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S6: Example TRACE documents 
 

In this supplement, example TRACE documents from the literature are compiled. We 
acknowledge permission of the authors to do so. In case you want to use specific parts of 
these documents (e.g., certain submodels, approaches, parameterizations), please cite the 
corresponding publicaton of the TRACE document: 
 
Nabe-Nielsen, J., van Beest, F. M., Grimm, V., Sibly, R. M., Teilmann, J., & Thompson, P. 

M. (2018). Predicting the impacts of anthropogenic disturbances on marine 
populations. Conservation Letters, e12563. 

Ayllón, D., Railsback, S. F., Vincenzi, S., Groeneveld, J., Almodóvar, A., & Grimm, V. 
(2016). InSTREAM-Gen: Modelling eco-evolutionary dynamics of trout populations 
under anthropogenic environmental change. Ecological Modelling, 326, 36-53. 
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TRACE document 
 
This is a TRACE document (“TRAnsparent and Comprehensive model Evaludation”), which 
provides supporting evidence that our model presented in: 

Nabe-Nielsen J., van Beest F.M., Grimm V., Sibly R.M., Teilmann, J. & 
Thompson, P.M. (2018). Predicting the impacts of anthropogenic disturbances on 
marine populations. Conserv. Lett. 11(5), e12563. 

was thoughtfully designed, correctly implemented, thoroughly tested, well understood, and 
appropriately used for its intended purpose.  
The rationale of this document follows:  

Schmolke A., Thorbek P., DeAngelis D.L., Grimm V. (2010). Ecological modelling 
supporting environmental decision making: a strategy for the future. Trends Ecol. 
Evol. 25, 479-486. 

and uses the updated standard terminology and document structure in: 
Grimm V., Augusiak J., Focks A., Frank B., Gabsi F., Johnston A.S.A., Liu C., Martin 
B.T., Meli M., Radchuk V., Thorbek P., Railsback S.F. (2014). Towards better 
modelling and decision support: documenting model development, testing, and 
analysis using TRACE. Ecol. Modell. 280, 129–139. 

and 
Augusiak J., Van den Brink P.J., Grimm V. (2014). Merging validation and evaluation 
of ecological models to ‘evaludation’: a review of terminology and a practical 
approach. Ecol. Modell. 280, 117–128.  
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1 Problem formulation 
This TRACE element provides supporting information on: The decision-making context in which the model 
will be used; a precise specification of the question(s) that should be answered with the model, including a 
specification of necessary model outputs; and a statement of the domain of applicability of the model, including 
the extent of acceptable extrapolations.  

Summary: 
Anthropogenic noise can induce behavioral responses in marine mammals, which 
may influence the individual animals’ foraging success and, ultimately, the 
dynamics of the population. Pile-driving noise associated with construction of 
offshore wind farms can have pervasive effects on the harbor porpoise (Phocoena 
phocoena). In this study we present an agent-based model, the DEPONS model, for 
assessing population consequences of such pile-driving noise on the porpoise 
population in the North Sea. Population dynamics emerge from the individuals’ 
competition for a dynamically replenishing food resource and from altered 
movements in the presence of pile-driving noise. Model predictions are influenced 
by the exact timing and spatial location of individual pile-driving events. 

