
Participatory Modeling and Simulation with
the GAMA platform
Patrick Taillandier1, Arnaud Grignard2, Nicolas Marilleau3, Damien
Philippon3, Quang-Nghi Huynh5, Benoit Gaudou6, Alexis Drogoul3,4

1MIAT, University of Toulouse, INRA, 24 Chemin de Borde Rouge, 31326 Castanet Tolosan Cedex, France
2Media Lab, Massachussets Institute of Technology, Cambridge, MA, United States
3UMI UMMISCO, IRD/SU, 32 rue Henri Varagnat, 93143 Bondy Cedex, France
4ICTLab, USTH, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
5DREAM-CICT/IRD, Can Tho University, Campus II, 3/2 street, Ninh Kieu District, Can Tho City, Vietnam
6IRIT,University of Toulouse, CNRS, INPT, UPS, UT1, UT2J, 2 rue du Doyen-Gabriel-Marty, 31042 Toulouse,
France
Correspondence should be addressed to patrick.taillandier@gmail.com

Journal of Artificial Societies and Social Simulation 22(2) 3, 2019
Doi: 10.18564/jasss.3964 Url: http://jasss.soc.surrey.ac.uk/22/2/3.html

Received: 16-01-2018 Accepted: 01-02-2019 Published: 31-03-2019

Abstract: In recent years, agent-based simulation has become an important tool to study complex systems.
However, the models produced are rarely used for decision-making support because stakeholders are o�en
not involved in the modeling and simulation processes. Indeed, while several tools dedicated to participatory
modeling and simulation exist, these are limited to the design of simple KISS models, thus reducing their po-
tential impact. In this article, we present the new participatory tools integrated within the GAMAmodeling and
simulation platform. These tools, which take advantage of the GAMA platform with respect to the definition of
rich KIDSmodels, allow themodelers to buildmodels graphically anddevelopdistributed serious games easily.
Several application examples illustrate their use and potential.

Keywords: Agent-Based Simulation, Participatory Modeling, Participatory Simulation, Serious Game

Introduction

1.1 Nowadays, agent-based modeling has not only become increasingly significant for the study of complex sys-
tems, but has also opened up promising perspectives for the inclusion of rich and complexmodels in the socio-
environmental decision-making processes (design of public policies, investment planning, community adapta-
tion to climate change, etc.). This is especially true in the case of researchers from fields other than computer
science (geography, environmental sciences, social sciences, health, etc.). The adoption of suchmodels, which
was partly fueled by the emergence of modeling platforms that ease the work of the modelers, like NetLogo
(Tisue & Wilensky 2004), GAMA (Taillandier et al. 2018) or Cormas (Bousquet et al. 1998), has led to an increase
in the number of models and to an abundant literature. However, only a handful of these models have really
been used to assist in the decision-making process. Many reasons can explain this situation, beginning with
the fact that agent-based modeling is still a "research" approach. However, we claim that the main reason lies
in the lack of implication of stakeholders in the model design and exploration (simulation) processes. Indeed,
most of the time, models are developed and explored only by researchers.

1.2 An approach that can overcome this di�iculty is participatory modeling. Participatory modeling aims at us-
ing modeling in support of a decision-making process involving stakeholders (Voinov & Bousquet 2010). The
stakeholders can be involved in one or several stages of the modeling process: problem definition, conceptu-
alization, calibration or scenario definition (Barreteau et al. 2014). Participatory simulation is a special case of
participatorymodeling that concerns the last step of themodeling process, in which participants are invited to
interact with a simulated environment, o�en through a serious game.

1.3 The models developed in the participatory context can be more or less complex depending on their objective.
Typically, it is a common practice to start a participatory modeling process by developing a simple stylized

JASSS, 22(2) 3, 2019 http://jasss.soc.surrey.ac.uk/22/2/3.html Doi: 10.18564/jasss.3964

patrick.taillandier@gmail.com


Figure 1: "Horseshoe" reading template proposed by Banos & Sanders (2013) to classify models in geography.

prototype at first and then gradually making it more complex. Indeed, a model designed in a participative way
by a group of peoplewith diverse views on a systemwill o�en need to bemore descriptive to complywith these
di�ering visions.

1.4 To characterize the variety ofmodels that can bedeveloped, Banos&Sanders (2013) proposed the "Horseshoe"
reading template with 2 axes (Figure 1): the simplicity and the abstraction levels. The simplicity level refers
to the opposition between the KISS (Keep It Simple, Stupid (Axelrod 1997)) and the KIDS (Keep It Descriptive,
Stupid (Edmonds & Moss 2004)) approaches. The KISS approach favors simple models, with very simple agent
behavior to reproduce complex systems: the model is simple, but the simulation results are complex. On the
other hand, the KIDS approach advocates descriptive models, which remain explanatory. The second axis is
related to the abstraction level of themodel: does themodel represent a stylized fact or a particular given phe-
nomenon? These two axes define four quadrants, the horseshoe illustrating the easy and natural path between
these quadrants.

1.5 More recently, Le Page & Perrotton (2017) introduced the KILT (Keep It a Learning Tool) approach to describe
the type of models appropriate for participatory simulations: models should not be abstract (as in the KISS
approach) so that stakeholders can identify with the case study and not specify (as in the KIDS approach) too
many details to prevent them from focusing on specificities. While this general principlemakes sense, we argue
that the simplicity and abstraction levels of a model should depend on its objective. In some contexts, to be
accepted by stakeholders, the serious game has to be as close as possible to the real system.

1.6 Some generic modeling and simulation platforms such as Repast, NetLogo or Cormas propose tools dedicated
to participatory modeling or development of serious games. However, these tools are generally adapted to
the design of simple models with little data (KISS or simple KILT models). We consider that, among the tools
mentioned previously, there is none adapted to modelers who are not experts in computer science. Indeed,
either they are too complex to be used by non-computer scientists or too limited in terms of implementable
models.

