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Abstract: Using the agent-based model of Miller et al. (2012), which depicts how di�erent types of individuals’
memory a�ect the formation and performance of organizational routines, we show how a replicated simula-
tion model can be used to develop theory. We also assess how standards, such as the ODD (Overview, Design
concepts, and Details) protocol and DOE (design of experiments) principles, support the replication, evalua-
tion, and further analysis of this model. Using the verified model, we conduct several simulation experiments
as examples of di�erent types of theory development. First, we show how previous theoretical insights can
be generalized by investigating additional scenarios, such as mergers. Second, we show the potential of repli-
cated simulation models for theory refinement, such as analyzing in-depth the relationship between memory
functions and routine performance or routine adaptation.

Keywords: Replication, ABM, ODD, Design of Experiments (DOE), Organizational Routines, Dynamic Capabili-
ties

Introduction

1.1 Reproducibility of results is crucial to all scientific disciplines (Giles 2006), a fundamental scientific principle,
and a hallmark of cumulative science (Axelrod 1997). The reproducibility of simulation experiments has gained
attention with the increasing application of computational methods over the past two decades (Stodden et al.
2016). Simulation models can be verified by reproducing identical or at least similar results. Moreover, repli-
catedmodels allow to conduct further research on a reliable basis. Still, as in other scientific endeavors (Nosek
et al. 2015), independent replications of simulation studies are lacking (Heath et al. 2009; Janssen 2017).

1.2 Potential reasons for the shortage of independent model replications are manifold: lacking incentives for re-
searchers, deficient communication of model information, uncertainty in how to validate replicated results,
and the inherent di�iculty of re-implementing (prototype) models (Fachada et al. 2017)1. Agent-basedmodels,
moreover, are built on more assumptions than traditional models due to their high degree of disaggregation
and bottom-up logic, rendering more di�icult the verification and validation of these models (Zhong & Kim
2010). Replication e�orts of agent-basedmodels may also lack supporting methods.

1.3 This paper shows how replicated simulation models can be used to develop theory, which could increase the
incentives to publish replicated work. Both replication and the subsequent theory development are fostered
here through the use of simulation standards, such as the ODD (Overview, Design concepts, and Details) pro-
tocol and DOE (design of experiments) principles; these standards were not used when themodel we replicate
was initially developed, presented, andanalyzed. For this exercise, weuse the agent-based simulationmodel of
organizational routines by Miller et al. (2012), examining the relationship between di�erent types of individual
memory and organizational routines. Although 158 publications to date have cited this study, none so far have
replicated the model.

1.4 We selected this model for our replication study for several further reasons. First, the model is highly original
in its approach to address the micro-foundations of organizational routines by modeling agents’ procedural,
declarative, and transactive memory,2 enabling an investigation of the dynamic relationship between individ-
ual cognitive properties and both the formation and the performance of organizational routines. Second, it is
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currently one of the most frequently cited agent-based models of organizational routines.3 Third, it was pub-
lished in the reputed Journal of Management Studies, not a typical outlet for agent-based simulation studies.
Finally, it has the potential to support further development of theory, and the fact that it did not use simulation
standards enables us to demonstrate their potential benefits.

1.5 This paper proceeds in three main steps in order to show how a replicated simulation model can be used both
to generalize previous results and to refine theory: (1) replicate and verify the model, comparing results with
those of Miller et al. (2012);4 (2) test the usefulness of agent-based modeling standards for replication, such as
theODDprotocol andDOEprinciples; and (3) develop theoretical understanding of themodeled organizational
system by extending the simulation experiments on verified grounds.

1.6 We successfully reproduce the results of Miller et al. (2012) in the replicatedmodel. The ODD structure helps to
systematically extract information from the original model, while DOE principles guide the experimental anal-
ysis of the model and enhance interpretability of the results. For example, we clarify one ambiguous model
assumption. For theory development, we generalize the scope of the replicated model by investigating how
additional scenarios, such as amerger or a volatile environment, a�ect routine formation and performance, as
well as relating previous and new findings to prominent constructs in the literature.

1.7 The remainder of this paper is structured as follows. The next section reviews relevant literature concerning
replication, simulation standards, and theory development. We then introduce our replication methodology,
where we apply the ODD protocol and DOE principles in the context of the simulation model replication. The
replicatedmodel is then used to generalize and refine previous theoretical insights. The final section concludes
and provides an outlook for further research.

Related Literature

2.1 Replication, in general, is considered a cornerstone of good science. The successful replication of results pow-
erfully fosters the credibility of a study. Besides, replications can be used to advance the knowledge in a field,
in the sense that the original study design can be extended, generalized, and applied in new domains. Replica-
tions allow linking existing andnewknowledge (Schmidt 2009) and reflect an ideal of science as an incremental
process of cumulative knowledge production that avoids “reinventing the wheel” (Richardson 2017).

2.2 Computational models successfully replicated by independent researchers are considered to be more reliable
(Sansores & Pavón 2005) and credible (Zhong & Kim 2010). Replications can reveal three types of errors: (1) pro-
gramming errors; (2) misrepresentations of what was actually simulated; and (3) errors in the analysis of sim-
ulation results (Axelrod 1997; Sansores & Pavón 2005). A replication might also reveal hidden, undocumented,
or ambiguous assumptions (Miodownik et al. 2010), which can a�ect the fit of the implementedmodel with the
world to be represented.

2.3 The current practice stands in stark contrast to the o�-stated importance of replication. Nosek et al. (2015)
sparked intense discussion of a potential “replication crisis” in fields as diverse as psychology, economics, and
medicine. Whilemuch of this discussion concerned empirical areas, replicability and replication also have high
relevance for computational modeling (Miłkowski et al. 2018; Monks et al. 2019). Nevertheless, most agent-
based models have not been replicated (Heath et al. 2009; Legendi & Gulyas 2012; Rand & Wilensky 2006).5
Most researchers build newmodels instead of using existing models (Donkin et al. 2017; Thiele & Grimm 2015),
a practice which hampers cumulative and collective learning and raises the costs of modeling (Dawid et al.
2019; Monks et al. 2019).6 Replicated models can also provide a good starting point for theory development
(Lorscheid et al. 2019).

2.4 Recentlydevelopedstandardsandguidelines toenable rigorous simulationmodelingandmodelanalysis (Grimm
et al. 2010; Lorscheid et al. 2012; Rand & Rust 2011; Richiardi et al. 2006) can also support the replication pro-
cess. Social simulation researchers increasingly acknowledge such standards as the ODD protocol and DOE
principles (Hauke et al. 2017). The ODD protocol allows the standardized communication of models (Grimm
et al. 2006, 2010), while DOE principles can foster the systematic analysis and communication of model behav-
ior (Lorscheid et al. 2012; Padhi et al. 2013). Using these standards can help researchers compare simulation
models, designs, and results.

2.5 Given the cumulative nature of science, replication, ideally supported by these standards, can potentially help
to build theory through simulation. Among the many ways to develop theory (see Lorscheid et al. 2019), we
focus here on the ideas of Davis et al. (2007),7 whoposition the elaboration of simple theories via simulation ex-
periments in a “sweet spot” between theory-creating research, formal modeling, and empirical, theory-testing
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research. Basic or simple theory8 typically stems from individual cases or formal modeling; the authors de-
scribe it as follows:

By simple theory, we mean undeveloped theory that has only a few constructs and related propo-
sitions withmodest empirical or analytic grounding such that the propositions are in all likelihood
correct but are currently limited by weak conceptualization of constructs, few propositions linking
these constructs together, and/or rough underlying theoretical logic. Simple theory also includes
basic processes that may be known (e.g., competition, imitation) but that have interactions that
are only vaguely understood, if at all. Thus, simple theory contrasts with well-developed theory,
such as institutional and transaction cost theories that have multiple and clearly defined theoret-
ical constructs (e.g., normative structures, mimetic di�usion, asset specificity, uncertainty), well-
established theoretical propositions that have received extensive empirical grounding, and well-
elaborated theoretical logic. Simple theory also contrasts with situations where there is no real
theoretical understanding of the phenomena. (Davis et al. 2007, p. 482)

2.6 In this spirit, we later contribute to the literature on dynamic capabilities,9 specifically from the perspective of
knowledge integration. Despite a large body of research, the concept of dynamic capabilities has not reached
the level of elaboration of other theories in the field of strategic management or organizational science (Helfat
& Peteraf 2009; Pisano 2015). This is perhaps because the concept has a longitudinal and processual focus and
because empirical data are di�icult to obtain; all these factors make simulation particularly useful for theory
development (Davis et al. 2007).

2.7 In this regard, we posit that simulations can strengthen the formal understanding of knowledge-integrating
processes as one potential micro-foundation for dynamic capabilities. To this end, we begin with a replicated
model of Miller et al. (2012), who acknowledge their study’s contribution to the literature on dynamic capabili-
ties, and then conduct several additional simulation experiments. We focus on the representationof underlying
knowledge structures as adeterminant for the e�ectivenessof dynamic capabilities. Weuse formalmodeling to
increaseprecision, compared topreviouslyusedverbalmodels (Smaldinoet al. 2015), in theunderlying theoret-
ical logic and the description of the connected constructs. In doing so, we refine the theory of dynamic capabil-
ities by expressing knowledge-integrating processes as a potential mechanism a�ecting knowledge structures’
underlying routines. Hence, we aim to strengthen the conceptualization of constructs. At the same time, we
generalize the concept of knowledge structures in routines’ formation by showing the benefits of this concept
in new contexts, such as mergers.

Method

3.1 The replication re-implements the conceptual model in a di�erent so�ware and hardware environment to en-
sure that neither hardware nor so�ware specifics drive results (Miodownik et al. 2010; Wilensky & Rand 2007).
Greater di�erences in the implementation yield stronger verification if the model nevertheless produces the
same results.

3.2 Table 1 compares the features of the original study and our replication. The replication is performed by inde-
pendent researchers, which enhances the objectivity. The conceptual model is re-implemented in a di�erent
so�ware environment, which allows the detection of coding issues and e�ects induced by di�erent stochastic
algorithms. We choseNetLogo for re-implementation, awidely-used agent-based simulation so�ware package
(Hauke et al. 2017; Rand & Rust 2011). A significant di�erence between the original model implementation and
our re-implementation is thatwe apply the relatively recently establishedmodeling standards of ODDandDOE.
This enablesus touncoverpotential ambiguitieshamperinga fully conclusive replicationprocess, necessitating
the exploration of implicitly made assumptions.

Dimension Original study Replication

Year 2012 (published) 2020
Authors Miller, Pentland, Choi Hauke, Achter, Meyer
Simulation so�ware MATLAB 7 NetLogo 6.0
Model documentation individual structure ODD protocol
Model analysis selected experiments selected experiments + DOE

Table 1: Features of the original study and the present replication
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3.3 The replication aims to reproduce the output pattern of the original model (Grimm et al. 2005) as a criterion of
success (Wilensky & Rand 2007). We further evaluate our replication according to the three-tier classification of
Axelrod (1997):

1. The re-implemented model generates identical results to the original model. Such “numerical identity”
is only possiblewith amodel having no stochastic elements or using the same randomnumber generator
and seeds.

2. The results of the re-implementedmodel do not statistically deviate from the original; they are “distribu-
tionally equivalent,” which is su�icient for most purposes.

3. The results of the re-implemented model show “relational equivalence” to the results produced by the
original model. This weakest level refers to models with approximately similar internal relationships
among their results. For example, output functions may have comparable gradients but deviate statisti-
cally (e.g., di�ering coe�icients of determination).

3.4 Additional DOE analysis (see Appendix C) allows examination “under the hood” of a simulation result. Opening
the typically “black box” of simulation results allows systematic verification and validation, further increasing
the credibility of the replication.10 Based on the replicated model, we perform additional experiments to com-
plement and extend the results of Miller et al. (2012), thereby developing a deeper understanding of routines by
analyzingagents’ knowledgebaseanddevelopingabroaderunderstandingbymodelingmergingorganizations
and organizations operating in volatile environments.

Model Description

4.1 A condensed model description follows below (for a full description, see the ODD protocol in Appendix A).11
The model aims to show how cognitive properties of individuals and their distinct forms of memory a�ect the
formation and performance of organizational routines in environments characterized both by stability and by
crisis (see also Miller et al. 2012).

4.2 Table 2 overviews the model parameters. Agents represent human individuals; together, they form an organi-
zation. By default, the organization comprises n agents. The organization must handle problems that it faces
from its environment. A problem consists of a sequence of k di�erent tasks (Miller et al. 2012).

Variable Description Value (Default)

n Number of agents in the organization 10, 30, 50
k Number of di�erent tasks in a problem 10
a Task awareness of an agent 1, 5, 10
pt Probability that an agent updates its transactive memory 0.25, 0.5, 0.75, 1.00
pd Probability that an agent updates its declarative memory 0.25, 0.5, 0.75, 1.00
wd Declarative memory capacity of an agent 1, 25, 50

Table 2: Overview of model parameters as applied by Miller et al. (2012)

4.3 Agents have di�erent skills, though skills themselves are not varied. Each agent has the skill to perform a par-
ticular task (Miller et al. 2012). The number of agents equals at least the number of di�erent tasks in a problem,
thus ensuring that the organization is always capable of solving a problem. The number of agents can exceed
the number of tasks (n > k), according to the parameter ranges (Miller et al. 2012). The k di�erent skills are
assumed to be distributed uniformly among the agents.12

4.4 Any agent is aware of a number a of randomly assigned tasks, and each agent is at least aware of the task the
agent is skilled for (Miller et al. 2012). Agents can recognize tasks of which they are aware and are blind to
unfamiliar tasks (Miller et al. 2012). Each agent is aware of a limitednumber of tasks in anyproblem (1 ≤ a ≤ k).

4.5 Agents have a chance tomemorize a subsequent taskwd in their declarativememoryonce theyhaveperformed
a task and handed the problem over to another agent, who then accomplishes the next task. An agent memo-
rizes a task with a certain probability given by the variable pd. Additionally, agents can memorize the skills of
other agents in their transactive memory. The number of agents and their skills which each agent can memo-
rize is limited by the number of agents in the organization. By default, the probability pt is 0.5 that an agent will
add an entry to transactive memory (Miller et al. 2012).
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4.6 Agents aredistributedacross theorganization. Scale anddistancearenotmodeledexplicitly, but time is crucial.
First, operationally, each organizational problem-solving process is time-consuming. Second, strategically, an
organization that consecutively solves problemsmight form routines over time.

