contains di�erent modules, each one composed of di�erent models.
2Indeed launching the process several times with the same seed will always produce the same results.
3This also assumes P(E on day i and not on another day)=P(E on day i).
4Obtained using the package in Therneau et al. (2017).
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Appendix A: Uncertainty - Influence of seed

Figure 14: Combinations of number ofwomen,men, less than 30 years old, between 31 and 60 andmore than 61
years old a�er 10 simulated years (one color = one random seed). Using a statistical analysis based on the well-
known ANOVAmethod (Chambers et al. 1992), Dumont et al. (2017a) concluded the independence between the
seed and the retained variables.

Appendix B: Average age of the population per class

Figure 15: Average age of the population per class and per year.
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Appendix C: Number of classes of orders when dates are added

Figure 16: Number of classes of orders when dates are added.

Appendix D: Formal establishment of the new probabilities

The aim of this appendix is to establish formally the probability of an eventE during a civil year depending on
the ageA of the agent at the beginning of the year and its birthday happening a dayBD.

Rather than directly computing this probability, the first step consists in considering the complementary prob-
ability of the event, i.e. the probability that the event is not happening during the year. This can be expressed
as the probability that the event is not happening in any days during the year. Let us denote byEi the eventE
occurring on day i ∈ {1, . . . , 365}. If we assume the conditional independence between theEi, we have:

P (E |A,BD) = 1− P (¬E |A,BD)

= 1− P (

365⋂
i=1

¬Ei |A,BD)

= 1−
BD∏
i=1

P (¬Ei |A)

365∏
i=BD+1

P (¬Ei |A+ 1)

= 1−
BD∏
i=1

(1− P (Ei |A))

365∏
i=BD+1

(1− P (Ei |A+ 1))

This general expression holds for any distribution of the independent events Ei. In our context, we make the
additional assumption that the events in the set {Ei | i = 1, . . . , BD} are identically distributed, as well as the
events in the set {Ej | j = BD + 1, . . . , 365}. Thus we can write:

P (E |A,BD) = 1−
BD∏
i=1

(1− P (EBD |A))

365∏
i=BD+1

(1− P (E365 |A+ 1))

= 1− (1− P (EBD |A))BD(1− P (E365 |A+ 1))365−BD

Using a similar reasoning, the probability P (EBD|A) can now be derived thanks to the probability P (E | A)
provided in the input tables and using the fact that theEi are independent and identically distributed. Indeed,
we have:
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P (E |A) = 1− P (¬E |A)

= 1− P (

365⋂
i=1

¬Ei |A)

= 1−
365∏
i=1

P (¬Ei |A)

= 1−
365∏
i=1

(1− P (Ei |A))

= 1−
365∏
i=1

(1− P (Ei |A))

= 1− (1− P (Ei |A))365

Isolating the probability for a specific day P (Ei |A), we obtain :

(1− P (Ei |A))365 = 1− P (E |A)

1− P (Ei |A) = 365
√
1− P (E |A)

P (Ei |A) = 1− 365
√

1− P (E |A)

As the P (Ej |A+ 1) can be obtained in a similar way, we now have all the elements to be able to generate the
probabilities P (E |A,BD) required by the model. It should be noted that results mimic the ones of the naive
method as we can see in Figures 17 and 18.

Figure 17: Uncertaintyanalysisof standardandproposedmodelsusingexactprobabilities. Evolutionof the total
population for the calendar-based and classical method. It can be observed that the calendar-based approach
produces IQ95with smaller ranges than the standardmethod. The calendar-based approach tends to generate
larger populations.
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Figure 18: Uncertainty analysis of standard andproposedmodels using exact probabilities. The calendar-based
approach results in populations similar to the first class of standard simulations (ageing before death.)

To illustrate the relation between the exact and naive probabilities depending on the birthday, two examples
havebeenplotted in Figure 19. Thedi�erences are almost indistinguishable on the le�panel representingprob-
abilities of havinga first babyat theagesof 25and26. On the right, a second test takes intoaccountprobabilities
more a�ected by the change in age (di�erence of 20%). The di�erence is noticeable for the birthday on themid-
dle of the year, but the twomethods stay really close to each other. For this reason, the naive approach can be
considered, since it is easier and gives similar results.

Figure 19: Probabilities with the naive and formal approach when probability at first age is 0.208 and at age
+1, 0.234. This corresponds to the probabilities of having a first child at age 25 and 26 respectively (le� panel).
And same probabilities when probability at first age is 0.2 and at age +1, 0.4 to illustrate a more remoted (right
panel).
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