1.7 This article presents thenew tools integrated in theGAMAmodeling and simulationplatform thatwedeveloped
in order to overcome this shortcoming. GAMA is an open-sourcemodeling and simulation platform for building
spatially explicit agent-based simulations. It o�ers a complete and comprehensive modeling language (GAML:
GAmaModeling Language) andan integrateddevelopment environment to support thedefinitionof large-scale
models. The richness of GAML comes from the numerous optimized operators that it integrates. In particular,
GAMA provides modelers with a native integration of GIS data (Taillandier et al. 2010), high-level visualization
tools (Grignard & Drogoul 2017), cognitive agent architectures (Caillou et al. 2017; Bourgais et al. 2016), multi-
levelmodels (Voetal. 2012), andco-modeling (Drogoul et al. 2016). LikeNetLogo,GAMAallows theuser to switch
very easily between amodeling perspective (writing themodel code) and a simulation perspective (running the
simulation). Indeed, with few lines of codes, GAMA allows us to define amodel and visualize the simulation re-
sults. This possibilitymakes it particularly suitable for rapid prototyping necessary in the KILT approach: rather

JASSS, 22(2) 3, 2019 http://jasss.soc.surrey.ac.uk/22/2/3.html Doi: 10.18564/jasss.3964



than waiting to have a complete model before running simulations, GAMA enables modelers to quickly exper-
iment the impact of the modifications in the model’s code, and consequently favors a test-and-try modeling
approach.

1.8 The article is organized as follows: Section 2 presents the new participatory modeling tools integrated into
GAMA, more particularly, its graphical modeling plug-in. Section 3 is dedicated to the presentation of the new
participatory simulation tools, which concern user-interaction, communication betweenmodels and advanced
visualization. Lastly, Section 4 concludes and presents perspectives.

Participatory Modeling

Context

Platforms for participatorymodeling

2.1 Participatory modeling consists in implicating stakeholders in the model design process (Becu et al. 2015a). A
classic approach to achieve this objective is to organize a workshop during which themodelers and stakehold-
ers build a model together using a graphical modeling tool. Most of the modelers conducting such workshops
tend to use a specific graphical modeling tool that is not directly related to an agent-basedmodeling platform.

2.2 Indeed, while there are a few open-source agent-based modeling platforms for developing models through a
graphical interface (Gaudou et al. 2010), they are either too complex for non-computer scientists or too limited
to allow development of KIDSmodels.

2.3 To bemore precise, some of these platforms such as StarLogo (Resnick 1996) and Modelling4All (Kahn & Noble
2009) are mostly pedagogical so�ware limited to the development of very simple models.

2.4 Another platform that o�ers such type of tools is Repast Symphony. It proposes to definemodels in threeways:
using Java, the ReLogo language or a graphical modeling language (North et al. 2013). While the ReLogo lan-
guage and the graphical modeling tools can be used for simple models (or rapid prototyping), developing a
KIDSmodel with this platform requires knowledge of Java.

2.5 The Cormas platform (Bousquet et al. 1998), which is specialized in participatory approaches to address re-
newable natural resource management issues (Le Page et al. 2012), also provides some graphical modeling
tools (definition of activity diagrams). However, this platform, which is more adapted to the development of
KISS models, does not o�er the same richness as GAMA or Repast Symphony in terms of model development,
in particular for developing models based on complex spatial environments or cognitive agents.

2.6 Finally, theMAGeoplatform(Langlois etal. 2015) allowsus tomerelydefineamodel throughadedicatedgraphic
interface. It proposes to formalize agent behavior as an aggregation of basic behaviors with a simple grammar.
This grammar is perfectly adapted to the definition of KISS models, but does not allow development of KIDS
models. In addition, the number of inbuilt operators is very low in comparison to the ones proposed by the
GAMA platform.

2.7 To sumup, there is still a lack of tools, which could be used by a large audience andwhichwould enable graph-
ical definition of KIDSmodels at the same time.

Graphical modeling language

2.8 An important issue for developinggraphicalmodeling tools is the choiceof a graphical language. Themost used
formodelingpurposes isUML. In the context of agent-basedmodeling, someworkshave shown the significance
of using such graphical language for communication (Bersini 2012). However, some authors have pointed out
that the use of UML as an agent-oriented modeling language is inappropriate (Beydoun et al. 2009).

2.9 Other graphical languages based on UML and dedicated tomulti-agent systems have been proposed: themost
famous ones are AUML (Bauer et al. 2001) and AML (Cervenka et al. 2005). These languages make it possible
to introduce some specific features linked to the agent paradigm. However, their scope goes beyond agent-
based simulation and covers all multi-agent aspects, which can make these languages di�icult to apprehend
for non-computer scientists and not adapted to the context of modeling complex systems.

JASSS, 22(2) 3, 2019 http://jasss.soc.surrey.ac.uk/22/2/3.html Doi: 10.18564/jasss.3964



Figure 2: Meta-model of GAMA.

2.10 The last modeling language that needs to be mentioned is the one proposed by the MAGeo platform. This lan-
guage is based on the AOC (Actor - Organization - Behavior) meta-model (Daudé et al. 2010). This graphical
language is close to UML and respects most of the properties of OOP (Object Oriented Programming). In ad-
dition, it allows one to natively define multi-level models. However, this language imposes a lot of constraints
due to the limitations of the MAGeo platform. In addition, no distinction is made between what an agent can
do and what it is going to do (capabilities versus behaviors).

2.11 Our goal for the GAMA platform was thus to propose a modeling language, which is simple enough to manip-
ulate (with a small number of concepts), which allows one to develop KIDS models, and which is as close as
possible to implementation in order to avoid a gap between the conceptual model and the implemented one.
In order to achieve this objective, we identified several properties that our modeling language had to respect:

• Properties of OOP

• Di�erentiation between capabilities and behaviors

• Native handling of multi-level modeling

• Possibility of defining elements related to simulation visualization

Graphical modeling with GAMA

Overview

2.12 The purpose of our graphicalmodeling tool is to address the need for participatory tools thatwould help define
KIDS models. It allows GAMA users to graphically define their models and eventually translate them into the
GAML language. In addition, this tool enables translation of a GAML model into a graphical one. This feature
aims at facilitating the discussion (and communication) pertaining to amodel. The tool is based on theGraphiti
plugin of Eclipse (Graphiti 2018) and is integrated in a dedicated GAMA plug-in that can be directly downloaded
and installed through GAMA.

2.13 The modeling process with this tool consists first in defining a conceptual model represented by an entity-
relationship diagram, then filling in all the defined entities through dialog boxes.

Definition of the conceptual model

2.14 We chose to base the definition of the conceptual model on the GAMA meta-model. Although many agent-
oriented meta-models were proposed in the literature (see (Beydoun et al. 2009) for a presentation of the
most famous ones), most of them are not directly used for simulation purposes and are very di�icult for non-
computer scientists to grasp. Another advantage of using the GAMAmeta-model is that it allows us to limit the
gap between the conceptual model and the implementedmodel.