4.7 Organizations have to perform the tasks in a given order to solve a problem. Once each task is performed, the
problem is solved (Miller et al. 2012). Theorganizationcopeswith several problemsover time,whether recurring
or changing in terms of the task sequence.

4.8 Agents self-organize the problem-solving process (see Figure 1) for given task sequences of the generated prob-
lems, except for the first task of each problem, which is always assigned to an agent that is aware of the task
and has the required skill. An agent in charge of performing a task in a problem is also responsible for passing
the next task in the sequence to another agent. Thus, the agent in charge might remember or must search for
another agent that seems capable of handling the next task (Miller et al. 2012). As long as the performed task is
not last in the problem sequence, each agent is responsible for advancing the solution by assigning an agent to
the next task. Once a problem is solved, a new problem is generated, initiating a new problem-solving process
(Miller et al. 2012).

Figure 1: Flow chart of an agent’s behavior (according toMiller et al. (2012) and the improved conceptual design.
We provide reasons for the highlighted changes in Section 5.

4.9 Organizational performance is measured by cycle time, calculated for each problem-solving process. Until a
problem is solved, cycle time increases incrementally when agents (n) perform either necessary (nt) or un-
necessary (ut) tasks and due to search costs (st) caused by unsuccessful random search attempts by agents.
An organization achieves minimum cycle time if it only performs necessary tasks and if no search costs occur
(Miller et al. 2012). The minimum cycle time equals the number of tasks in a problem.13

Cycle time =
nt∑
t=1

+

ut∑
t=1

+

st∑
t=1

Clarification of the Conceptual Model and Critical Reflections on the De-
sign

5.1 The ODD protocol enables standardized descriptions of agent-based models with the intent to increase the
e�iciency of communicating conceptual models and preventing ambiguous model descriptions (Grimm et al.
2006, 2010). In particular, theODDprotocol fosters the clear, comprehensive, andnon-overlappingmodel spec-
ifications required to replicate a model.

5.2 The ODD protocol can be used to transfer the unstructured, possibly scattered descriptions of a model into
a standardized, accessible format for e�icient subsequent consultation. A replicating modeler should avoid
re-implementing a model from the original code to prevent bias (Wilensky & Rand 2007). Using the explicit
intermediate result of the ODD protocol avoids this problem.
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Experimental clarification of ambiguousmodel assumptions

5.3 We discovered an unclear assumption from themodel description in Miller et al. (2012) when transferring their
information into the structure of the ODD protocol. We clarified this ambiguity experimentally, without con-
sulting the original code, to identify the underlying assumptions used in the original paper. The abstractmodel
description also allows for model improvements without violating its original assumptions.

5.4 Specifically,Miller et al. (2012, p. 1542) state that the first taskofanewproblem isassignedat randomtoanagent
that is skilled for this task. Hence, one can conclude that this statement is valid for each problem, although the
modeled organization faces recurring problems by default. Another passage on changing problemsmakes this
statement ambiguous, however:

To simulate a one-time exogenous change in the organization’s operating environment, we intro-
duced apermanent change in the problem tobe solved. For the 51st problem, the k (=10) taskswere
randomly reordered, and the organization faced this newproblem repeatedly for the remaining du-
ration of a simulation run (Miller et al. 2012, p. 1548).

5.5 This passage suggests that new problems are characterized by reordered task sequences. Hence, one can also
conclude that recurring problems are not new problems. This opens two di�erent model assumptions:

A. The first task of each problem is assigned to an agent who is skilled in that task.

B. Only the first task of a changed problemwith reordered task sequence is assigned to an agent who is skilled
in that task.

5.6 Figure 2 shows the simulation results of the re-implemented model, presuming either (A) or (B). Complemen-
tarily, we depict the results of the original model. We use the default parameter setting wherein the update
probability of agents’ transactive memory (pt) is varied. The results indicate that the original model used as-
sumption (A), as the resulting pattern better matches the original model.

Figure 2: Model behavior under two di�erent assumptions compared to the original. Note: Average results over
100 simulation runs, each including a problem change in the fi�ieth problem-solving instance.

5.7 While amodel description in the ODD format cannot protect against all ambiguities, it doesmakemodels’ con-
ceptual foundationsmore explicit. Theoverall valueof the standardized, ODDmodel descriptionhasbeen com-
prehensively discussed elsewhere (Grimmet al. 2006); here, we particularly emphasize its value for replication.
Our precisely formulated submodel descriptions form a solid basis for writing corresponding functions in the
NetLogo code. Themodel description in the ODD format explicitly expresses the formerly ambiguous assump-
tion (see Appendix A, ODD Protocol, Submodels, problem generation, and task assignment). The final ODD
description comprehensively specifies themodel in an acknowledged format, which both helps other scholars
to understandmore precisely themodel ofMiller et al. (2012) andprovides a solid ground for further extensions.

Critical reflections on the conceptual design

5.8 Transferring information from the conceptualmodel into theODD structure enhancedour understanding of the
model, and subsequent pretests revealed two opportunities for improvement.

5.9 Figure 1highlights the first improvement. Thismodificationdoesnotbreakanymodel assumptions. In themod-
ified flow chart, an agent searches randomly for agents until one accepts the problem. In the original model, a
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failed random search attempt results in repetitive scrutiny of the task and consultation of memory. This does
not change the agent’s cognitive state, again resulting in a random search.

5.10 Second, we argue that random search can be more sophisticated. The original random search is designed as
an urn model with replacement. The active agent randomly approaches other agents that might be able to
perform the requested task or that can help the searching agent by making a referral to another skilled agent.
A�er an unsuccessful search, the agent again searches randomly among all agents. Hence, the searching agent
might approach the same agent again, implying that the searching agent would not remember which agents
were approached unsuccessfully before. This assumption is counterintuitive and empirically unlikely. On the
one hand, agents in general can remember other agents and their skills. On the other hand, agents do not
remembermeeting an approached agent during a search attempt. An alternativemodel design could be tested
in which agents are also able to learn from an unsuccessful random search attempt. An alternative urn model
without replacement would reduce the search costs and cycle time of a problem-solving process.

5.11 Overall, using the ODD protocol helped to define the conceptual model and revealed where the original model
description allowed two contradictory assumptions. Furthermore, the ODD structure helped to identify oppor-
tunities for model improvements without violating the initial assumptions and highlighted alternative model
designs that extend the original model.

Using DOE Principles to Evaluate the Replicated Model

6.1 Since the simulation model has stochastic elements, the results reported risk being unrepresentative, which
could threaten the reliability of conclusions drawn from the simulation experiments. DOE principles, therefore,
demand specification of the required number of runs based on the coe�icient of variation for the performed
experiments,14 which allows consideration of stochastically induced variation and thereby enhances the credi-
bility of results.

6.2 Our design incorporates low (L), medium (M), and high (H) factor levels, as highlighted in Table 3. These three
design points reflect the applied settings to estimate the number of simulation runs needed to produce su�i-
ciently robust results given model properties and stochasticity.

Design
Points

Factors Representation

n a pt pd wd

L 10 1 0.25 0.25 1 Low factor levels
M 30 5 0.5 0.5 25 Medium factor levels
H 50 10 0.75 0.75 50 High factor levels

Table 3: Table of design points for estimating coe�icients of variation

6.3 Table 4 shows the error variancematrixwithmean values and coe�icients of variation for designpointM (for the
full error variancematrix, see Appendix C). Wemeasured cycle time at five selected steps during the simulation
runs, namely when the problems (P) 1, 25, 51, 75, and 100 are solved, to account for the dynamic characteristic
of the dependent variable.15 The coe�icient of variation (cv) is calculated as the standard deviation (σ) divided
by the arithmetic mean (µ) of a specific number of runs (Lorscheid et al. 2012). The cycle times in Table 4 result
from di�erent number of simulation runs ranging between 10 and 10,000. The coe�icients of variation stabi-
lize with increasing number of runs at about 5,000 runs; the mean values and coe�icients of variation change
only slightly from 5,000 to 10,000 runs. We therefore conclude that 5,000 runs are su�icient to produce robust
results.16

6.4 With significant error variance detected for 100 simulation runs, results averaged over 100 runs or fewer should
be carefully interpreted. Regarding the cycle time for the 25th problem, the coe�icient of variation is 0.14 for
100 runs and 0.20 for 5,000 runs, which is a considerable di�erence. Visual comparison of experimental re-
sults based on 100 averaged runs is thus imprecise and error-prone compared to a comparison based on 5,000
simulation runs.

6.5 Ahighnumberof simulation runsalsoconfirm theexpectedvalues for cycle timeasdeterminedanalytically (see
AppendixD),whicho�ers furtherevidence that theconceptualmodel is implementedcorrectly. Theanalytically
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Design points and
dependent variable

Number of runs

10 50 100 500 1000 5000 10000

Cycle time (P1) µ 95.80 89.44 88.19 90.15 88.61 87.98 87.86
cv 0.24 0.29 0.32 0.30 0.31 0.31 0.31

Cycle time (P25) µ 10.00 10.40 10.26 10.30 10.39 10.29 10.27
cv 0.00 0.19 0.14 0.19 0.22 0.20 0.20

Cycle time (P51) µ 59.50 59.04 57.36 58.82 59.00 58.43 58.32
cv 0.31 0.28 0.31 0.32 0.33 0.32 0.32

Cycle time (P75) µ 30.30 30.32 28.98 28.00 28.42 28.63 28.49
cv 0.22 0.34 0.35 0.36 0.39 0.38 0.38

Cycle time (P100) µ 19.20 22.08 22.77 23.03 23.14 22.97 22.95
cv 0.25 0.46 0.43 0.42 0.41 0.41 0.41

Table 4: Error variance matrix for design point M of the replicated model. Note: Both the average µ and the
coe�icient of variation cv stabilize with increasing number of runs.

calculated cycle time for the first problem-solving instance (P1) of the medium-sized organization (n = 30) is
88.00, and the simulated average cycle time over 10,000 runs is close to this at 87.86. Such an approximate
“numerical identity” is also found for a small organization (n = 10), with expected and simulated cycle times of
82.00 and 81.62, respectively, and for a large organization (n = 50), with anticipated and simulated cycle times
of 89.20 and 89.52, respectively (see Appendix C).

6.6 To illustrate the value of defining the number of runs basedon the coe�icient of variation, weo�er the following
example. Miller et al. (2012)model in their final experiment an external change to and simultaneous downsizing
of an organization; downsizing is thus modeled as a response to external change. The organization faces a
changed problem once the 50th recurrent problem is solved. At the same time, the organization is downsized
from (n = 50) to (n = 30) and from (n = 50) to (n = 10) agents.

6.7 Figure 3 shows the considerable increase in cycle time a�er simultaneous problem change and downsizing.
In terms of cycle time, the organization that continuously operates with 50 agents peaks at 63, whereas the
downsized organization of 30 members peaks at 73, and the downsized organization with ten members peaks
at 83. Hence, downsizing initially interferes with organizational performance (see also Miller et al. 2012). The
organization lost experiencedmembers and their crucial knowledge for coordinating activities.

Figure 3: Replicated results of experiment 7 compared to original results.

6.8 Although the averaged results of 100 simulation runs suggest that downsized organizations potentially learn
morequickly in thenewsituation, no reliable statement canbemadeaboutwhichorganizationperformsbetter
a�er the change.17 An increasednumberof runs enablesmoredetailed interpretation (see Figure4). Theheavily
downsized organization with only ten remainingmembers shows the highest performance a�er the change. At
first, the heavily downsized organization performs worst, but learns much faster to handle the new situation.
Still, none of the organizations regain optimal performance. This suggests that smaller organizations are more
agile in creating a new knowledge network among agents.
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Figure 4: Statistically robust simulation of experiment.

6.9 In line with this example, we have replicated each experiment of Miller et al. (2012) with 100 runs and with
5,000 runs (seeAppendixB). The results, while qualitatively identical, nevertheless slightly di�er quantitatively,
which is likely driven by stochasticity. Based on the qualitative equivalence of the results, especially regarding
the patterns in behavior a�er problem changes and downsizing, we conclude that the original model and our
replication have identical assumptions.18

6.10 The simulation results show high variance derived from model stochasticity (for a detailed analysis, see Ap-
pendix C). We defined the coe�icient of variation to improve our understanding of the model’s behavior and
assess the precision of both our results and those as published by Miller et al. (2012). Calculation of e�ect sizes
and interaction e�ects (see Appendix C) further deepened our understanding of the model’s behavior, o�ering
still further evidence that both models behave identical.

6.11 Overall, applying DOE principles enabled us to analyze themodel’s behavior systematically. For evaluating the
replicated model, we found it crucial to determine the number of runs and understand stochastically induced
variance. The replicatedmodel produces quantitatively similar and qualitatively identical results. According to
the classification of Axelrod (1997), the results are “relationally equivalent” and hint overall at “distributional
equivalence”onceerror variance is taken intoaccount. Hence,weconclude themodel is replicated successfully.

Developing Theory with the Replicated Model

7.1 The following o�ers an example of how modest model extensions and in-depth analyses of simulation results
can help consolidate insights and advance the understanding of vaguely specified concepts to develop theory.
In a commonly used definition by Davis et al. (2007), theory comprises four elements:

Constructs, propositions that link those constructs together, logical arguments that explain the
underlying theoretical rationale for the propositions, and assumptions that define the scope or
boundary conditions of the theory. Consistent with these views, we define theory as consisting
of constructs linked together by propositions that have an underlying, coherent logic and related
assumptions.

7.2 Miller et al. (2012) address the theory of routines by Feldman & Pentland (2003), which states a reciprocal rela-
tionship between the performative and ostensive aspects of routines. The interaction between these two as-
pects, however, is only vaguely understood, with only partial empirical grounding (Biesenthal et al. 2019). For-
mal modeling provides the means to investigate underlying mechanisms by operationalizing theoretical con-
structs. In this respect, Miller et al. (2012) operationalize the dynamic interdependence of actions andmemory
distributed across an organization. In their computational representation, routines’ ostensive aspect is con-
structed via three types of memory residing in individuals distributed across the organization. As individuals
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draw on their memory to solve incoming problem sequences, the performative aspect of routines is made ob-
servable.

7.3 Davis et al. (2007) suggested a roadmap for developing theory using simulations, including the vital step of ex-
perimentationgiven the traditional strengthsof a simulation: testing in a safe environment, lowcosts to explore
experimental settings, and high experimental precision. New theoretical insightsmay be thereby generated by
unpacking or varying the value of constructs, modifying assumptions, or adding new features to the computa-
tional representation.

7.4 We proceed from our successful replication to this crucial step of experimentation, developing theory in the
following three ways: extension, in-depth analysis, and theoretical connection. First, we extend the model by
exploring a merger in addition to the downsizing analyzed in the original study. By adding another scenario of
external change, we extend the scope or boundary conditions and therefore further generalize the theory. Sec-
ond,weanalyze themodelmoredeeply to showhowan initial problem leads to a traceable pathdependency in
routine formation, gaining nuance on howmemory functions a�ect the formation of routines. We thus unpack
the theoretical constructs analytically rather than representationally. Third and finally, we elucidate connec-
tions to dynamic capabilities, taking our new insights back to the literature to look for intertwined processes
not previously considered. In brief, we uncover the path dependency of routines (Vergne & Durand 2010), look
for related theory, identify the concept of dynamic capabilities, and extend the experiment to investigate this
concept in more detail.

7.5 Themodel simulates organizational routines, which Feldman & Pentland (2003, p. 2) define as “repetitive, rec-
ognizable patterns of interdependent action, involvingmultiple actors.” Feldman & Pentland (2003) conceptu-
alized routines as adhering to recursively connected performative and ostensive aspects,19 which helps explain
themechanisms of stability and change.20 The ostensive aspect embodies the abstract, stable idea of a routine,
while the performative aspect embodies the patterns of action individuals perform at specific times and places
(Feldman & Pentland 2003).

7.6 Hodgson (2008) suggested defining routines as capabilities because of their inherent potential. The capabili-
ties they generate are innate to organizations’ ambidextrous capabilities to balance the exploitation of existent
competencies with the exploration of new opportunities (Carayannis et al. 2017). On the one hand, organiza-
tional performance is contingent on exploration so that the organization can remain competitive in the face of
changing demands. On the other hand, organizational performance is contingent on the capability to exploit
resources and knowledge. The latter type of performance can be measured in terms of e�iciency, that is, a re-
duction in cycle time by drawing on past experience (Lubatkin et al. 2006). Ambidexterity is usually related to
fundamental measures of success such as firm survival, resistance to crises, and corporate reputation (Raisch
et al. 2009).

7.7 Organizations’ ability to operate in a specific environmental setting is determined by the suitability of their rou-
tine portfolios (Aggarwal et al. 2017; Nelson & Winter 1982). Routines facilitate e�iciency, stability, robustness,
and resilience (Feldman&Rafaeli 2002); innovation (Carayannis et al. 2017); and variation, flexibility, andadapt-
ability (Farjoun 2010). An underlying assumption is that organizations achieve optimal performance by finding
appropriate responses to changes in the environment. Hence, organizations aim to align external problems
with internal problem-solving procedures so theymay respond adequately to their environment andmaintain
equilibrium between internal (organizational) and external (environmental) aspects (Roh et al. 2017).

Generalizing theory: Routine disruptions when organizationsmerge

7.8 Besidesdownsizing—whichMiller et al. (2012) studied, asmentionedabove—mergers areanother frequent ac-
tivitybywhichorganizations respond toexternal changes (Andradeet al. 2001;Bena&Li 2014). Becausemergers
require the integration of new personnel, human resource issues are critical, but the literature onmergers and
acquisitions o�en neglects this aspect (Sarala et al. 2016). Therefore, to complement the experimental results
of Miller et al. (2012) concerning downsizing, we investigate a merger scenario to generalize the understanding
of routine disruptions.

7.9 Organizations comprise personnel with di�erent experiences, which, as indicated by previous results, are cru-
cial to form routines. Thus, we expect that integrating new sta�, whether experienced or inexperienced, a�ects
post-merger routine performance. We model untrained employees as agents with empty declarative memory
(a) andmodel experienced employees as agents with randomly replenished declarativememories (b), thereby
assuming that agents have some operational knowledge.21 Figure 5 depicts organizational performance under
di�erent post-merger processes of routine formation. The following analysis models the merger activity as an
organization’s response to an external shock, as reflected by a change in problem.
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Figure 5: Routine disruptions in a merger and acquisition scenario. Note: Each case is averaged over 5,000
simulation runs. The initial organization comprises ten agents. Remaining parameters are set according to
their defaults. The organization acquires new personnel (n = 40) at the fi�ieth problem-solving instance; in
Case 2, the problem changes at the same time. The solid lines represent merger type a, when the new agents
have empty declarative memories.

7.10 Case 1 represents an organization that integrates new personnel in stable environmental conditions. This in-
tegration initially disrupts the original routines whether the new personnel members are inexperienced (a) or
experienced (b), which negatively a�ects organizational performance in a similar pattern as downsizing, albeit
less intensively (see Appendix B). The integration of inexperienced personnel (Case 1a) allows organizations to
form new routines with optimal performance, suggesting that the new sta� adopt the lived routines. In con-
trast, the integration of experienced personnel (Case 1b) results in lower organizational performance, even in
the long run; the new sta� does not completely unlearn obsolete sequences of task accomplishment.22

7.11 Case 2 represents an organization that integrates new personnel in response to an external shock, as reflected
by a problem change. The change and simultaneous integration of new personnel force the organization to
learn new routines. The learning curves of merged organizations are quite similar to those of downsized or-
ganizations (see Appendix B). Organizations with new, inexperienced personnel (Case 2a) perform worse, sug-
gesting that the new sta� is not well integrated; organizational behavior is predominantly determined by core
personnel (n = 10). On the other hand, organizations integrating experienced personnel (Case 2b) can form
routines that result in optimal performance.

7.12 We can now generalize that mergers and downsized organizations show similar patterns in organizational per-
formance (see Appendix B); both involve disrupted routines. ComparisonbetweenCases 1 and 2 shows the con-
ditions underwhichmerging organizations candevelop e�icient routines. The finding thatmergers can initially
decay adherence to routine agrees with empirical results (see, e.g. Anand et al. 2012). Moreover, the literature
on successful mergers highlights the importance of forming new, high-order routines that can resist blocking
e�ects from existing routines; successful mergers can then, a�erward, realize radical innovations (Heimeriks
et al. 2012; Lin et al. 2017). In other words, the success of a merger depends on individuals’ experience, as this
a�ects whether lived routines can bemaintained and whether new e�icient routines can be formed.

7.13 In conclusion, organizations that downsize ormerge as a response to an external shock stimulate the formation
of new routines. We found that both downsizing and merging initially reinforce the disruption of established
routines. Loss of organizational knowledge initially reduces performance in downsized organizations, but such
organizations quickly form new, e�icient routines. In a complementary finding, Brauer & Laamanen (2014)
found that the pressure of downsizing on the remaining individuals forces them to engage in path-breaking
cognitive e�orts that can lead to better results than the repair of routines by drawing on experience. In a fur-
ther generalization of the ideasMiller et al. (2012) presented, we conclude that the routines of organizations are
similarly a�ected when organizations downsize or merge in response to an external shock.

Deeper analysis: Routine persistence in organizations facing volatility

7.14 If routines are a recurrent pattern of actions, the question remains which patterns can emerge. An appropri-
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ate organizational routine matches the task sequence of the problem at hand. Some less e�icient organiza-
tions, however, struggle to coordinate their activities with the problem. In particular, inappropriate behavior
by agents might create unnecessary activity.

7.15 To explore the link between the behavior of individuals and emerging routines, we performed an experiment in
which an organization again begins by facing 50 recurrent problems. The organization thereby has the chance
to form a routine. Therea�er, it faces 50 di�erent problems, each characterized by a new, randomly shu�led
task sequence.23 Hence, themodeled organizationmust adapt tomultiple, distinct problems. At the end of the
simulation, in the 100thproblem-solving instance,wemeasure the frequencyof emergingpatterns of actions to
investigate whether the organization has unlearned the routine, initially developed over the first 50 problems,
that has since become obsolete.

7.16 Table 5 shows the frequencies of subsequently performed tasks by the organization. The matrix contains the
relative frequency of performed actions as measured on the 100th problem-solving instance of a simulation,
averagedover5,000 runs. Theactions that theorganizationperforms to solve thegeneratedproblemscomprise
necessary (73%) and unnecessary actions (23%). Most combinations of subsequent, accomplished tasks occur
similarly o�en, with a probability of around 1%. However, a few interdependent actions have a likelihood of
emerging around 2%. These correspond to the subsequent, ordered tasks of the initial problem.

Subsequent performed task24

Performed task 0 1 2 3 4 5 6 7 8 9

0 0.00 2.97 1.13 0.79 0.63 0.66 0.57 0.59 0.61 0.54
1 0.69 0.00 2.85 1.40 1.07 1.05 1.00 0.95 0.91 0.91
2 0.97 0.72 0.00 2.55 1.36 1.07 1.09 1.04 1.04 0.99
3 0.97 0.95 0.79 0.00 2.48 1.29 1.11 1.06 0.99 0.96
4 1.07 0.99 0.91 0.78 0.00 2.26 1.27 1.14 1.03 0.98
5 0.98 1.01 1.03 0.92 0.79 0.00 2.06 1.23 1.03 0.96
6 0.91 1.03 0.99 1.00 0.86 0.78 0.00 2.07 1.18 0.97
7 0.97 0.98 0.94 1.00 0.99 0.90 0.74 0.00 2.07 1.20
8 0.96 1.05 1.00 1.01 1.04 0.91 0.91 0.71 0.00 2.00
9 1.00 1.14 1.17 1.15 1.14 1.14 1.09 1.03 0.75 0.00

Table 5: Occurrence probabilities of recurrent patterns of interdependent actions. Note: The rows indicate the
performed tasksand thecolumns indicate the task subsequentlyperformed. Thevalues indicate theprobability
frequency thatone task isperformeda�eranother, calculatedas: P (E) = n(E)

N ×100wheren(E) is thenumber
of trials inwhich eventE occurred andN is the total number of trials. The occurrence probability that tasks are
immediately repeated is very low. Agents with amisleading notion of what to do can get stuck in loops inwhich
the problem is passed between agents. Such loops are broken in the model. Therefore, we exclude entries on
the matrix diagonal for calculating the occurrence probabilities.

7.17 The initially learned routine (to solve the recurrent problems numbered 1 to 50) persists. Although the organi-
zation copes more recently with diverse situations (random problems 51 to 100), the prior, learned behavior of
the organization remains traceable. This persistence of organizational behaviormatches the detected behavior
of individuals (see Appendix E). Individuals and the organization maintain obsolete knowledge, implying that
an organization’s past pattern of action partially persists. Recurrent patterns of interdependent actions reduce
organizational performance if these actions do not match the situation at hand. Developed routines can be
detrimental when an organization faces change.

7.18 The development of organizational capabilities in terms of routines is path dependent (Aggarwal et al. 2017).
The results of a similarly designed experiment o�er further support. When the organization exclusively copes
with di�erent problems, the original action pattern remains traceable (see Appendix F). Therefore, one might
consider this development of organizational capabilities to be path dependent. This is in line with some schol-
ars position, portraying routines as organizational dispositions or even genes.25 However, conceptualizing rou-
tines as dispositions is untenable, because other factors, such as individuals’ high task awareness, can prevent
the persistence of routines (see Appendix C).
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Refining simple theory: Dynamic capabilities

7.19 If processes of knowledge integration could provide micro-foundations for dynamic capabilities, the model of
Miller et al. (2012) resembles knowledge-integration routines, conceptualizing an individual’s memory as three
di�erent types or functions. The distinct properties of an agent’s memory function correspond to distributed,
specialized knowledge in a firm. To solve collective problems, agents coordinate their actions based on their
memory functions. The ability to learn from previous actions leads to the development of routines with recur-
ring properties for problem-solving, with the formation and performance of these routines a�ected by distinct
properties of individual’s memory.

7.20 We found that an initial problem leads to traceable path dependency in the routine-formation process, which
prevents an organization from again reaching initially achieved cycle times a�er an external shock and thereby
constituting a natural limitation on dynamic capabilities. This newly gained insight motivates a closer investi-
gation of the e�ects of such path dependencies on dynamic capabilities, using our replicated model.

7.21 The model enables interpretations from an operational and strategic perspective. On an operational level, a
change inproblemdecreasesorganizationalperformancebecauseestablishedworkingproceduresbecomeob-
solete and forming new routines requires search costs. This consideration is short term, however. On a strategic
level, organizations that face environmental changes have the opportunity to learn; in the long run, the experi-
ence thus gainedmight improve their capability to handle such changes.

7.22 In Figure 6, an organization learns sequentially over ten di�erent problems with 50 problem instances each,
highlighting the organization’s performance on both levels. The individuals in the organization search for new
paths to adapt their activities to new situations induced by the problem changes. The organization thereby
develops operational capabilities to reduce the cycle time between problem changes and gains a dynamic ca-
pability over the long run to manage external changes.

Figure 6: Strategic and operational perspectives on organizational routines. Note: The learning curves on the
operational level result from 5,000 simulation runs for the default parameter setting and at three sizes of or-
ganization (n). Each run covers ten problem changes induced at discrete steps of 50 problems. The learning
curve on the strategic level is the interpolated result from the peak cycle times of the operational curves of the
default-sized organization (n = 50).

7.23 The organization’s dynamic capability emerges from the cognitive properties of individuals.26 The develop-
ment of such dynamic capabilities has, according to themodel design, two prerequisites. First, individuals can
revise their declarativememories so that they can change their learnedproblem-solving sequence. Second, the
internal sta�ing structures of the organization are non-rigid. Themore individuals are forced to search for new
paths to solve problems, themore likely they are to search for and randomlymeet other individuals. This yields
an experienced organization comprising members who know each other very well. The organization exploits
this knowledge when it faces a change. Modeled here is an ambidextrous organization that can both exploit
acquired knowledge and explore new paths.