2.15 Figure 2 presents themeta-model of GAMA. Themain component of thismeta-model is the Species. A Species,
like a class in OOP, defines the characteristics common to all the agents of a population. In particular, it defines

JASSS, 22(2) 3, 2019 http://jasss.soc.surrey.ac.uk/22/2/3.html Doi: 10.18564/jasss.3964



Figure 3: Graphical User Interface of the graphical modeling tool.

their variables, actions, reflexesandaspects. AnAction is a capability that theagentsof thepopulationhave, i.e.
something that the agents can do. A Reflex is a behavior, i.e., something that the agents of the population are
going to do (if some conditions are respected). An Aspect represents a possible display of the agents. Note that
a species can specify several actions, reflexes and aspects. In addition, a species specifies the spatial topology
and scheduling of the agent population. A containment relationship between species helps to describe the
hierarchical levels of an agency. Finally, a specialization relationship between species helps to define links of
inheritance between them.

2.16 An ExperimentSpecies represents a context of execution of a model. It is a particular species of agents that
contains a set of species (the one defined in the model) and a set of displays.

2.17 More details about the GAMAmeta-model can be found in (Vo et al. 2012). The use of this meta-model makes it
possible to respect the four properties defined in Section 2.

2.18 Figure 3 presents themodeling graphical framework of the tool. The right palette allows themodelers to select
the typeof elements to add to thediagram. This frameworkproposes all the classic features of graphical editors
(undo, drag and drop, etc).

2.19 Table 1 presents all the elements that can be added to the conceptual diagram.
2.20 When a graphical model is created, a first species of agents is automatically created: the world species. The

world species corresponds to the first level of agency that describes the global spatial topology of the model,
its basic scheduling, its parameters and global behaviors. It is the host for the populations of agents described
by the species defined by the modeler.

2.21 Thus, development of the conceptual model consists in defining all the species (with their chosen topology:
continuous, grid) living in the world, their capabilities (actions), their behaviors (reflexes, tasks, states or BDI
elements) and possible displays (aspects). Note that the inheritance relation can be used between species. In
addition, definition of the conceptual model consists in determining the possible contexts of execution of the
simulation (experiments) and the corresponding outputs (displays) for each of these. Every time the diagram
is modified by the user, it is validated: if there is no error in the diagram, its components appear with green
borders, and buttons corresponding to each defined experiment appear in the top of the editor (for example,
see themy_GUI_xpbutton inFigure3). Byclickingononeof theexperimentbuttons, theuser can load it (and run
the corresponding simulation(s)). When there are errors in the diagram, the problematic components appear
with red borders.

2.22 As an example, Figure 4 presents the conceptual model of a simple predator-prey model. In this model, four
species of agents live in the world:

• vegetation_cell: species with a grid topology that will be used as a spatial environment for the other
agents. This species has only one behavior (reflex): grows.

• animal: specieswithacontinuous topology thatwill beusedas thegeneric species todefine thepredators
and preys. This species has 4 behaviors (reflex): eats,moves, reproduces and dies. It also has one action
called eating and one aspect called circle.

• prey: species with a continuous topology that inherits from the animal species. This species overrides
the eating action.

JASSS, 22(2) 3, 2019 http://jasss.soc.surrey.ac.uk/22/2/3.html Doi: 10.18564/jasss.3964



Symbol Source Description

A species Species: A species of agents with a continuous topology.

A species Grid: A species of agents with a grid topology

- World: the first level of agency. It contains all other species of agents.

A species Action: A capability that the agents have.

A species Reflex: A behavior (sequence of statements) that will be activated at each
simulation step (according to a given condition).

A species Equation: a di�erential equations system that can be used to describe the
evolution of some of the agent attributes

A species Aspect: A possible display for the agents.

The world GUI Experiment: load only one simulation with the graphical user inter-
face

The world Batch Experiment: load a set of simulations without the graphical user
interface

A GUI Experiment Display: frame allowing to display outputs (map, charts...)

A specieswith aBDI
architecture

Plan: sequence of statements that will be executed in order to fulfill a par-
ticular intention. More details about the GAMA BDI architecture and the
plan statement can be found in several works (Taillandier et al. 2016; Cail-
lou et al. 2017; Bourgais et al. 2017, 2016)

A specieswith aBDI
architecture

Rule: function executed at each iteration to infer new desires or beliefs
from the agent’s current beliefs and desires

A specieswith aBDI
architecture

Perception: function executed at each iteration that updates the agent’s
belief base according to its perception

A species with a fi-
nite state machine
architecture

State: sequence of statements that will be executed if the agent is in this
state (an agent has a unique state at a time).

A species with a
task-based archi-
tecture

Task: sequence of statements that can be executed by the agent at each
time step. If an agent owns several tasks, the scheduler chooses a task to
execute according to their priority.

Table 1: Entities of the graphical modeling language

JASSS, 22(2) 3, 2019 http://jasss.soc.surrey.ac.uk/22/2/3.html Doi: 10.18564/jasss.3964



Figure 4: Conceptual model of the predator-prey model.

• predator: specieswithacontinuous topology that inherits fromtheanimal species. This speciesoverrides
the eating action.

2.23 In addition, we define one GUI experiment called main_xp that has a display called map and a display called
charts.

Definition of the parameters and processes

2.24 Once the conceptualmodel is defined, the next step consists in describing the properties of each defined entity.

2.25 When theuser clicksonanentity, anewdialogboxallowingparameterizationappears. It is through thesedialog
boxes that the modeler will be able to transform his/her conceptual model into a simulation. Sometimes, the
parameterizationwill just consist inmaking a choice between di�erent options, but sometimes it will consist in
writing GAML instructions.

2.26 The most important entity to parameterize is the species. The species dialog box helps to define some of the
properties of the species with a minimal amount of code (see Figure 5). In particular, it allows the modeler
to define the variables (attributes) of the species. For each variable, the modeler has to define its name and
its type (among many types such as integer, float number, string, list, matrix, map, point, geometry, graph,
path...). In addition, themodeler candefineoptional facets for eachvariable suchas its initial value, aminimum,
a maximum, an expression that will be used to re-compute the variable at each simulation step or a function
that defines how the variable will be computed each time it is requested. The modeler can also give skills to
the species. A skill is a predefined set of variables and actions coded in Java. For instance, the moving skill
provides the species with the variables speed, heading and destination and the actionsmove,goto,wander and
follow. Themodeler can also choose the architecture of the species. By default, all agents in GAMA have a reflex
control architecture (behaviors activated according to a certain condition), but it is possible to add another
architecture to the agent: a BDI architecture, a state-machine architecture or a task-based architecture. The
modelers can also define the scheduler of the species and its frequency of activation. Lastly, the modeler can
define an init block that represents the constructor of the species, i.e. it defines what will happen when agents
of this species are created.