7.24 Organizations that recurrently encounter external changes develop dynamic capabilities that enable them to
handle changes in a experienced manner, which enhances their operational performance during crisis-like
events. Overall, the simulation o�ers evidence that organizations can form both dynamic and operational ca-
pabilities based on routines formed through individual’s memory functions. In the long run, organizations that
regularly form new routines develop dynamic capabilities. Given this result, we hypothesize that even an orga-
nization operating in a highly volatile environment can form routines.

7.25 Therefore, wemodel a volatile environment using continuous changes in problem. Figure 7 shows the averaged
results over 5,000 simulation runs for three di�erent organizations operating in volatile environments. We set
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themodel parameters to the defaults except for thememory update probabilities of individuals. The organiza-
tion without memory (pt = 0 and pd = 0) is unable to learn and solves problems exclusively through random
search, which results in consistently poor performance over time. The simulated cycle time is approximately
89.20, which tracks the analytically determined cycle time (see Appendix D). The organization with transactive
and declarative memory (pt =0.5 and pd =0.5) can learn and performs better over the long run. The organiza-
tion with transactive memory but without declarative memory (pt =0.5 and pd =0.0) shows, in the long run,
the best operational performance in the volatile environment.

Figure 7: Organizational routine formation and performance in volatile environments, modeled as continuous
changes in problem.

7.26 The results suggest that organizations can learn and form routines, even in volatile environments. Routines
may be flexibly enacted based on organizational experience through mechanisms that can be explained by
incorporating the previous findings.

7.27 Transactivememory allows agents to learn about the skills of their colleagues, implementing anetwork forwho
knows what. Continuously changing problems force agents to coordinate to accomplish tasks, which teaches
agents about the skills of multiple colleagues. Agents in charge of but not skilled at or aware of a task draw on
their personally developed networks.27 Most agents, by gaining experience over time, develop such networks,
which are interrelated. They allow the organization to retrieve distributed knowledge and flexibly coordinate
whichever activities are appropriate to the current situation.28

7.28 Agents’ declarative memory negatively a�ects organizational performance in the midst of volatility, standing
in contrast to its positive e�ect in stable environments. Besides their personal networks, agents’ actions also
result from their learned problem-solving sequence, which becomes inappropriate when tasks change. The
resulting behavior is then detrimental to organizational performance and perturbs the formation of e�icient
routines.

7.29 In summary, individuals’ learning capabilities enable organizations to form e�icient (meta)routines, indepen-
dent of environmental conditions. The performance of organizations in terms of learning varieswith the type of
memory combined with the type of environment. The particular e�ect of transactive memory was highlighted
in a follow-up study by Miller et al. (2014), which applied a similar model design. Investigating organizations
operating in volatile environments, we found that individuals’ transactive memory enables organizations to
develop dynamic capabilities, while their declarative memory can weaken that e�ect.

7.30 Overall, our results show that individual and organizational learning are antecedents of the development of
both routines anddynamic capabilities in organizations, as Argote (2011) hadpostulated. Individuals in an orga-
nization learn problem-solving sequences and apply their knowledge, which is a prerequisite for the formation
of routines. This positively a�ects organizational performance as long as the organization operates in a sta-
ble environment. However, a learned problem-solving sequence is detrimental to organizational performance
when conditions change, although this detrimental e�ect is not necessarily linear, because interactions among
individuals can compensate for some problem-inappropriate behavior.

7.31 Routines are related to the concepts of cognitive e�iciency and the complexity of problem-solving processes
(Feldman&Pentland2003), but existing literaturehasnot examinedwhether environmental shocks andvolatil-
ity counter the cognitive e�iciency generated by organizational routines (Billinger et al. 2014). Using the repli-
cated model, we demonstrated that organizations can form routines while operating in volatile environments.
When problems change frequently or continuously, such (meta)routines are not detectable merely based on
observable patterns of action.
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Conclusion

8.1 This paper used a replication of a simulation model, namely that of Miller et al. (2012), to develop theory, and
demonstrated the benefit of using standards, such as ODD and DOE, in the replication process. Our replicated
model produces quantitatively similar and qualitatively identical results that are “relationally equivalent” and
hint overall at “distributional equivalence,” following the classification of Axelrod (1997).

8.2 Replications of simulation models must rely on published conceptual model descriptions, which are o�en not
straightforward (Will & Hegselmann 2008), even for a relatively simple model, as was the case here. The use
of the ODD protocol fosters a full model description through its sophisticated, standardized structure. It is
an explicit intermediate result that provides a steppingstone in the replication process (Thiele & Grimm 2015).
Transferring the originalmodel description published byMiller et al. (2012) into the ODD format helped to iden-
tify formally ambiguous assumptions that we subsequently clarified during pretests with the re-implemented
model.

8.3 The application of DOE principles was also helpful in several respects. The original model results were unavail-
able as raw data, presented mainly graphically, averaged over 100 simulation runs, and subject to stochastic
influences. Using the DOE principles suggested by Lorscheid et al. (2012), we quantified statistical errors to
determine 5,000 simulation runs as an appropriate number enabling reliable visual comparison of graphically
depicted outputs. The results of the replicatedmodel generated on this basismatch those highlighted byMiller
et al. (2012). Hence, we primarily exclude errors due to stochasticity in the replicated results. Moreover, the
application of the DOE principles yielded insight into model behavior and validated simulation results against
the conceptual model. Analyses of the original code further increased the credibility of the replication.

8.4 Our successfully replicated and then verified model o�ered a solid foundation for further extensions and ex-
periments to develop and refine theory. First, we generalized previous theoretical insights by investigating a
merger scenario in addition to the downsizing scenario examined in the original paper, finding a similar qual-
itative pattern for both. Either disrupts an organization’s established routines, initially reducing performance
due to lost organizational knowledge, but organizations can quickly form new, e�icient routines. Second, we
illustrate how replicated simulation models may be used to refine theory, such as analyzing in-depth the re-
lationship between memory functions and the performance of routines. In this respect we show that initially
learned routines persist, locating their path dependence in the memory functions of individuals. Progressing
from this finding, new experimentswithmultiple problem changes allowus to clarify and formally specify a po-
tential mechanism (Smaldino et al. 2015) underlying the still actively debated theoretical concept of dynamic
capabilities. Here, given the longitudinal and processual character of the concept, as well as the fact that em-
pirical data are challenging to obtain, simulations o�er comparative methodological advantages (Davis et al.
2007). Table 6 gives a summary of how we develop theory with the replicated model.
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Theory Miller et al. Replication Result Theory develop-
ment

Organizational
routines

Organizational
downsizing sce-
narios

Organizational
merger scenarios

Downsized and
merged organiza-
tions show similar
disrupted perfor-
mance patterns
(=new boundary
condition)

Generalization of
theory through its
extended scope

Routine formation
and performance
measured by cycle
time

More in-depth
analysis of de-
veloped action
patterns and path
dependencies

Organizational
inertia results from
the persistence of
few initial learned
problem-solving
patterns (=path
dependency)

Theory refinement
via specification of
the mechanism of
how memory func-
tions a�ect routine
formation

Dynamic capabili-
ties

Operational (short-
term) performance
of organizations
facing one cri-
sis event (one
problem change)

Strategic (long-
term) performance
of organizations
facing a volatile
environment
(multiple problem
changes)

Distinct under-
standing of the
formation of oper-
ational and strate-
gic capabilities of
organizations

Conceptualization
of routines in
context of dynamic
capabilities. The-
ory refinement
by deconstruct-
ing knowledge
routines

Table 6: Theory development with the replicated model.

8.5 Some limitations exist, as well. We document the benefits of using the ODD protocol and DOE principles with
respect to a replication endeavor. Also, as discussed above, we used quite a large number of runs to obtain
stable results. Themodel’s abstract design enables general interpretations, but its assumptions have not been
validated empirically. Moreover, we investigate dynamic capabilities with respect to knowledge integration,
but the foundations of the concept of dynamic capabilities are not restricted to this respect. Nevertheless, the
agent-based model depicts a potential fundamental mechanism for routine formation and what a�ects their
performance.

8.6 The model suggests promising directions to explore in future research on organizational routines. First, the
performanceof routines that organizations enact tohandle volatility couldbe empirically investigated. Second,
regarding model design, future research could test additional submodels. For example, agents’ search could
be modeled as an urn model without replacement, which would reduce organizations’ search costs and cycle
times. Third, regarding theuseof theODDprotocol andDOEprinciples inmodel replications,we suggest further
testing of these standards in future replication studies to more broadly establish their benefits.
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Appendix A: ODD protocol

Purpose

The model aims to show how the cognitive properties of individuals and their distinct types of memory a�ect
the formation andperformance of organizational routines in environments characterized by stability, crisis (see
Miller et al. 2012) and volatility.

Entities, state variables, and scales

Entities in the model are agents, representing human individuals. The collective of agents forms an organi-
zation. Table 7 reports the model parameters. The global variables are the numbers of agents and tasks. By
default, the organization comprises (n = 50) agents. The organization faces problems from its environment.
A problem involves a sequence of (k = 10) di�erent tasks (Miller et al. 2012). The organization must perform
the tasks in a given order to solve a problem; the order of tasks defines the abstract problem in terms of its
complete solution process. Once the organization performs each task in the required sequence, the problem is
solved (Miller et al. 2012). The organization solves several problems over time, which can either recur or change
in terms of the required task sequence. The time an organization requires to solve a problem is defined as cycle
time (Miller et al. 2012), which represents organizational performance.

Variable Description Value (Default)

n Number of agents in the organization 10, 30, 50
k Number of di�erent tasks in a problem 10
a Task awareness of an agent 1, 5, 10
pt Probability that an agent updates its transactive memory 0.25, 0.5, 0.75, 1.00
pd Probability that an agent updates its declarative memory 0.25, 0.5, 0.75, 1.00
wd Declarative memory capacity of an agent 1, 25, 50

Table 7: Overview of model parameters according to Miller et al. (2012).

Table 7 further defines the individual variables used to set agent behavior. Agents are heterogeneous in termsof
skill, but the skills themselves are not varied andare thus not reflectedby a variable. Each agent has aparticular
skill stored in its procedural memory that enables the agent to perform a specific task (Miller et al. 2012). On
the one hand, the number of agents equals at least the number of di�erent tasks in a problem, thus ensuring
that an organization can always solve a problem, if the organization can organize the task accomplishment in
the defined sequential order. On the other hand, the number of agents can exceed the number of tasks (n >
k) (Miller et al. 2012). In such cases, the k di�erent skills are assumed to be uniformly distributed among the
agents.29

Any agent is aware of a randomly assigned tasks (Miller et al. 2012). Each agent is aware of a limited number of
tasks of a problem (1 ≤ a ≤ k). An agent’s awareness set contains at least the task for which they are skilled,
thus assuming that agents who can perform a specific task are also capable of recognizing this task. Agents are
otherwise blind to unfamiliar tasks (Miller et al. 2012).

Declarative memory enables agents to memorize the subsequently assigned task once they have performed
their task. Agents have limited declarative memory capacity (wd =1) and memorize a task with a probability
set by the variable (pd =0.5) (Miller et al. 2012). Further, agents canmemorize the skills of other agents in their
transactive memory. The number of agents and their skills which each agent can memorize is limited by the
number of agents in the organization. The probability that an agent adds an entry to transactive memory is
defined by the parameter (pt = 0.5) (Miller et al. 2012).

The agents are distributed across the organization. Scale and distance are not modeled explicitly, but time is
crucial in two ways. On an operational dimension, the problem-solving process requires the accomplishment
of tasks, as measured by the cycle time. An organization that consecutively solves problems over time might
form routines.
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Process overview and scheduling

The organization faces consecutive occurring problems. The generated problems trigger organizational activi-
ties. Except for the first task of each problem, the agents self-organize the problem-solving processes given the
task sequences of the generated problems. The first task in each task sequence is assigned to an agent that is
skilled to perform the task. An agent in charge of performing a task in a problem is also responsible for passing
the next task in the sequence to another agent. Thus, the agent in charge might remember or must search for
another agent that seems capable of handling the next task (Miller et al. 2012). Then, the agent in charge hands
the problem over to the identified agent, who then becomes in charge of the problem (Miller et al. 2012).

Figure 8 depicts the schedule that an agent follows when in charge of a problem. An agent first scrutinizes the
task. If the agent is aware of and skilled for the task, the agent updates its declarativememory and perform the
necessary task. The agent then advances to the next task if the problem has not yet been solved (Miller et al.
2012).

An agent that lacks the skill to perform the task at hand starts a local search process. An agent that is aware
of the task but not skilled consults its transactive memory. If the transactive memory reveals another agent
skilled to perform the required task, the searching agent tries to hand the task o� to this agent. An agent that is
unaware of a task consults their declarativememory, whichmight reveal a task that is usually due. If declarative
memory indicates a task (what usually should be done), the agent further consults the transactive memory (of
who has the appropriate skill) to hand the task over to a skilled agent. If this local search is unsuccessful or if
an agent’s memory is undeveloped, the agent proceeds with a distance search process to hando� the problem
(Miller et al. 2012).

Distance search involves a random search for a skilled agent to hand over the problem. If the searching agent
finds a skilled agent, the agent updates the respective types of memory and hands o� the problem. An ap-
proached agent without the skill required for the task of the searching agent might nevertheless be able to
make a referral to another agent. In this case, the searching agent hands o� the task to the referred agent and
updates the transactive and declarative memory (Miller et al. 2012). An unsuccessful search attempt results in
a new random search.

Figure 8: Flow chart of an agent’s behavior (according to Miller et al. 2012).

As long as the performed task is not last in the problem, an agent advances to the next task of the problem.
Once a problem is solved, a new problem is generated and a new problem-solving process is initiated (Miller
et al. 2012).

Design concepts

Basic principle

Themodel design is abstract. Conceptually, it proceeds from the idea that organizational routines form as a re-
sult of individuals’ cognitiveproperties andactivities. Themodel is designed fromtheperspectiveofdistributed
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cognition: the individuals aredistributedandhavedistinct properties. Themodel assumes that individuals self-
organize the problem-solving process and adapt their behavior to recurrent or di�erent problems. Individuals
can learn, which a�ects the coordination of activities and organizational performance.

Emergence

Organizational routines emerge from individuals’ initially independent skill sets and capacities (Winter 2013).
The micro-foundations on the individual level are thus well-reasoned and explicitly modeled. Organizational
macro-behavior is not explicitly modeled. The organizational behavior that emerges from the properties of
the individuals is analyzed. The presumed emergent phenomenon is that the modeled organization develops
routines over time.

Adaption

The individuals in the organization adapt their activities to recurrent and changing problems. Recurrent prob-
lems reflect stable environmental conditions. In this case, the organization adapts to the problem by forming
a routine. A crisis event is modeled as a one-time change in problem, which forces the organization to adapt
to the new situation and learn a new routine. A volatile environment is modeled as a continuously changing
problem, in which the organization has to cope with varying conditions. The organization might even instanti-
ate routines to operate e�iciently in such a volatile environment. In terms of the flexible use of action patterns
and their adaption to certain situations, routine dynamic can be traced back to individuals (Howard-Grenville
2005). Since individuals perform activities contingent on their situations, routines can be applied flexibly in a
volatile environment (Adler et al. 1999; Bogner & Barr 2000).

Objectives

The organizations’ objective is to organize the problem-solving process as e�iciently as possible in terms of
cycle time. Agents’ primary objective is to perform tasks and to organize the problem-solving process. Overall,
agents follow this objective to ensure the completion of all task sequences for each occurring problem.

Learning

Learning is an important design concept. On the individual level, agents have three types of memory: proce-
dural, transactive, and declarative. In procedural memory, agents store their skill (Miller et al. 2012). According
to the model design, each agent owns one skill; agents are assumed to have learned the skill in prior training.
Agents do not learn new skills; agents are assumed to be specialists in their roles. Agents learn through their
transactive and declarative memory. Transactive memory allows the agents to store who knows what in the
organization. Declarative memory enables the agents to learn what should usually be done given a problem’s
task sequence. On the macro level, the organization can learn to handle problems in a routinized manner.

Prediction

Prediction by agents in the organization is only implicitly modeled. Agents that are not aware of a task at hand
try to predict the task from the information in their declarative memory. Agents not skilled to perform the task
at hand try to predict who else in the organization is skilled to perform that task. This prediction is based on
their transactive memory.

Sensing

On themacro level, the organization senses problems. On themicro level, agents sense tasks. Their awareness
models their sensing capabilities. Organizational sensing capabilities depend on the organization’s ability to
include task-aware agents in the problem-solving process at the right time.
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Interaction

Interaction between two agents is communication in which they can exchange information about a task, their
skills, and the skills of other agents. Communication can also result in a problem being handed over between
the agents. This interaction is not explicitlymodeled, task hando�smay encompass communicationor a virtual
or physical exchange of work in progress.

Moreover, a�er task handover, the transmitting agent can observe the actions of the receiving agent. Some
scholars of social cognition distinguish such social observations from interactions (see e.g. Tylén et al. 2012),
but one might indeed consider this observation to be an indirect interaction.

Stochasticity

Organizations that regularly face problems from the environment might not be aware of the specifics of a par-
ticular problem. This is reflected by stochasticity. Moreover, an organizational member who searches for a
colleaguewith a particular skill but has no cluewhom to askwill ask randomly chosen colleagues. This random
choice is also modeled as stochasticity.

Collectives

An organization is the resulting collection of individuals, the personnel at a company. Furthermore, within the
organization, small collectives or dyads can form. Dyads form, for example, when an agent interacts with an-
other agent to hand over a task or to exchange information about other colleagues.

Observations

Theperformance of an organization is observable as cycle time. Themodel allows the observation of cycle time
under di�erent conditions, since the problem and the parameters of the individuals can be varied.

Initialization

Themodel is initialized according to the variable settings. A�er agents of the organization are created, an initial
problem is generated. The model is generic and requires no input.

Submodels

Problem generation and task assignment

Theproblems comprise a set ofk tasks [1. . .k].30 Basedon randomdistribution, the tasks are initially shu�led to
reflect a specific problem that the organizationmust solve. In a stable scenario, each problem is generatedwith
an identical task sequence. A crisis event ismodeled as a permanent change in a problem: the task sequence is
shu�ledonce. A volatile scenario ismodeled as a continuous change in aproblem: the task sequence is shu�led
for each problem or following a defined frequency. In any case, the first task of a problem is always assigned to
an agent that is aware of and skilled in performing the task.

Agents scrutinize tasks

An agent scrutinizes a task at hand to check if the task is represented in their awareness set.

Random search

An agent’s random search attempt is modeled as an urn sample with replacement. The searching agent draws
another agent to approach at random. This search attempt is successful if the searching agent finds another
agent to take the task. Otherwise, the agent searches again, repeating the search until an approached agent
accepts the task.
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Communication between searching and approached agents

Agents communicate to hand over tasks. This communication also a�ects which task is performed next and
particularly depends on agents’ task awareness. Agents that are aware of a task at hand approach an agent
to perform the required task. Agents who are unaware of a task but have a notion of what to do due to their
declarativememory approach an agent to perform the requested task. The response of the approached agents
depends on their task awareness and skill. Four responses are possible: [1a] the agent is aware of and skilled
for the required task and performs it; [1b] the agent is aware of but unskilled for the required task and tries to
make a referral to another agent with the skill to perform it; [2a] the agent is unaware of the required task but
skilled for the requested task andperforms this necessary or unnecessary task; [2b] the agent is unaware of and
unskilled for the requested task and tries tomake a referral to another agentwith the skill for the requested task
(Miller et al. 2012).

Problem responsibility and task handover

An agent hands o� a task if another agent is found to have the skill to perform the required or requested task.
With the task hando�, the approached agent becomes responsible for the problem, while the agent handing
over the task relinquishes responsibility for it. Thus, always one single agent in the organization is responsible
for advancing the problem-solving process.

Declarativememory

Agents observe and can learn what is done next. An approaching agent that hands o� a task to another agent
has the chance to store the information of the task performed next in their declarativememory. An experienced
agent who is unaware of a task can draw on declarative memory to obtain an idea of what usually should be
done. In this case, the agent assumes that the next task is the one that occursmost frequently in the declarative
memory. This assumption can bemisleading, particularly if the problem has changed over time.

Transactivememory

An agent that hands o� a task to another agent has a chance to learn about the skill of the successor. Agents
store this information in their transactive memory, updated with the probability (0 ≤ pt ≤ 1).

Necessary and unnecessary task accomplishments

Agents perform two types of tasks: necessary tasks, according to the given task sequence, and unnecessary
tasks, resulting from task requests by searching agents with a wrong notion of what to do based on the wrong
interference from their declarative memory. The problem-solving process only advances with the accomplish-
ment of necessary tasks.

Cycle time

Cycle time measures the length of time taken for organizations’ problem-solving processes and is calculated
for each problem individually. Until a problem is solved, cycle time increases incrementally when agents (n)
perform either necessary (nt) or unnecessary (ut) tasks and due to search costs (st) caused by unsuccessful
random search attempts by agents. An organization achievesminimum cycle time if it only performs necessary
tasks and if no search costs occur (Miller et al. 2012). The minimum cycle time equals the number of tasks in a
problem.31

Cycle time =
n∑

t=1

nt +

n∑
t=1

ut +

n∑
t=1

st
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Appendix B: Replicated experiments and reproduced results

The e�ect of individual transactivememory on the initial formation of a routine

In the first experiment, we investigate how individuals’ transactive memory a�ects routine formation when an
organization faces a recurrent problem. We test four di�erent settings ofmemory update probability (pt); other
model parameters are held constant and to their defaults.
Figure 9 compares the results produced with the replicated model to those produced by the original model.
Both show that the organization’s problem-solving e�iciency is a�ected by individuals’ transactive memory.
The cycle time decreases over time as the organization learns to e�iciently handle the recurrent problem. The
organization’s capability of forming e�icient routines depends on agents’ cognitive properties. High capacity
of agents to remember who knows what results in high organizational performance. That is, the gradient of
the organizational learning curves depends on their individual properties. Over the long run, the organization
approximates optimum performance (cycle time = 10) when operating on recurrent problems (see also Miller
et al. 2012).

Figure 9: Replicated results of experiment 1 compared to the original results.

While the overall qualitative result is the same between the replicated the original simulation, quantitative di-
vergences must be discussed. The replicated model shows, for a low value of pt and in the first two problem-
solving instances, an increase in the average cycle time from 84 to 94. In the original model, the cycle time
does not exceed 90. Which result is correct? The divergence could be due to a mistaken model assumption or
stochastic variance. Therefore, Figure 10 depicts the results averaged over 5,000 simulation runs.

Figure 10: Statistically robust simulation result of experiment 1.
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The graph shows smooth learning curves compared to results averaged over 100 runs. This indicates that the
model has high stochastic variance that can be reduced by a higher number of runs. Although the three results
are qualitatively similar, they are quantitatively di�erent.

The e�ect of individual declarativememory on the initial formation of a routine

Thesecondexperiment isperformed to investigate thee�ectofdeclarativememoryonanorganization’s routine-
formation process. Similar to the first experiment, the parameter values of (pd) are varied, and the other param-
eters are held constant. The organization again faces a recurrent problem.

Figure 11 depicts the resulting cycle times for the repetitive problem-solving process of the modeled organi-
zation. The generated results of the replicated model again show learning curves decreasing to approximate
the optimal cycle time, as expected. Di�erent parameter settings of (pd) appear to have a small e�ect, indicat-
ing that higher declarative memory capability among members slightly increases the organization’s learning
capability. Thus, individual learning enables the organization to reach higher routine performance in less time.

Figure 11: Replicated results of experiment 2 compared to the original results.

In theoriginal, published results havenoe�ect on routine formation andperformancewith a varyingparameter
(pd) becomes visible. Nevertheless, Miller et al. (2012) explain they found an e�ect of declarative memory, but
the e�ect is low, because agents can discern half of the tasks (a = 5). Furthermore, theymention a high update
probability for declarative memory could substitute for low task awareness. Figure 12 depicts the averaged
results over 5,000 simulation runs, which allows more precise determination of the influence of declarative
memory.

Figure 12: Statistically robust simulation result of experiment 2.
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While the e�ect of declarative memory is low, a higher update probability of declarative memory does make
organizations quicker to form routines. Indeed, the divergences between the original and replicated results de-
mand an investigation of experimental error (see Appendix C). However, Miller et al. (2012) stated that declara-
tivememory a�ects routine formation in this setting due to themodel design: “If the agent holding the problem
isunawareof thenext task, then it presumes that thenext task is thatoccurringmost frequently in itsdeclarative
memory associated with the task it just completed” (p. 1543).

Consequently, an agent’s declarative memory can substitute for lacking task awareness. Moreover, agents ini-
tially learn the correct sequence because the helping agents are aware of the task a searching agent is looking
for and thus, correctly decide what should be done next:

If the agent completed the task for the first time, so that its declarative memory is blank, then the
agent moves to step 2 in the search process and seeks help from a randomly chosen agent who
happens to be aware of the next task in the problem (Miller et al. 2012, p. 1555).

Hence, if organizations face recurrentproblems, agents’ declarativememory cancorrectly substitute for lacking
task awareness. This positively a�ects organizational performance, although the e�ect is weak, as the authors
noted:

Over a wide range of positive values (0.25 ≤ pd ≤ 1), the probability of remembering past task
sequences has little e�ect on the cycle-time path. Because agents can discern half of the tasks (a =
5) and the task sequence is fixed across problems, agents quickly fill the gaps in their knowledge of
the task sequence needed to solve problems. (Miller et al. 2012, p. 1546).

In summary, the authors mention, and the replicated results show that declarative memory (pd) has a slight
e�ect on the initial formation of routines. The authors reason this e�ect logically, but do not provide experi-
mental evidence. Our replication discovers small e�ects also experimentally, suspecting the divergence from
the original model founded in the model stochasticity.

Routine disruption due to downsizing

The third experiment is performed to analyze what happens if the organization loses sta�. In this experiment,
the organization faces recurrent problems and then abruptly drops sta� when the fi�ieth problem is solved.
Two scenarios are analyzed: amoderate sta� reduction from 50 to 30 and a substantial reduction from 50 to 10
organizational members.

Figure 13 highlights the resulting learning curves of the organization. In both cases, the cycle time greatly in-
creases once the organization downsizes. In the extensive downsizing scenario, the average cycle time peaks at
79; in the moderate scenario, it peaks at 47. This indicates that downsizing, particularly extensive downsizing,
disrupts an initially formed routine. The loss of organizational knowledge explains this e�ect. However, once
the downsized organization has solved approximately tenmore problems, it regains optimal performance, im-
plying that the organization formed a new routine. Moreover, the extensively downsized organization recovers
slightly faster (see also Miller et al. 2012).

Figure 13: Replicated results of experiment 3 compared to the original results.
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Figure 14: Statistically robust simulation result of experiment 3.

A comparison between the replicated and original results shows that they are quite similar. The moderately
downsized organization recovers more slowly because learning in this organization is distributed over more
redundant agents (Miller et al. 2012). This supports the hypothesis that organizationsmight fail to adapt due to
their inertia.32 Moreover, the cognitive properties of the organization depend not only on the properties of its
constituting elements. The number of redundant elements also matters and increases the e�ort required for
coordination.

The averaged results over 5000 simulation runs (see Figure 14) o�er evidence of the reliability of the results
from both models, especially the conclusion about which size of organization recovers more quickly, since the
di�erences are quite small.

Adaptation of routine to an external change contingent on organization size

Experiment 4 represents an external change, modeled as a permanent, one-time change in problem. This is
considered an environmental change because organizations do not influence the given problem structure. Fig-
ure 15 illustrates the formation of routines when organizations with 10, 30, and 50members face such a change
a�er solving fi�y problems. The problems one to fi�y and the problems fi�y-one to one hundred are identical
(see also Miller et al. 2012).

Initially, organizations learn to handle the recurrent problem, as observed in the previous experiments. Small
organizations learn faster than larger organizations. Once the problem changes, the organization’s initially
formed routines fail to meet the new challenge. The disruption in routine results in an abrupt increase in cycle
time. The organization’s acquired experience is obsolete. Beyond that, organizational knowledge hampers the
formation of new e�icient routines, as the organization does not achieve the optimal cycle time again. This
indicates that organizations are unable to unlearn initially learned routines. On the micro-level, this might be
explained by persistent and misleading entries within individuals’ declarative memory that impede the learn-
ingof new task sequences (see alsoMiller et al. 2012). Thus, organizations get stuck in less thanoptimal routines
caused by residuals of prior routines.
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Figure 15: Replicated results of experiment 4 compared to the original results.