2.27 The dialog boxes for the world species and the grid definition are very similar. For the grids, the dialog box
only allows the user to additionally define the number of cells in the rows and in the columns, and the type of
neighborhood: Moore, van Neumann or Hexagonal. For the world species, the dialog box allows the modeler
to additionally determine whether the environment is torus or not.

JASSS, 22(2) 3, 2019 http://jasss.soc.surrey.ac.uk/22/2/3.html Doi: 10.18564/jasss.3964



Figure 5: Dialog box for defining Species.

2.28 Concerning the parameterization of reflexes, the dialog box makes it possible to choose the condition of the
reflex activation and its e�ect. The activation condition and the e�ect are described using the GAML language.
The action dialog box is very similar to the reflex one except that no condition can be defined, but themodeler
can add arguments and a return value.

2.29 For the aspect definition, the dialog box enables the definition of the layers composing the aspect (and their
order). These layers are defined through a dialog box, in which themodeler can choose the shape to display (a
simple shape such as a circle, a square, a rectangle..., an icon, a text or a complex geometry such as a polyline or
a polygon), its color, and some specific properties (rotation, filled/empty shape...) or directly through the GAML
language.

2.30 The experiment definition dialog box makes it possible to define the parameters that the user will be able to
modify through the simulation interface.

2.31 Concerning the display definition, the dialog box allows themodeler to define the layers composing the display
(and their order), to choose a color for the background and the refreshing rate. The layers are defined through
a dialog box, in which the modeler can choose the elements to display (a list of agents, a chart, an image, a
text...), the level of transparency of the layer, its size and its position.

2.32 Finally, concerning the equation, state, task and BDI-related elements, themodelers will have the possibility of
filling some specific fields (facets of these statements) and describing their e�ects in GAML code.

Conclusion

2.33 To sumup, thegraphicalmodeling tool ofGAMAenables graphical definitionof a complete and functionalGAMA
model with a minimal quantity of GAML code.

2.34 This tool o�ers many advantages for a participatory modeling context. The choice made in this tool to use
a graphical meta-model that covers the more important concepts of the GAML language, allows modelers to
graphically define a whole model. As a consequence, there is no cognitive e�ort to switch between the graph-
ical modeling language and the implementation language. On the other hand, the model created graphically
can be directly executed in GAMA: this upholds one of the main advantages of the modeling and simulation
platforms, i.e. the possibility of executing the model being implemented very quickly and switching between
the model and the simulation, thus contributing to the understanding of the model. In addition, the graphical
modeling languageenables adescriptionof the core componentsof themodel andalsohelps todeterminehow
to simulate it: it allows themodeler to define the experiments, i.e. the parameters that can bemodified during

JASSS, 22(2) 3, 2019 http://jasss.soc.surrey.ac.uk/22/2/3.html Doi: 10.18564/jasss.3964



the experiment and the various displays or visualizations of the simulation. This last aspect is o�en missing
from participative modeling and simulation tools.

2.35 The tool is already used in several projects and lectures, whichmakes the discussions around amodel easier or
allows for a collective construction of a newmodel from scratch.

Participatory simulation

Context

3.1 Nowadays, more and more modeling projects integrate participatory simulation, o�en with the help of a seri-
ous game. Participatory simulations invite human participants to interact with a simulated environment. Such
simulations can be used to conveymessages e�iciently (Klabbers 2009), to serve as communicationmedia be-
tweenparticipants or to engage the public in a decision-making process (Noymanet al. 2017). A classic example
is Fish Banks (Meadows et al. 1986), which allows participants to play the role of a fishing company manager
and to interact with a computer simulation of renewable fish stocks.

3.2 The main di�iculty in participative simulation is gaining the confidence of stakeholders. It implies: (i) the de-
velopment of an empirical model showing realistic dynamics and (ii) reproduction, in the serious game, of the
workspace that the stakeholders are used to (e.g., available policies, budget, governmental restriction, social
events). The Graphical User Interface has thus to be designed according to the player role.

3.3 To facilitate the design and implementation of such serious games, some generic agent-based platforms pro-
pose dedicated tools.

3.4 One of themost commonly used platforms for serious games is NetLogo. This platform allows users to directly
interact with di�erent agents of a simulation through agent inspectors and the observer. In addition, it allows
addition of some components (sliders, field area, button) to the interface allowing a user to interact with the
simulation. Moreover, it allows creation of a dialog to ask the user to fill in a specific variable value. Finally, with
its Hubnet extension (Blikstein et al. 2005), NetLogo allows several instances of the same models communi-
cating with each other through a local network. This last feature is particularly interesting when implementing
distributed seriousgames. However, NetLogo ismoreadapted to thedevelopmentof simpleKISSmodels rather
than complex KIDS models. In addition, the presence of a unique display of the environment and the general
simulation panel are important drawbacks for the implementation of serious games.

3.5 3.5 Another platform that proposes tools for participatory simulations is Cormas. This platform o�ers many
features to develop andmanage such simulations (Becu et al. 2016). In particular, like NetLogo, Cormas allows
participants to directly interact with the various agents (or group of agents) though the agent inspector. Using
Cormas, one can also directly manipulate one or several agents (for instance, execute some of their actions)
through a dedicated interface. Cormas can distribute the control of a simulation through a network on several
computers (Becu et al. 2015b). More precisely, it gives the control on the same simulation (running on a server)
to di�erent clients who can have di�erent views on the same simulation and interact with it. In addition, unlike
NetLogo, Cormas allows the modeler to define several displays. Finally, Cormas gives the possibility of going
back in time: by just clicking on the backward button, the user can backtrack to the previous step or replay
a simulation. While Cormas is particularly well-adapted for use in participatory contexts, developing models,
which require using the Smalltlak language and the VisualWorks framework (Brauer 2015), can be complex for
non-computer scientists. In addition, like NetLogo, the platform is not adapted to the development of complex
KIDSmodels (no real integration of GIS data, simple representation of the environments, etc.).

3.6 To sumup, NetLogo andCormas proposemany tools that can be used in a participatory simulation context, but
they are both limited with respect to the development of KIDS models, which explains why most participatory
simulations are still based on simple KISS or KILT models.

3.7 As a consequence of these limitations, several projects have chosen to use GAMA to develop ambitious interac-
tive models.

3.8 A first example is Sprite 1 (Adam et al. 2016; Taillandier & Adam 2018), which allows the participant to play the
role of the mayor and manage Oleron Island for a certain number of years, with the mission of finding an ap-
propriate balance between popularity, economy, attractiveness, safety and ecology. Sprite proposes a precise
representation of the island through GIS data and integrates an advanced submersion model. Integration of

JASSS, 22(2) 3, 2019 http://jasss.soc.surrey.ac.uk/22/2/3.html Doi: 10.18564/jasss.3964



Figure 6: Tangible interface of the Cityscopemodel (taken from Grignard et al. (2018)).