The averaged results over 100 simulation runs do not make it possible to predict which organization performs
better over the long term. Theaveraged results over 5,000 runs suggest thatbiggerorganizationsdevelopbetter
performing routines over the long run, although, smaller organizations recover faster (Figure 16).

Figure 16: Statistically robust simulation results of experiment 4.

However, an explanation of long-term performance is given by neither (Miller et al. 2012) nor by a simple ex-
amination of the model design and experiment. This demands investigation in this scenario and the agents’
declarative memory states that reflect their knowledge base.

Adaptation of routine to an external change contingent on declarativememory

In Experiment 5, similar to the previous experiment, organizations again face an external change, but agents’
declarative memory capacity (wd) is analyzed. Figure 17 illustrates the learning curves of two organizations
comprising agents with di�erent declarative memory capacities (wd = 1 and wd = 50). Once the problem
changes, the organizations’ formed routines collapse, as observed in the previous experiment. The organiza-
tion comprising agents with a rather low declarative memory capacity shows a slightly higher performance in
the long run (see alsoMiller et al. 2012). This indicates that highly experienced organizationalmembersmay re-
strain adaptation. Organizational unlearning of obsolete activities might thus be hampered because outdated
memory remains stored across the distributed system.
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Figure 17: Replicated results of experiment 5 compared to the original results.

The results generated with both models and those averaged over more simulation runs are qualitatively com-
parable (see also Figure 18). The replicated results indicate that declarative memory capacity does not a�ect
initial routine formation. In the initial phase, agents exclusivelymemorized the correct subsequent task. There-
fore, it does notmatter if they store the right task only once or fi�y times. This result gives further evidence that
the replicated model is built on the same assumptions as the original.

Figure 18: Statistically robust simulation results of experiment 5.

Given theexternal change, theprecisee�ect sizeof theparameter (wd) remainsunclear. Theanalysis also shows
that the complexity of the modeled behavior increases when the problem changes due to agents’ learning ca-
pability.

Adaptation of routine to an external change contingent on task awareness

Experiment 6 is designed to test how agents’ task awareness a�ects organizations’ adaptive properties. This
experiment is similar to experiments 4 and 5, but agents’ task awareness is varied (a = 1, a = 5, and a = 10).
Furthermore, the experiment addresses the substitution of task awareness with declarativememory. Figure 19
depicts the organizational learning curves.

The replicated model shows that agents’ task awareness has a marginal e�ect on the initial formation of rou-
tines. Agents with high task awareness enable their organizations to form routines more e�iciently compared
to organizations comprising agents with low task awareness. Once the problem changes, this e�ect intensifies.
Indeed, organizations with agents that have limited task awareness cannot recover their previously achieved
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performance (see also Miller et al. 2012). The presence of obsolete declarative memory can again explain this
observation; organizations must have members with high task awareness to unlearn old routines.

Figure 19: Replicated results of experiment 6 compared to the original results.

The results of both models are qualitatively similar, but the replicated model has slightly deviating curves in
the initial routine-formation phase. Thesemarginal di�erence becomes visible when averaged over 5,000 runs
(Figure 20).

Figure 20: Statistically robust simulation results of experiment 6.

Routine adaption throughout an external change and simultaneous downsizing

(This experiment is discussed in Section 6 of themain text to exemplify howDOE principles enabled systematic
analysis of model behavior and results. For readability and to provide a complete overview of all replicated
experiments in this appendix, we present it again below.)

The final experiment models an external change to and simultaneous downsizing of an organization; downsiz-
ing is thusmodeled as a response to external change. The organization faces a changed problem once the 50th
recurrent problem is solved. At the same time, the organization is downsized from (n = 50) to (n = 30) and
from (n = 50) to (n =10) agents.

Figure 21 shows the considerable increase inmodeled cycle timea�er simultaneousproblemchangeanddown-
sizing. In terms of cycle time, the organization that continuously operates with 50 agents’ peaks at 63, whereas
the downsized organization of 30 members peaks at 73, and the downsized organization with ten members
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peaks at 83. Hence, downsizing initially disrupts the organizational performance (see also Miller et al. 2012).
The organization lost experiencedmembers and their crucial knowledge for coordinating activities.

Figure 21: Replication model result of experiment 7 in comparison to the original result.

Although the averaged results of 100 simulation runs suggest that downsized organizations potentially learn
morequickly in thenewsituation,we canmakeno reliable statement aboutwhichorganizationperformsbetter
a�er the change. An increasednumber of runs enablesmore detailed interpretation (see Figure 22). The heavily
downsized organization with only ten remainingmembers shows the highest performance a�er the change. At
first, the heavily downsized organization performs worst, but learns much faster to handle the new situation.
Still, none of the organizations regains optimal performance. This suggests that smaller organizations aremore
agile in creating a new knowledge network among agents.

Figure 22: Statistically robust simulation of experiment 7.

Overall, while the comparison of the results reveals some di�erences, bothmodels appear to be built on identi-
cal assumptions. The generation of such similar results with two quite simplemodels that are built on unequal
assumptions is unlikely. The complex model behavior a�er problem changes and downsizing is qualitatively
equal. The results instead suggest high variance that results from stochasticity in the model.

Appendix C: The value of the systematic design of experiments (DOE)

Comparing the results generated by the original and replicatedmodel reveals slight di�erences. The additional
simulation runs yield, when averaged, smooth graphswithout outliers. The original graphs point towardsmore
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stochasticity and raising the question of statistical error. The DOE technique addresses this issue, facilitating
standardized communicationof the experimental design anddeterminationof e�ect sizes ofmodel parameters
with established statistical methods. Here, we apply the DOE technique to improve our understanding of the
replicated model and to illustrate the value of the DOE technique for model evaluation.

Definition of the factorial design

DOE isappropriate for systematically exploringdiverseparameter settings (Lorscheidet al. 2012). The replicated
experiments are based on selected parameter variations. The factorial design, as applied in the following, pre-
defines the varied parameter settings. A 3k factorial design is also chosen to incorporate the parameter settings
used by Miller et al. (2012). Table 8 lists the selected parameters and their corresponding factor levels.

Factor Factor level range Factor levels Representation

Agents (n) [10, 50] [10, 30, 50] [-, 0, +]
Awareness (a) [0, 10] [1, 5, 10] [-, 0, +]
Transactive memory probability (pt ) [0, 1] [0.25, 0.5, 0.75] [-, 0, +]
Declarative memory probability (pd) [0, 1] [0.25, 0.5, 0.75] [-, 0, +]
Declarative memory capacity (wd) [1, 50] [1, 25, 50] [-, 0, +]

Table 8: Factor levels for the 35 factorial design.

This setting excludes a control variable, the number of tasks in a problem (k = 10) is held constant. The depen-
dent variable is cycle time. For a full overview of the classification of the variables as applied, see Appendix A.
The cycle time is measured for each problem instance. Since the modeled organizations face several consecu-
tive problems, the resulting cycle time is dynamic. To incorporate dynamic behavior over time, we conduct our
analysis in discrete steps according to the number of problems.

Determining an appropriate number of simulation runs

(In reduced form, Tables 9 and 10 are already discussed in Section 6 of themain text. For readability and to pro-
vide a complete presentation of all examined design points, we reproduce the full tables and some discussion
here in the Appendix.)

The simulationmodeluses stochasticity,whichdemands todetermine theerror variance. Determining theerror
variance supports the choice of an appropriate number of simulation runs for the experiments. Disclosure of
the error variance also enhances the credibility of reported results and allows the inclusion of stochastically
induced error in model evaluation. The factorial design defines three design points with low (L), medium (M),
and high (H) factor levels, as highlighted in Table 9. The design points reflect the applied settings to estimate
the number of simulation runs needed to produce su�iciently robust results.

Design Points Factors Representation

n a pt pd wd

L 10 1 0.25 0.25 1 Low factor levels
M 30 5 0.5 0.5 25 Medium factor levels
H 50 10 0.75 0.75 50 High factor levels

Table 9: Table of design points for the estimation of error variance

Table 10 shows themean values and coe�icients of variation for the design points H, M, and L. Wemeasured cy-
cle time at five selected steps during the simulation runs, when the problems (P) 1, 25, 51, 75, and 100 are solved,
to account for the dynamic characteristic of the dependent variable.33 The coe�icient of variation (cv) is calcu-
lated as the standard deviation (σ) divided by the arithmetic mean (µ) of a specific number of runs (Lorscheid
et al. 2012). The results in Table 10 come from numbers of simulation runs ranging between 10 and 10,000. The
coe�icients of variation stabilize with an increasing number of runs up to about 5,000 runs; the mean values
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Design points and dependent variable Number of runs

10 50 100 500 1000 5000 10000

Design point L
Cycle time (P1) µ 78.60 84.38 84.10 80.94 80.83 81.69 81.62

cv 0.28 0.32 0.31 0.29 0.29 0.31 0.31
Cycle time (P25) µ 10.00 10.16 10.08 10.24 10.14 10.15 10.15

cv 0.00 0.11 0.08 0.27 0.20 0.17 0.16
Cycle time (P51) µ 70.20 58.88 55.67 54.43 54.12 53.71 53.82

cv 0.33 0.33 0.33 0.30 0.31 0.30 0.30
Cycle time (P75) µ 40.30 43.82 43.26 42.03 41.96 42.02 41.94

cv 0.13 0.25 0.26 0.30 0.29 0.28 0.28
Cycle time (P100) µ 38.00 39.04 40.03 38.39 38.41 38.44 38.62

cv 0.20 0.32 0.29 0.28 0.27 0.28 0.28
Design point M
Cycle time (P1) µ 95.80 89.44 88.19 90.15 88.61 87.98 87.86

cv 0.24 0.29 0.32 0.30 0.31 0.31 0.31
Cycle time (P25) µ 10.00 10.40 10.26 10.30 10.39 10.29 10.27

cv 0.00 0.19 0.14 0.19 0.22 0.20 0.20
Cycle time (P51) µ 59.50 59.04 57.36 58.82 59.00 58.43 58.32

cv 0.31 0.28 0.31 0.32 0.33 0.32 0.32
Cycle time (P75) µ 30.30 30.32 28.98 28.00 28.42 28.63 28.49

cv 0.22 0.34 0.35 0.36 0.39 0.38 0.38
Cycle time (P100) µ 19.20 22.08 22.77 23.03 23.14 22.97 22.95

cv 0.25 0.46 0.43 0.42 0.41 0.41 0.41
Design point H
Cycle time (P1) µ 90.50 86.00 87.83 88.40 89.84 89.54 89.52

cv 0.26 0.37 0.34 0.31 0.31 0.31 0.31
Cycle time (P25) µ 10.00 10.14 10.07 10.39 10.41 10.24 10.26

cv 0.00 0.10 0.07 0.33 0.31 0.21 0.21
Cycle time (P51) µ 69.00 61.02 61.72 60.86 61.75 61.58 61.69

cv 0.25 0.31 0.30 0.32 0.33 0.32 0.33
Cycle time (P75) µ 13.90 14.58 14.03 13.80 13.85 13.63 13.66

cv 0.47 0.43 0.39 0.39 0.40 0.38 0.38
Cycle time (P100) µ 10.90 10.72 10.48 10.80 10.96 10.89 10.86

cv 0.11 0.15 0.11 0.25 0.26 0.24 0.23

Table 10: Error variance matrix of the replicated model

and coe�icients of variation change only slightly from 5,000 to 10,000 runs. We therefore conclude that 5,000
runs are su�icient to produce robust results.
With large error variance detected for 100 simulation runs, results averaged over 100 runs or fewer should be
carefully interpreted. Given the design point H and the cycle time of the twenty-fi�h problem, the coe�icient
of variation is 0.07 for 100 runs and 0.21 for 5,000 runs, which is a substantial di�erence. A quantitative eval-
uation of experimental results based on 100 averaged runs is thus imprecise and error-prone compared to an
assessment based on 5,000 or more simulation runs.
The results confirm the expected values of cycle time as determined analytically (see Appendix D). The ana-
lytically calculated cycle time for the first problem (P1) and a small organization (n = 10) is 82.00. The simu-
lated average cycle time over 10,000 runs is 81.62 for a small organization (design point L). These results are
approximately equal. Such an approximate “numerical identity” is also found for medium-sized and large or-
ganizations, with expected cycle time compared to simulated cycle time of 88.00 to 87.86 and 89.20 to 89.52,
respectively. This o�ers further evidence that the replicated model is implemented correctly.

An investigation of model-induced stochasticity

The relatively high error variance for simulation runs explains the deviations identified between the replicated
and original results, illustrated in the example of experiment 2 (see Appendix B). A deviation in terms of cycle
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Figure23: Boxplotsof cycle timebasedon5,000simulation runs for experiment2. Note: The twoendsof thebox
indicate the first and third quantiles, and the black bar within the box represents themedian value of the cycle
time for each problem. The lower quantile splits o� the lowest 25% of data and the upper quantile the highest
25%. Hence, the boxes comprise 50% of the simulation data. Black dots and black stars indicate medium and
extreme outliers, respectively.

time is particularly visible around the first problem-solving instances. We investigate this deviation statistically.

Figure 23 depicts boxplots of the resulting cycle times for experiment 2 performed with the default parameter
setting (pd = 0.5) over 5,000 simulation runs. An overview of the corresponding descriptive statistics is given in
Table 11. The results are broadly scattered, as expected. Variance is limited to the lower bound by theminimum
cycle time (10). Themedian values of the learning curves approximate this lower bound over time, but outliers
still occur above the threshold value of the minimum cycle time. This skews the individual distributions (see
Table 11).

For problem 10, the 25% quantile cycle time is 10, the median cycle time is 16, and the 75% quantile cycle time
is 26 (see Table 11). Consequently, for half of the simulation runs, the resulting cycle time is in a wide range
between 10 and 26. The other 50% of results deviate evenmore, suggesting that divergence between the origi-
nal and replicated results could be caused by high stochasticity, particularly due to the relative low number of
performed simulation runs.

JASSS, 23(1) 12, 2020 http://jasss.soc.surrey.ac.uk/23/1/12.html Doi: 10.18564/jasss.4219



Problem N Mean Median Std.
Dev.