GIS data would have been very di�icult to achieve with Cormas, whereas the multiples views of the territory
o�ered by the model would not have been possible with NetLogo.

3.9 Another example is Littosim2 (Becuet al. 2017), whichalso illustrates themanagementof the riskof submersion.
In Littosim, participants play the role of the land-planning manager of a coastal municipality prone to marine
submersion risk. It integrates several sub-models suchaswater rise and socio-economic evolutionmodels. One
of the features of Littosim is its use of distributed controls (each player playingwith a dedicated interface froma
computer tablet) and of a projector to propose a global shared display showing the impact of flooding. Like for
Sprite, the heavy use of GIS data would be been very di�icult to achieve with Cormas or NetLogo, whereas the
distributed control over several simulations is muchmore robust in the face of network disconnections than in
NetLogo. This prevents running the risk of having to restart the entire game in case of a single disconnection.

3.10 A last example that concerns urban design is CityScope3 (Grignard et al. 2018; Alonso et al. 2018). In this model,
which simulates the daily life of the inhabitants of a city, in particular theirmobility, used as a tangible interface
to let stakeholders interact with the simulation (Figure 6). With this interface, stakeholders can modify the city
plan and get a direct feedback of the impact of these modifications on the simulation. Two displays are used
to show these impacts: a first one projected on the LEGO bricks that provides information about the buildings
and inhabitantmobility, and a second one projected on a screen that presents di�erent sub-displays related to
urban performance. The model illustrates several features of GAMA in addition to GIS data management: con-
nection of a GAMA simulation with another so�ware (the one used to analyze the LEGO citymodel in this case),
definition of several rich displays composed of sub-displays andmanagement of the projection of a display on
a specific physical surface (wall, table, etc...).

3.11 These three examples illustrate the new features that we developed for the GAMA platform linked to the three
main components of the development of rich participatory simulations: visualization, user interaction and sim-
ulation interconnection.

Visualization with GAMA

3.12 Visualization is one of the main components of agent-based simulations, in particular in the context of partici-
patory simulations (Dorin & Geard 2014). For many modelers, visualization is not only their first point of entry
when building a model, but also an increasingly prevalent way of designing, verifying and validating models.
The back and forth between writing and visualizing a model is an integral part of the daily life of modelers.

3.13 This visualization is part of an integrated modeling approach that gives the possibility of intuitively verifying
agent states and refining individual behaviors of the agents and the expected collective or emerging structures
(Grignardet al. 2013). Thispractice is akeypointofparticipatory simulationapproaches,where thevisualization
of themodel serves as amediationbetweenactors andas a support for their decision-making. In order to speak
toa largeandheterogeneousaudienceanddefinegraphical interface toaspecific role, it is necessary topropose
di�erent views of the same simulation.

3.14 GAMA enablesmodelers to easily di�erentiate amodel from its visualization by o�ering the possibility of defin-
ing di�erent displays composed of several layers per simulation. The user, depending on his/her role and

JASSS, 22(2) 3, 2019 http://jasss.soc.surrey.ac.uk/22/2/3.html Doi: 10.18564/jasss.3964



Figure 7: The samemodel observed with 3 di�erent perspectives.

Figure 8: A same tra�ic model observed through 2 di�erent points of views.

his/her level of expertise, will then visualize the simulation in a specific way and interact with its represen-
tation without altering the initial model. Figure 7 shows a classical boids model4 observed from 3 di�erent
perspectives (3 di�erent positions of the camera). To go further, Figure 8 shows a simulation of tra�ic through
2 points of view: the first display shows the individual vehicle agents moving on the network and generating
tra�ic (jams) and a seconddisplay drawing the tra�ic jams themselves)5. In an experiment, the user can define
as many displays as he/she wants. Each display is composed of di�erent layers. For each layer, the modeler
can configure visibility, transparency, position and size of the layer.

3.15 As noted by Allan (2009) and Railsback et al. (2006), the use of 3D is still uncommon in the world of agent-
based simulation, whereas using the third dimension can significantly increase the immersive property of a
simulation. GAMA o�ers advanced visualization features pertaining to 3D visualization with textures, complex
lights, and customdynamic cameras through simple GAML statements. For example, the CityScopemodel uses
these 3D features for some sub-displays.

3.16 Finally, as presented in the previous section, GAMA o�ers tools to manage the projection of a display on a spe-
cific physical surface (wall, table, etc...) to avoid any resulting image deformation, which is a big advantage not
only when engaging the community but also when communicating the results of a model as in some projects
(Becu et al. 2017). Figure 9 shows an example of the use of this feature for the MarrakAir project6 (Emery et al.
2017): in this project, which aims at alerting the general public to the air pollution of the city of Marrakech, a
GAMA simulation is displayed on the physical model of Marrakech (built with a 3D-printer). This tangible in-
terface makes it easier for spread awareness and understanding among a wide audience about the e�ects of
pollution in urban areas.

User Interaction

3.17 Like NetLogo and Cormas, GAMA provides many features for defining user interaction, i.e. the possibility for

JASSS, 22(2) 3, 2019 http://jasss.soc.surrey.ac.uk/22/2/3.html Doi: 10.18564/jasss.3964



Figure 9: Picture of the MarrakAir installation.

participants to interact with a simulation. While some of these features such as the possibility of modifying the
value of the agent’s variables through the agent inspector are directly available for all simulations, some others
can be specified by the modeler using the GAML language. The next sections describe all these features.

Event layer

3.18 In contrast to platforms such asNetLogo, GAMApermits thedefinition of asmanydisplays as necessary. In addi-
tion, a modeler can specify in a display a specific layer called the event layer allowing an action to be triggered
whenanevent occurs. Thepossible events consideredare: mouseup,mousedown,mousemove,mouse enter,
mouse exit, or a character key (keyboard event).

3.19 Once the event is triggered, the action linked to this event is requested and can modify the state of the world.
The modeler can directly access the location of the mouse in a display (in terms of coordinates in the world)
through a dedicated keyword. From this location, and thanks to GAMA’s spatial operators, the modeler can
obtain the list of agents in the neighborhood or overlapping the mouse location.

3.20 For example, the Sprite and Littosim models use this type of events to detect the players’ actions on the dis-
play. An older example that uses a former version of event layer is presented in Chu et al. (2008): in this model
concerning the coordination of a rescue team (ambulances, cops, firefighters) a�er an earthquake, the user can
modify, at runtime, the target of the di�erent members of the rescue team by just clicking on them and the
desired target, and observe the result.

User command

3.21 In addition event layers, themodeler can define actions that can be directly activated through the GUI interface
during a simulation: a user command.

3.22 A user command can be defined in a GUI experiment or in a species of agents.

3.23 If the user command is defined in a GUI experiment, the implemented action appears as a button on the top of
the parameter view (Figure 10)7.

3.24 If the user command is defined inside a species scope (either a global or a regular one), the user can access the
action during execution in two ways:

• When the agent is inspected, the user commands appear as buttons above the agents’ attributes (Fig-
ure 11).

• When the agent is selected by a right-click in a display, these commands appear in the pop-up menu
(Figure 12).

3.25 For example, one of the instances of the CityScope model uses user commands to enable stakeholders to di-
rectly modify the type of mobility allowed on a road (e.g. pedestrian, bike, car).

JASSS, 22(2) 3, 2019 http://jasss.soc.surrey.ac.uk/22/2/3.html Doi: 10.18564/jasss.3964



Figure 10: Interface with a user command called cmd_inside_experiment defined in the experiment

Figure 11: Interfacewith a user command called cmd_inside_species defined in themy_species species – inspec-
tor view.

JASSS, 22(2) 3, 2019 http://jasss.soc.surrey.ac.uk/22/2/3.html Doi: 10.18564/jasss.3964



Figure 12: Interface with a user command called cmd_inside_species defined in themy_species species – right-
click on the display.

User input

3.26 Like in NetLogo, GAMA allows the modeler to define a dialog to ask the user to give a value to one or several
variables through a specific operator. This operator displays a dialog asking the user to define the values of
the corresponding variables. The modeler can also add a text as an argument by the operator, which will be
displayed as a title for the dialog pop-up (Figure 13). The dialog is modal and will interrupt the execution of the
simulation until the user has either dismissed or accepted it. It can be used, for instance, for the purpose of
initialization to force the user to input new values instead of relying on the initial parameter values. It can also
be used for participative models where each user runs a client model and inputs values to the server model.

3.27 The Sprite model uses this feature to ask for information from the player (first of all, the player’s name).

Control architecture

3.28 Another way to define user interactions is to use the user control architecture that allows users to take control
over an agent during the course of the simulation through a user-controlled panel.

3.29 This control architecture is a specializationof theFiniteStateMachineArchitecture (FSM)whereagentbehaviors
can be defined by using a new construct called user panel. This user panel translates, in the interface, into a
semi-modal view that waits for the user to choose action buttons, change attributes of the controlled agent,
etc.

3.30 As user panel is a specialization of state, themodeler has the possibility of describing several panels and choos-
ing the one to open depending on a few conditions, using the same syntax as the one used for finite state ma-
chines. This ensures great flexibility in the design of the user interface, as it can be adapted to various stages of
the simulation.

Simulation interconnection

3.31 As illustrated by the work presented in Becu et al. (2017) and Grignard et al. (2018), GAMA enables a simulation
to communicate with other programs through di�erent protocols (TCP, UDP, MQTT).This feature allows, for ex-
ample, a GAMA simulation to communicate with another GAMA simulation or with various terminals such as
smartphones, tablets and sensors to export displays or to collect data. The basic idea is that any agent in the
model can get the capability (through a dedicatedGAML skill) to connect to a particular server and to sendmes-
sages to any other agent in any other simulation that is connected to this server. Sent data is automatically and
internally serialized before being sent as content of messages; this allows an agent to send data of any kind
through the network.

JASSS, 22(2) 3, 2019 http://jasss.soc.surrey.ac.uk/22/2/3.html Doi: 10.18564/jasss.3964



Figure 13: Interface with an input command that asks the user to fix the number of agents to be created.

Figure 14: Processes of Littosim: 1) data is sent by the clients (players); 2) the sever sends thedata to the flooding
model; 3) the flooding model is sent back to the server.

3.32 From a technical point of view, extensive tests have beenmade using an ActiveMQmessage broker (MQTT pro-
tocol) with 5 to 10 GAMA simulations connected on it. One of themain advantages of using such an architecture
is that it the negative e�ects of unstable Wifi connections. In addition, it can accept connections from any type
of devices such as mobile devices (based on Android or IOS) or captors. For instance, this architecture allows
the modeler to connect GAMA simulations running on di�erent computers with an android interface deployed
on amobile phone controlling the game.

3.33 For example, the Littosim project (presented in Becu et al. 2017) uses the following type of architecture (Fig-
ure 14):

1. Each client is controlled by a player, data is sent to the server model.

2. Elevation and land cover rugosity data is updated and sent to the flooding model (external program).

3. Flood simulation results are sent back to the server model and each player can evaluate damages in
his/her territory.

Conclusion

4.1 In this article, we presented the new features we developed for the GAMA platform dedicated to participatory
modeling and simulation. As shown, these features enable GAMA to simplify the work of modelers in a par-

JASSS, 22(2) 3, 2019 http://jasss.soc.surrey.ac.uk/22/2/3.html Doi: 10.18564/jasss.3964



ticipatory context. Several real application cases have already shown the usability of these features to create
complex serious games.

4.2 GAMA is continuously evolving and new features are constantly being added to the platform. One of the new
features that is currently under development concerns the possibility of saving the di�erent steps of a simula-
tion to give the possibility of backtracking to previous steps or replay simulations. While this feature is already
available in some platforms such as Cormas, its usability for KIDS models composed of thousands of agents
with complex variables (3D geometries, graph. . . ) is a real challenge.

4.3 Furthermore, in the future, we plan to couple GAMA with a game engine such as Unity to be able to propose
high-quality 3D displays and rich real-time interactions with a 3D environment. The challenge will then be to
retain the simplicity of GAMAmodeling, even with complex 3D environments.

Acknowledgements

This work is partially supported by the public grants overseen by the French National Research Agency (ANR)
as part of the program PRC (reference: ACTEUR ANR-14-CE22-0002).

Notes

1The source code of the Sprite model can be downloaded here: https://goo.gl/n4SRYL.
2The source code of the Littosim project is available on the following GitHub repository: https://github.

com/LittoSim.
3Thesourcecodeof theCityScopeproject is availableon the followingGitHubrepository: https://github.

com/CityScope.
4This model is available in the GAMA Model Library: Library Models / Features / 3D Visualization / 3D Camera

and trajectories.gaml.
5Thismodel is available in theGAMAModel Library: PluginModels /DrivingSkill /RoadTra�ic simple (City).gaml.
6The source code of the MarrakAir project can be found on the GitHub repository: https://github.com/

gnoubi/MarrakAir.
7Figures 10, 11, 12 and 13 are snapshots of the execution of models available in the GAMAModel library: they

can be found in Library Model / Features / User Interaction/.