Skewness Min. Max. Percentile
(25)

Percentile
(50)

Percentile
(75)

P1 5000 89.42 86.00 27.67 0.65 22 230 69 86 106
P2 5000 74.26 71.00 26.27 0.66 15 210 55 71 90
P3 5000 62.24 60.00 24.62 0.62 10 209 45 60 77
P4 5000 52.03 49.00 23.54 0.75 10 176 35 49 66
P5 5000 43.05 40.00 21.80 0.87 10 171 27 40 56
P6 5000 36.28 33.00 20.11 1.03 10 181 21 33 48
P7 5000 30.86 27.00 18.38 1.18 10 153 16 27 41
P8 5000 26.34 22.00 16.55 1.42 10 158 13 22 35
P9 5000 23.34 19.00 15.03 1.66 10 157 11 19 30
P10 5000 20.57 16.00 13.55 1.96 10 147 10 16 26
P11 5000 18.90 14.00 12.23 2.02 10 126 10 14 24
P12 5000 17.51 12.00 11.43 2.38 10 118 10 12 21
P13 5000 16.10 11.00 10.16 2.58 10 106 10 11 19
P14 5000 15.21 10.00 9.47 2.74 10 93 10 10 17
P15 5000 14.65 10.00 9.09 3.11 10 104 10 10 16
P16 5000 13.90 10.00 8.31 3.53 10 105 10 10 14
P17 5000 13.37 10.00 7.59 3.71 10 114 10 10 13
P18 5000 13.02 10.00 7.32 4.02 10 117 10 10 12
P19 5000 12.71 10.00 6.84 4.08 10 99 10 10 11
P20 5000 12.38 10.00 6.42 4.54 10 126 10 10 10
P21 5000 12.05 10.00 5.96 4.73 10 86 10 10 10
P22 5000 11.93 10.00 5.98 5.21 10 91 10 10 10
P23 5000 11.72 10.00 5.49 5.19 10 99 10 10 10
P24 5000 11.60 10.00 5.31 5.27 10 86 10 10 10
P25 5000 11.44 10.00 5.10 5.76 10 100 10 10 10
P26 5000 11.29 10.00 4.73 5.51 10 73 10 10 10
P27 5000 11.16 10.00 4.31 5.75 10 82 10 10 10
P28 5000 11.04 10.00 4.24 6.59 10 100 10 10 10
P29 5000 11.02 10.00 4.29 6.99 10 88 10 10 10
P30 5000 10.91 10.00 4.07 7.15 10 94 10 10 10
P31 5000 10.77 10.00 3.58 6.71 10 61 10 10 10
P32 5000 10.76 10.00 3.62 7.42 10 74 10 10 10
P33 5000 10.63 10.00 3.31 8.66 10 89 10 10 10
P34 5000 10.64 10.00 3.42 8.10 10 72 10 10 10
P35 5000 10.58 10.00 3.14 8.19 10 69 10 10 10
P36 5000 10.48 10.00 2.86 10.30 10 76 10 10 10
P37 5000 10.46 10.00 2.99 11.91 10 88 10 10 10
P38 5000 10.41 10.00 2.70 10.96 10 85 10 10 10
P39 5000 10.38 10.00 2.48 10.21 10 74 10 10 10
P40 5000 10.38 10.00 2.58 10.48 10 70 10 10 10
P41 5000 10.31 10.00 2.46 13.28 10 78 10 10 10
P42 5000 10.27 10.00 2.37 15.05 10 84 10 10 10
P43 5000 10.26 10.00 2.03 12.06 10 64 10 10 10
P44 5000 10.23 10.00 1.94 13.57 10 69 10 10 10
P45 5000 10.26 10.00 2.29 13.40 10 70 10 10 10
P46 5000 10.19 10.00 1.73 13.12 10 61 10 10 10
P47 5000 10.18 10.00 1.62 11.98 10 44 10 10 10
P48 5000 10.15 10.00 1.47 14.60 10 59 10 10 10
P49 5000 10.20 10.00 2.01 14.13 10 61 10 10 10
P50 5000 10.16 10.00 1.76 16.72 10 71 10 10 10

Table 11: Error variance matrix of the replicated model

A slight e�ect of declarative memory was observed in the experiments with the replicated model but not with
the original. This deviation is likely due to the illustrated model stochasticity.
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Figure 24: Dynamic e�ect sizes ofmodel parameters. Note: The graph shows the standardized beta coe�icients
of a linear regression analysis. The values on the vertical axis indicate the e�ect size. The horizontal axis indi-
cates the number of problems solved by the organizations. The problem changes in the fi�ieth instance.

Calculated factor e�ects and their dynamic properties

E�ect sizes indicate the influence of the independent variables on the dependent variable, cycle time. Cycle
time varies among thediscrete problem-solving instances anddepends on the number of problems solved over
time. This dependency is considered in calculating the factor e�ect sizes for each problem.34

Figure 24 shows the e�ect sizes for each factor over 100 problem-solving instances and includes a problem
change once organizations have solved the fi�ieth problem. The calculation is based on the 1,215,000 simu-
lation runs resulting from the full DOE setting.35 The e�ect sizes are standardized beta coe�icients, and the
coe�icients indicate the negative and positive e�ects of the factors on the dependent variable. The graph thus
shows in which situation a rather high or low level of a factor increases or decreases cycle time.

Thenumber of agents has apositive e�ect on cycle time. More agents (n) in anorganization thus increases cycle
time with a varying e�ect size over the number of solved problems. The e�ect size peaks at 0.37 in the seventh
problem-solving instance and a�er that declines. The problem change again increases the e�ect size to 0.27.
However, in the long run, the e�ect size of organization size approximates zero. This result indicates that small
organizations are more agile and outperform larger ones in changing environments.

The e�ect of agents’ updating probability of transactivememory (pt)moves contrary to the e�ect of (n), and the
most substantial e�ects are negative. High updating probability of agents’ transactive memory decreases the
cycle time. The peak e�ect size (0.48) is observed for the fi�h problem-solving instance, peaking again shortly
a�er the problem changes (0.27). The cognitive capability of agents to learn who knows what in the organi-
zation is consequently crucial to reduce cycle time, as observed in experiment 1 (see Appendix B). Moreover,
the transactive memory updating probability has a significant e�ect a�er a problem change; higher cognitive
capabilities by agents might compensate for an increase in organizational size.

The e�ect of agents’ updating probability of declarativememory (pd) is similar to butweaker than the impact of
transactivememoryuntil theproblemchanges. A�er theproblemchange, thee�ect size increases toamarginal
value of 0.04 but returns into slightly negative territory once the organization has solved the newproblem three
times. This supports the results of experiment 2observed for the replicatedmodel (seeAppendixB). Declarative
memory capacity (wd) does not have an e�ect until the problem changes, when the e�ect size increases to 0.14;
hence, higher cognitive capacity in terms of agents’ declarative memory reduces organizational performance.

Higher task awareness by agents (a) reduces cycle time. The e�ect is already strong for the first fi�y problem-
solving instances, peaking at -0.20. The e�ect becomes still more substantial a�er a problem change when
agents who can discern many tasks avoid taking actions guided bymisleading declarative memory. Unlike the
other factors, the influenceof task awareness on cycle time continuously increases. Over the long run, the e�ect
size approximates -0.80, in line with the observations of experiment 7 (see Appendix B).

Overall, thee�ect sizes support theobservations fromthediscrete experiments. The standardized linear regres-
sion coe�icients show dynamic model behavior, including for the scenario of a problem change. The e�ects of
agents’ individual cognitive properties di�er before and a�er an organization faces a change in problem, sug-
gesting further investigation ofmore volatile scenariosmight yield valuable insights. Besides, some factors and
their e�ects might compensate for or reinforce each other. The following section considers such interaction ef-
fects.

JASSS, 23(1) 12, 2020 http://jasss.soc.surrey.ac.uk/23/1/12.html Doi: 10.18564/jasss.4219



Interaction e�ects of model parameters

Factorsmight a�ect the dependent variable di�erently depending on the state of other factors. One parameter
might moderate the e�ect size of another parameter. Therefore, we analyze interaction e�ects among factors
based on linear regression. Table 12 depicts the main e�ects and two-way interaction e�ects of the model pa-
rameters, measured for problem-solving instances 10 and 60, cases at which the previous analysis indicated
particularly strong e�ects. This selection of cases enables comparison of interaction e�ects before and a�er a
problem change.

Cycle Time (P10) Agents (n) Awareness
(a)

Transactive
memory
prob-
ability
(pt)

Declarative
memory
prob-
ability
(pd)

Declarative
memory
capacity
(wd)

Agents (n) 0.366 -0.072 -0.204 0.064 0.000
Awareness (a) -0.139 0.000 0.133 0.000
Transactive memory probability (pt) -0.402 -0.007 0.000
Declarative memory probability (pd) -0.155 0.000
Declarative memory capacity (wd) 0.000

Cycle Time (P60) Agents (n) Awareness
(a)

Transactive
memory
prob-
ability
(pt)

Declarative
memory
prob-
ability
(pd)

Declarative
memory
capacity
(wd)

Agents (n) 0.127 0.118 -0.057 0.002 -0.023
Awareness (a) -0.625 -0.057 -0.007 -0.007
Transactive memory probability (pt) -0.202 -0.008 0.010
Declarative memory probability (pd) -0.011 0.022
Declarative memory capacity (wd) 0.130

Table 12: Interaction e�ects of the model parameters. Note: The matrices contain the standardized beta coef-
ficients of linear regression. The values on the diagonal indicate the main e�ects of the individual factors. The
other values are the two-factor interaction e�ects between the two di�erent experimental factors. Each e�ect
6= 0 is significant at the≤ 0.05 level.

The performance of an organization that has solved ten recurrent problems is predominantly a�ected by the
number of agents in the organization and their transactive memory. On the one hand, a higher number of
agents (n) increases cycle time, while, on the other hand, higher updating probability of transactive memory
(pt) decreases the cycle time. The slight interaction e�ect (-0.204) shows that these e�ects are dependent; a
proportional increase in both factor levels would reduce cycle time because the interaction e�ect is negative.
The lower performance of bigger organizations can be compensated by improved cognitive capabilities of their
agents, specifically their transactive memory.

A slight interaction e�ect (0.133) between task awareness and declarative memory updating probability sup-
ports the assumption that low task awareness might be substituted by agents who frequently update their
declarative memory.36

A�er a problem change, in the sixtieth problem-solving instance, the previously discussed interaction e�ects
largely diminish, except for amarginal increase in the interaction e�ect between thenumber of agents and their
taskawareness. Theperformanceof organizations thathandle aproblemchange is primarily positively a�ected
(that is, cycle time is reduced) by high task awareness and high update rate of agents’ transactive memory.
Performance is reduced by an increased number of agents and an increased declarative memory capacity.

These interaction e�ects support previous observations. The e�ect sizes help to understand the fundamental
model behavior and simulation results. The error variance matrix supports in the estimation of an appropriate
number of simulation runs of the replicatedmodel to facilitate robust results. Thereby, we provided an demon-
stration of the value of the DOE for agent-basedmodel analyses.
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Appendix D: Analytical calculation of expected simulation results

Reformulating the conceptual model description fostered our understanding of the model. The simple design
allows a logical derivation of the organizational behavior that results for the first solved problem and further,
an analytical determination of the expected cycle time for that problem. For subsequent problem-solving pro-
cesses, the complexity of the modeled behavior increases because agents learn, which a�ects their search be-
havior.
In the very first problem-solving instance, agents are inexperienced and have to use a random search. Given
(n = 10) agents and a problem comprising (k = 10) di�erent tasks, each agent has to perform a task. Each per-
formed task increases cycle time, so the cycle time is at least 10. The agent that performs the last task does not
need to search for other agents, because the problemhas been solved. The other nine agents have to search for
skilled colleagues to handover the problem. The probability that a searching agent approaches a qualified col-
league by random search depends on the number of agents in the organization (n) and the number of di�erent
tasks (k) in a problem. In the given random search setting, described as an urn model with replacement, the
probability a searching agent will approach a skilled colleague is 1/9, and the reciprocal value 9/1 represents
the expected search costs. Successful searches of the nine agents result in a task handover to an agent who
performs the necessary task, which is accounted for in theminimumcycle time of the ten performed tasks. The
cycle time for the first problem-solving process of a small organization (n = 10) is thus calculated as follows:

Expected cycle time(n = 10; k = 10) = 10 + 9 ∗ 9
1
− 9 = 82.00

Another applied parameter setting reflects a medium-sized organization (n = 30). The setting a�ects agents’
search success probabilities since the necessary skills are uniformly distributed among agents. Thus, three
agents have redundant skills in anorganization of 30 agents. The expected cycle time is higher in comparison to
a small organization, because the searching agent has a higher probability of approaching agentswith identical
skills:

Expected cycle time(n = 30; k = 10) = 10 + 9 ∗ 29
3
− 9 = 88.00

A large organization is modeled by the default parameter setting (n = 50). The expected cycle time for the first
problem only slightly increases in comparison to the medium-sized organization:

Expected cycle time(n = 50; k = 10) = 10 + 9 ∗ 49
5
− 9 = 89.20

Presupposed that each agent has one particular skill and that the skills are uniformly distributed among the
agents in the organization, a general formula allows the calculation of the expected cycle time for the first
problem-solving instance for any parameter setting:

Expected cycle time(n, k) = k +
(
(k − 1) ∗ n− 1

n
k

− (k − 1)
)

The calculation of the cycle time for the first problem-solving process is helpful in evaluating pretest results
producedwith the re-implementedmodel. Moreover, the analytically determined cycle times help to verify the
replicated and original results.

AppendixE:Explainingunusual routines: Insights intoagents’knowledge
base

Analysis of the model and experimental results yield insights into how routines emerge from individuals and
their cognitive properties. Nevertheless, some questions remain unanswered. How do unusual routines form?
Which recurrent patterns of actions can emerge? Downsizing has been analyzed, but how are routines a�ected
if organizationsmerge? What happens if organizations facemore frequent problem changes? Are organizations
even capable of forming routines in volatile environments? This section addresses these questions.
Organizations may be unable to regain their optimal performance a�er a problem change. In this case, organi-
zational performance is predominantly a�ected by individuals’ task awareness and declarative memory. Pre-
sumably, these are essential levers to control the formation of unusual routines, which reduce organizational
performance.
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In this model, organizational behavior results from individual behavior. During a simulation run, agents learn.
In their declarative memory, agents store which task follows the task they accomplished. They retrieve infor-
mation from this memory whenever they are not aware of the next task, behaving in accordance with their
declarativememory. Therefore, the habits that agents acquire over time are reflected in their knowledge base.