References
Adam, C., Taillandier, F., Delay, E., Plattard, O. & Toumi, M. (2016). SPRITE – Participatory simulation for raising
awareness about coastal flood risk on the oleron island. In International Conference on Information Systems
for Crisis Response and Management in Mediterranean Countries, (pp. 33–46). Berlin/Heidelberg: Springer

Allan, R. J. (2009). Survey of agent basedmodelling and simulation tools. Tech. rep.

Alonso, L., Zhang, Y. R., Grignard, A., Noyman, A., Sakai, Y., ElKatsha, M., Doorley, R. & Larson, K. (2018).
Cityscope: A data-driven interactive simulation tool for urban design. Use case Volpe. In A. J. Morales, C. Ger-
shenson, D. Braha, A. A.Minai& Y. Bar-Yam (Eds.),UnifyingThemes inComplexSystems IX, (pp. 253–261). Cham:
Springer

Axelrod, R. (1997). TheComplexity of Cooperation: Agent-BasedModels of CompetitionandCollaboration. Prince-
ton, NJ: Princeton University Press

Banos, A. & Sanders, L. (2013). Modéliser et simuler les systèmes spatiaux en géographie. In F. Varenne &
M. Silberstein (Eds.),Modéliser & simuler, vol. 2, (p. 2). Paris: Edition Matériologiques

Barreteau, O., Bousquet, F., Étienne, M., Souchère, V. & d’Aquino, P. (2014). Companionmodelling: Amethod of
adaptive and participatory research. In Companion Modelling, (pp. 13–40). Berlin/Heidelberg: Springer

JASSS, 22(2) 3, 2019 http://jasss.soc.surrey.ac.uk/22/2/3.html Doi: 10.18564/jasss.3964

https://goo.gl/n4SRYL
https://github.com/LittoSim
https://github.com/LittoSim
https://github.com/CityScope
https://github.com/CityScope
https://github.com/gnoubi/MarrakAir
https://github.com/gnoubi/MarrakAir


Bauer, B., Müller, J., Odell, J. & Arbor, A. (2001). Agent UML: A formalism for specifying multiagent interaction.
Agentoriented So�ware Engineering, 1957, 91–103

Becu, N., Amalric, M., Anselme, B., Beck, E., Bertin, X., Delay, E., Long, N., Marilleau, N., Pignon-Mussaud, C. &
Rousseaux, F. (2017). Participatory simulation to foster social learning on coastal flooding prevention. Envi-
ronmental Modelling & So�ware, 98, 1–11

Becu, N., Amblard, F., Brax, N., Gaudou, B. & Marilleau, N. (2015a). How to involve stakeholders in themodeling
process. In A. Banos, C. Lang & N. Marilleau (Eds.), Agent-Based Spatial Simulation with NetLogo, (pp. 223–
252). Amsterdam: Elsevier

Becu, N., Bommel, P., Le Page, C. & Bousquet, F. (2016). Cormas, une plate-forme multi-agent pour concevoir
collectivement des modèles et interagir avec les simulations. In Journées Francophones sur les Systèmes
Multi-Agents (JFSMA). Cépaduès

Becu, N., Frascaria-Lacoste, N. & Latune, J. (2015b). Experiential learning based on the newdistrict asymmetric
simulation game: Results of a dozen gameplay sessions. In Hybrid Simulation & Gaming in the Networked
Society: The 46th ISAGA Annual Conference 2015

Bersini, H. (2012). UML for ABM. Journal of Artificial Societies and Social Simulation, 15(1), 9

Beydoun, G., Low, G., Henderson-Sellers, B., Mouratidis, H., Gomez-Sanz, J. J., Pavon, J. & Gonzalez-Perez, C.
(2009). FAML: A generic metamodel for mas development. So�ware Engineering, IEEE Transactions on, 35(6),
841–863

Blikstein, P., Abrahamson, D. & Wilensky, U. (2005). NetLogo: Where we are, where we’re going. In Proceedings
of the Annual Meeting of Interaction Design and Children

Bourgais, M., Taillandier, P. & Vercouter, L. (2016). An agent architecture coupling cognition and emotions for
simulation of complex systems. Social Simulation Conference 2016

Bourgais, M., Taillandier, P. & Vercouter, L. (2017). Enhancing the behavior of agents in social simulations with
emotions and social relations. In The 18th Workshop on Multi-agent-based Simulation-MABS 2017

Bousquet, F., Bakam, I., Proton, H. & Le Page, C. (1998). Cormas: Common-pool resources and multi-agent
systems. In A. P. Del Pobil, J. Mira & M. Ali (Eds.), Tasks and Methods in Applied Artificial Intelligence, (pp.
826–837). Berlin/Heidelberg: Springer

Brauer, J. (2015). The VisualWorks development environment. In J. Brauer (Ed.), Programming SmallTalk –
Object-Orientation from the Beginning, (pp. 77–96). Berlin/Heidelberg: Springer

Caillou, P., Gaudou, B., Grignard, A., Truong, C. Q. & Taillandier, P. (2017). A simple-to-use BDI architecture
for agent-based modeling and simulation. In W. Jager, R. Verbrugge, A. Flache, G. de Roo, L. Hoogduin &
C. Hemelrijk (Eds.), Advances in Social Simulation 2015, (pp. 15–28). Berlin/Heidelberg: Springer

Cervenka, R., Trencansky, I. & M., C. (2005). Modeling social aspects of multiagent systems: The AML approach.
In J. P. Müller & F. Zambonelli (Eds.), Agent-Oriented So�ware Engineering VI 6th InternationalWorkshop, AOSE
2005, Utrecht, The Netherlands, July 25, 2005. Revised and Invited Papers, (pp. 28–39)

Chu, T.-Q., Boucher, A., Drogoul, A., Vo, D.-A., Nguyen, H.-P. & Zucker, J.-D. (2008). Interactive learning of ex-
pert criteria for rescue simulations. In Pacific Rim International Conference on Multi-Agents, (pp. 127–138).
Berlin/Heidelberg: Springer

Daudé, E., Langlois, P., Blanpain, B. & Sapin, E. (2010). AOC, une ontologie formelle pour la modélisation de
systèmes complexes en géographie. In Outils, méthodes et modèles en géomatique pour la production de
connaissances sur les territoires et le paysage

Dorin, A. & Geard, N. (2014). The practice of agent-basedmodel visualization. Artificial Life, 20(2), 271–289

Drogoul, A., Huynh, N. Q. & Truong, Q. C. (2016). Coupling environmental, social and economic models to un-
derstand land-use change dynamics in the mekong delta. Frontiers in Environmental Science, 4, 19

Edmonds, B. & Moss, S. (2004). From KISS to KIDS – An ’anti-simplistic’ modelling approach. In International
Workshop on Multi-Agent Systems and Agent-Based Simulation, (pp. 130–144). Berlin/Heidelberg: Springer

JASSS, 22(2) 3, 2019 http://jasss.soc.surrey.ac.uk/22/2/3.html Doi: 10.18564/jasss.3964



Emery, J., Marilleau, N., Martiny, N., Thévenin, T., Nguyen-Huu, T., Badram, M., Grignard, A., Hbdid, H., Laatabi,
A.-M. & Toubhi, S. (2017). Marrakair: une simulation participative pour observer les émissions atmo-
sphériques du trafic routier en milieu urbain. In Treizièmes Rencontres de Théo Quant

Gaudou, B., Marilleau, N. & Ho, T. V. (2010). Toward a methodology of collaborative modeling and simula-
tion of complex systems. In Intelligent Networking, Collaborative Systems and Applications, (pp. 27–53).
Berlin/Heidelberg: Springer

Graphiti (2018). Graphiti. http://www.eclipse.org/graphiti/

Grignard, A., Alonso, L., Taillandier, P., Gaudou, B., Nguyen-Huu, T., Gruel, W. & Larson, K. (2018). The impact
of new mobility modes on a city: A generic approach using ABM. In International Conference on Complex
Systems, (pp. 272–280). Berlin/Heidelberg: Springer

Grignard, A. & Drogoul, A. (2017). Agent-based visualization: A real-time visualization tool applied both to data
and simulation outputs. In The AAAI-17 Workshop on Human-Machine Collaborative Learning, (pp. 670–675)

Grignard, A., Drogoul, A. & Zucker, J.-D. (2013). Online analysis and visualization of agent-based models. In
International Conference on Computational Science and Its Applications, (pp. 662–672). Berlin/Heidelberg:
Springer

Kahn, K. & Noble, H. (2009). The modelling4all project a web- based modelling tool embedded in web 2.0. In
International Conference on Simulation Tools and Techniques

Klabbers, J. H. G. (2009). The Magic Circle: Principles of Gaming and Simulation. Rotterdam: Sense

Langlois, P., Blanpain, B. & Daudé, E. (2015). Magéo, une plateforme de modélisation et de simulation multi-
agent pour les sciences humaines. Cybergeo: European Journal of Geography

Le Page, C., Becu, N., Bommel, P. & Bousquet, F. (2012). Participatory agent-based simulation for renewable re-
sourcemanagement: The roleof theCormas simulationplatform tonurture a community of practice. Journal
of Artificial Societies and Social Simulation, 15(1), 10

Le Page, C. & Perrotton, A. (2017). KILT: A modelling approach based on participatory agent-based simulation
of stylized socio-ecosystems to stimulate social learning with local stakeholders. In International Workshop
on Multi-Agent Systems and Agent-Based Simulation, (pp. 156–169). Berlin/Heidelberg: Springer

Meadows, D., Fiddaman, T. & Shannon, D. (1986). Fish banks, ltd. Laboratory for Interactive Learning

North, M., Collier, N., Ozik, J., Tatara, E., Macal, C., Bragen, M. & Sydelko, P. (2013). Complex adaptive systems
modeling with Repast simphony. Complex Adaptive Systems Modeling, 1(1), 3

Noyman, A., Holtz, T., Kröger, J., Noennig, J. R. & Larson, K. (2017). Finding places: HCI platform for public
participation in refugees accommodation process. Procedia Computer Science, 112, 2463–2472

Railsback, S. F., Lytinen, S. L. & Jackson, S. K. (2006). Agent-based simulation platforms: Review and develop-
ment recommendations. Simulation, 82(9), 609–623

Resnick, M. (1996). Starlogo: An environment for decentralized modeling and decentralized thinking. In Con-
ference Companion on Human Factors in Computing Systems, (pp. 11–12)

Taillandier, F. & Adam, C. (2018). Games ready to use: A serious game for teaching natural risk management.
Simulation & Gaming, 49(4), 441–470

Taillandier, P., Bourgais, M., Caillou, P., Adam, C. & Gaudou, B. (2016). A BDI agent architecture for the GAMA
modeling and simulation platform. In International Workshop on Multi-Agent Systems and Agent-Based Sim-
ulation, (pp. 3–23). Berlin/Heidelberg: Springer

Taillandier, P., Gaudou, B., Grignard, A., Huynh, Q.-N., Marilleau, N., Caillou, P., Philippon, D. &Drogoul, A. (2018).
Building, composing and experimenting complex spatial models with the GAMA platform. GeoInformatica

Taillandier, P., Vo, D.-A., Amouroux, E. & Drogoul, A. (2010). GAMA: A simulation platform that integrates geo-
graphical information data, agent-based modeling and multi-scale control. In International Conference on
Principles and Practice of Multi-Agent Systems, (pp. 242–258). Berlin/Heidelberg: Springer

JASSS, 22(2) 3, 2019 http://jasss.soc.surrey.ac.uk/22/2/3.html Doi: 10.18564/jasss.3964

http://www.eclipse.org/graphiti/


Tisue, S. & Wilensky, U. (2004). NetLogo: A simple environment for modeling complexity. In International
Conference on Complex Systems, (pp. 16–21)

Vo, D.-A., Drogoul, A. & Zucker, J.-D. (2012). An operational meta-model for handling multiple scales in agent-
based simulations. In Computing and Communication Technologies, Research, Innovation, and Vision for the
Future (RIVF), 2012 IEEE RIVF International Conference on, (pp. 1–6)

Voinov, A. &Bousquet, F. (2010). Modellingwith stakeholders. EnvironmentalModelling&So�ware, 25(11), 1268–
1281

JASSS, 22(2) 3, 2019 http://jasss.soc.surrey.ac.uk/22/2/3.html Doi: 10.18564/jasss.3964


	Introduction
	Participatory Modeling
	Context
	Platforms for participatory modeling
	Graphical modeling language

	Graphical modeling with GAMA
	Overview
	Definition of the conceptual model
	Definition of the parameters and processes
	Conclusion


	Participatory simulation
	Context
	Visualization with GAMA
	User Interaction
	Event layer
	User command
	User input
	Control architecture

	Simulation interconnection

	Conclusion
	Acknowledgements