The following investigation aims to analyze agents’ developed knowledge base, measuring the amount and
correctness of information stored in their declarative memory. The average agent knowledge base is repre-
sentative because the agents are homogenous.37 The analysis focuses on the one-hundredth problem-solving
instance to ensure that organizational performance has re-stabilized a�er the change in the fi�ieth problem
instance. In other words, the agents have been given a decent chance to learn how to handle the new problem.

Table 13 shows the results of the investigation of agents’ knowledge base. Three types of organizations are
investigated, comprising agents with low, medium, and high task awareness. The cycle time for the hundredth
problem-solving instance is depicted, as well as the average experience of the agents and their behavior.

Agents with low task
awareness (a = 1)

Agents with medium
task awareness (a = 5)

Agents with high task
awareness (a = 9)

Cycle Time 38.79 21.56 10.90
Experienced 96.24% 89.66% 77.54%
Inexperienced 3.76% 10.34% 22.46%
Habit: necessary action 16.30% 21.38% 40.78%
Habit: obsolete action 41.06% 40.08% 12.46%
Habit: unnecessary action 42.64% 38.54% 46.76%

Table 13: Experienceof agents and their behavior. Note: Except for thevaried taskawareness, thedefault param-
eter settings are applied. Results are averaged over 5,000 simulation runs, each including a problem change in
the fi�ieth problem-solving instance. Measurements of agents’ knowledge are based on simulation data from
the hundredth problem-solving instance.

Regardless of agents’ task awareness, most agents gained experience. For this analysis, the number of agents
in the organizations is held constant at (n = 50). The results show thatmost agents are involved in the problem-
solving process, even though the organizations only require (n =10) agents to solve the (k =10) tasks related
to a problem. This o�ers evidence that the knowledge of routines is highly distributed among agents.

Agents gain themost experience if their task awareness is rather low. About 96%of agentswith low task aware-
ness (a = 1) gain experience compared to about 78% of agents with high task awareness (a = 9). An agent
that cannot recognize what to do next always searches randomly for help from others. This drives the number
of interactions among di�erent agents. Therefore, most agents are involved in the problem-solving processes
and gain experience.

Agents that gain experience can also develop habits. Agents who are unaware of what to do next draw on their
experience aboutwhat they have done in similar situations. They thenbehave as suggestedby their declarative
memory. However, their habits can be more or less appropriate, given the job at hand. Three types of habits
are identified: (1) agents behave appropriately given the problem and perform a necessary action; (2) agents
behave inappropriately because they perform an action that has become obsolete since the problem changed;
and (3) agents behave inappropriately because they learned something wrong and perform an unnecessary
action.

Althoughmost agents are experienced, their habits overall are inappropriate for the problem, even those aware
of 90% of the tasks (a = 9). One might expect, in this case, for agents’ habits to also match 90% of their situ-
ations at hand. However, agents’ habits only match the problem at hand in 40.78% of cases, as reflected in
their declarativememories. Nevertheless, agents with high task awareness e�iciently unlearn obsolete behav-
ior (reduced to 12.46% of actions, compared to 41.06% of actions by agents with low task awareness). Notably,
too, the habits of agents with low task awareness (16.30%) outperform their awareness, as they are only aware
of 10% of the tasks (a = 1). Experienced agents are likely to develop habits (42.64%, 38.54%, and 46.76%, re-
spectively, for agents with low, medium, and high task awareness) that neither match the initial nor the actual
problem.

Most habits can lead to unnecessary activities for a given problem. Organizations are thus o�en enmeshed into
special subroutines, reducing their performance. Indeed, agents with high task awareness seldom rely on their
declarativememory. In contrast, agents with low task awareness commonly consult their declarativememory.
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Overall, 83.70% of agents perform unnecessary (42.64%) or obsolete (41.06%) actions, increasing the expected
average cycle time proportionally to 10 × 100%/(100% - 83.70%) = 61.34. Yet the average cycle time is only
38.79, indicating that interactions among agents prevent the performance of unnecessary tasks.38

Tosumup, agents’ habits alone cannot explainorganizational performance. Organizationsneedpersonnelwith
high task awareness tomitigate the emergenceof unusual routines. Agentswith low task awareness have ahigh
potential to develop unusual routines when facing change. In such an organization, experienced agents follow
habits that are inappropriate to the organization’s goal, although the enactment of their inappropriate habits
is mitigated through interactions among individuals.

Appendix F: The path dependency of the development of organizational
routines

In this experiment, the organization faces 100 di�erent problems that are randomly generated, except for the
very first problem. Although the simulatedorganization solves 100distinct problems, theoriginal actionpattern
that matches the very first problem is still detectable (see Table 14).

Subsequent performed task39

0 1 2 3 4 5 6 7 8 9

Performed task
0 0.00 1.20 1.07 1.00 1.08 1.05 1.06 1.08 1.04 1.01
1 1.02 0.00 1.24 1.08 1.04 1.15 1.05 1.14 1.15 1.05
2 1.04 1.10 0.00 1.28 1.14 1.11 1.10 1.07 1.05 1.13
3 1.04 1.04 1.07 0.00 1.30 1.09 1.15 1.12 1.14 1.10
4 1.04 1.08 1.07 1.05 0.00 1.38 1.09 1.06 1.05 1.13
5 1.11 1.09 1.09 1.13 1.04 0.00 1.33 1.14 1.09 1.13
6 1.10 1.11 1.09 1.07 1.11 1.01 0.00 1.37 1.05 1.15
7 1.07 1.10 1.11 1.09 1.10 1.11 0.09 0.00 1.35 1.10
8 1.09 1.14 1.09 1.12 1.08 1.10 1.05 1.02 0.00 1.34
9 1.12 1.10 1.13 1.15 1.15 1.12 1.15 1.16 1.03 0.00

Table 14: Occurrence probabilities of recurrent patterns of interdependent actions. Note: The rows indicate the
performed tasks, numberedaccording to the initial sequenceof thevery first problem, and thecolumns indicate
the task subsequently performed. The values indicate theprobability frequency that one task is performeda�er
another, calculated as: P (E) = n(E)

N ×100wheren(E) is the number of trials inwhich eventE occurred andN
is the total number of trials. The occurrence probability that tasks are immediately repeated is very low. Agents
with a misleading notion of what to do can get stuck in loops in which the problem is passed between agents.
Such loops are broken in the model. Therefore, we exclude entries on the matrix diagonal for calculating the
occurrence probabilities.

Notes

1Onecouldargue that simulationmodels that arenot independently replicatedhaveonlymarginal scientific
value due to their prototype character.

2Procedural memory reflects agents’ “know how,” declarativememory reflects their knowledge of “what to
do,” and transactivememory reflects “who knowswhat” (for a comprehensive description of the threememory
concepts of routines see Miller et al. 2012, p. 1539). Agents draw information from their memory to perform
routines.

3Based on Google Scholar citations through June 2019. Another model — Pentland et al. (2012) — has 338
citations, but it is not agent-based (Kahl & Meyer 2016). For a more recent agent-based model of routines, see
Gao et al. (2018).
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4The studied conceptual model is, in principle, generic, shi�ing the focus to verification of the fit between
the conceptual and implemented models. In explaining their assumptions, the authors refer briefly to the ex-
ample of amedical service unit (seeMiller et al. 2012, p. 1542), but their conceptualmodel can represent diverse
organizational settings because of its design at a high level of abstraction.

5One incentive to replicate agent-based models was the Volterra Replication Prize, but the prize has not
been awarded since 2009 (http://cress.soc.surrey.ac.uk/essa2009/volterraPrize.php).

6However, we want to recognize the trend within the ABM community to make models and accompanying
data fully available online (Hauke et al. 2017; Janssen 2017). Therefore, setting an example for good scientific
practice in comparison to other disciplines, where transparent data sharing is o�en still lacking.

7Toour surprise, theauthorsdonotmentionagent-basedmodelingamong the listedsimulationapproaches,
which is perhaps why they fail to highlight implications of the strength of the Keep It Descriptive, Stupid (KIDS)
approach — handling social complexity in connection with theory development (Edmonds & Moss 1984) — in
favor of the Keep It Simple, Stupid (KISS) approach.

8Weacknowledge that such a viewon theory is not uncontroversial. However, the discussion ofwhatmakes
a theory unsettles philosophy of science until today. We see their concept of simple theory as a useful substan-
tiation of the to be developed building blocks of a theory: “Constructs, propositions that link those constructs
together, logical arguments that explain the underlying theoretical rationale for the propositions, and assump-
tions that define the scope or boundary conditions of the theory” (Davis et al. 2007). Explicitly addressing these
building blocks supports the process of theory development as an evolutionary process (Weick 1989; Whetten
1989). As such, it might be understood as a theory under construction.

9For an assessment of the concept of dynamic capabilities as a theory, see Denrell & Powell (2016).
10We also screened the MATLAB code of the original model for anomalies andmisspecifications.
11The replicatedmodel codecanbe foundathttps://www.comses.net/codebase-release/�a01596-e2cd-4979-

96c4-b1ad2ce9ac23/ (file name: Dynamics of Organizational Routines: A Model Replication).
12If skills are not approximately distributed uniformly among agents, this can lead to di�erent results, as

highlighted in the original study.
13Cycle time does not increase when an agent scrutinizes or hands o� a task to another agent who accepts

the problem. This simplifying assumption implies that scrutinizing tasks and hando�s requires no e�ort.
14Miller et al. (2012) provided no information regarding how they chose the number of simulation runs or

regarding the coe�icient of variation.
15Recall that the problem changes a�er the organization solves the fi�ieth problem.
16We acknowledge that this number of runs is rather high. In this study, we aimed to obtain particularly

stable results to enable visual comparison with the original graphs. See, in this respect, discussions regard-
ing Figures 4 and 5. More recent approaches to determining the appropriate number of runs adopt a power
analysis framework (Secchi & Seri 2017), which supports an argument for fewer simulation runs. As a matter
of fact, Secchi & Seri (2017) concluded that the original simulation experiments with the model are overpow-
ered, while the majority of investigated papers in their review lacked su�icient model runs and are therefore
underpowered. Having too many runs poses the risk, besides the added computational costs, that economi-
cally insignificant results become statistically significant. For this reason, we argue that e�ect sizes should be
considered to distinguish between economic and statistical significance. For a discussion of the problems of
over- and underpowered simulation experiments, including issues with Error Type II, see Secchi & Seri (2017).

17Another advantage of having a replicated model is that we can now calculate the respective e�ect sizes.
We calculated Cohen’s d for the relevant e�ects; they fall in the range assumed by Secchi & Seri (2017).

18Moreover, a�er we completed the replication we examined the code provided by Miller et al. (2012). The
basic processes correspond to the flow chart depicted in Figure 1, and key model elements were implemented
the same, conceptually, as in our replicated model.

19Miller et al. (2012) denominate these aspects as performative and ostensive routines.
20The term “organization” also refers to organizations within organizations; that is, departments are subor-

ganizations within firms.
21Knowledge can represent experience gained in another organization or acquired in training. For example,

an employee might learn to follow a new procedure that does not correspond to the previously lived routine.
22In Germany, in line with this result, Tesla avoids recruiting experienced personnel from the automotive

industry (according to a personal conversation with one of the authors).
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23The randomshu�ling of tasks in a sequence of k tasks allows the generation of k!distinct problems, orwith
10 tasks, as in the experiment here, 10! = 3,628,800. An identical sequence is unlikely to reoccur.

24The occurrence probability that tasks are immediately repeated is very low. Agents with a misleading no-
tion of what to do can get stuck in loops inwhich the problem is passed between agents. Such loops are broken
in themodel. Therefore, we exclude entries on thematrix diagonal for calculating the occurrence probabilities.

25For example, a new company might develop a particular behavior in its start-up phase. This behavior be-
comes thecompany’sdisposition (firmculture). Thecompanymightact according to thisdispositionevenyears
later.

26The strategic learning curve can be approximated by a polynomial function of the fourth degree: y =
4e−09x4 − 5e−06x3 + 0.0028x2 − 0.6979x+ 89.655;R2 = 0.99.

27An extended explanation according to the model design follows: An agent that is aware of a task performs
it. Otherwise, the agent searches for help from another agent. The approached agent is likely to have di�erent
task awareness. Thus, both agents taken together are, with a higher probability, aware of what to do. The
approached agent also knows other agents and is thus o�en able to refer the task to an agent that can perform
it. A distant (random) search is then unnecessary.

28The formation of such routines depends on organizational size. In volatile environments, small organiza-
tions are more agile and form routines faster compared to larger organizations.

29If skills are not approximately distributed uniformly among agents, this can lead to di�erent results.
30In pretests with the replicationmodel, di�erent submodels were tested to clarify ambiguous assumptions.
31Cycle time does not increase when an agent scrutinizes or hands o� a task to another agent who accepts

the problem. This simplifying assumption implies that scrutinizing tasks and hando�s require no e�ort.
32Onemight regard downsizing as an endogenous change.
33Recall that the problem changes a�er the organization solves the fi�ieth problem.
34An averaged calculation of cycle time over several problem-solving instances would deteriorate the infor-

mative value of the e�ect sizes.
35The 35 factorial design and 5,000 repetitions of each simulation run yields 35× 5,000= 1,215,000 simula-

tion runs in total.
36Nomain e�ect or interaction e�ects are observable for declarativememory capacity, because the capacity

is not variedbelow thevalueof 1. Agents arealways capableof solvinga subsequent task. Moreover, in the initial
routine-formation phase, declarative memory contains only correct entries. Therefore, it does not matter how
o�en a correct, subsequent task is stored.

37Moreover, an appropriate number of simulation runs is incorporated to obtain representative results.
38Moreover, transactive memory always indicates correctlywho knows what.
39The occurrence probability that tasks are immediately repeated is very low. Agents with a misleading no-

tion of what to do can get stuck in loops inwhich the problem is passed between agents. Such loops are broken
in themodel. Therefore, we exclude entries on thematrix diagonal for calculating the occurrence probabilities.
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