 
Marine populations experience increasing levels of noise from offshore renewable energy 
developments, seismic surveys, military sonars and ship traffic (Tyack 2008; Slabbekoorn et 
al. 2010; Nowacek et al. 2015). A comprehensive assessment of the effects of human noise on 
marine populations is increasingly demanded for management of marine ecosystems in 
Europe and the U.S. (EU Marine Strategy Framework Directive 2008; White House 
Executive Order 2010). Many types of offshore activities (including wind farm construction) 
require an environmental impact assessment (EIA) to be conducted prior to development. 
EIAs are particularly focused at fragile and protected populations, and in European waters the 
species mentioned on the Habitats Directive (EU 1992) are of concern. Critically, they often 
require a cumulative assessment of the population level impacts of the primary development 
in combination with other human activities in the region. The model we present here can be 
used for conducting spatial planning to ensure that offshore activities affect the population as 
little as possible and conduct EIAs of planned projects. The model has been developed for the 
harbor porpoise (Phocoena phocoena), a small cetacean listed on the Habitats Directive 
Annexes II and IV, but the principles behind the model can be applied for any marine species. 
Noise can travel over long distances in marine environments and induce behavioral responses 
of affected individuals (DeRuiter et al. 2013; Miller et al. 2015). This can lead to disruption of 
natural foraging behavior and habitat displacement, with potential consequences for 
individual survival and population dynamics. Pile-driving of wind turbine foundations, which 
is one of the most pervasive sources of noise in many areas, is known to affect harbor 
porpoise densities at distances >20 km (Tougaard et al. 2009; Brandt et al. 2011). The 
modeling framework we present here links the dynamics of harbor porpoise populations 
directly with the response of individuals to pile-driving noise. Model predictions depend on 
the exact timing and location of pile-driving events. Population densities and the time it takes 
the population to recover after pile-driving stops can be measured either locally or for the 
entire population. 
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The model takes a data-driven, mechanistic approach to management of marine populations. 
Population dynamics emerge from the individuals’ competition for a dynamically 
replenishing food resource and from altered movements and foraging success when pile-
driving noise is present. The model framework is currently parameterized for assessing effects 
of wind farm construction on the North Sea harbor porpoise population, but can be 
parameterized for other populations and other types of impulsive noise. The use of general 
relationships between population regulation and resource availability (Sinclair 2003; Goss-
Custard et al. 2006) is likely to cause the model to generate robust predictions for a wide 
range of environmental conditions (Grimm & Railsback 2005; Stillman et al. 2015). 
Although the model is likely to be robust to variations in environmental conditions, it should 
be noted that it was developed for the North Sea population. As population dynamics are 
tightly linked to animal foraging behavior and space use (home ranges), the model can only 
be extrapolated to areas outside the North Sea if there are empirical data available for re-
calibrating the movement patterns. We consistently used the simplest possible implementation 
of the different processes and behaviors in the model (i.e. the submodels that involved the 
smallest number of parameters) if there were no data to suggest that particular parameters 
could play a role for harbor porpoise movement, energetics or population dynamics in nature.  
 

2 Model description 

 
This TRACE element provides supporting information on: The model. Provides a detailed written model 
description. For individual/agent-based and other simulation models, the ODD protocol is recommended as 
standard format. For complex submodels it should include concise explanations of the underlying rationale. 
Model users should learn what the model is, how it works, and what guided its design. 

 
Summary: 

Here we present the complete description of the DEPONS model for simulating 
population effects of pile-driving noise (version 1.1). The description follows the 
updated ODD (Overview, Design concepts, Details) protocol (Grimm et al. 2010). 
The model extends an existing agent-based model (Nabe-Nielsen et al. 2014). The 
present documentation includes both elements previously described for the 
original model, an overview of the underlying fine-scale movement model (Nabe-
Nielsen et al. 2013b) and the novel behaviors related to large-scale movement and 
to changes in movements in the presence of noise. The model, which was 
implemented in Repast Simphony 2.3.1 (http://repast.sourceforge.net), is open-
source and published under the GNU General Public License v2. It can be 
downloaded from https://doi.org/10.5281/zenodo.556455. 

 
Section contents 
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2.1 Purpose 
The model simulates how harbor porpoise population dynamics are affected by pile-driving 
noise associated with construction of offshore wind farms. The animals’ survival is directly 
related to their energy levels, and the population dynamics are affected by noise through its 
impact on the animals’ foraging behavior. By ensuring that the animals’ movement patterns, 
space use and reactions to noise are realistic, the population dynamics in the model should 
have the same causal drivers in the model as in nature. 

2.2 Entities, state variables, and scales 
The model includes four kinds of entities: porpoises, wind turbines, landscape grid cells and 
cell groups. The porpoise agents are characterized by their location, speed, movement 
direction, age, age of maturity, energy level, pregnancy status, lactation status and preferred 
dispersal distance. Each porpoise agent is a ‘super individual’ (Scheffer et al. 1995) 
representing several real-world female porpoises. The wind turbine agents are characterized 
by their location, noise source level, the start time and end time for their construction.  
Simulations are based on a 835.2 km × 870 km landscape covering the North Sea. The 
landscape is divided into 2088 × 2175 grid cells, each covering 400 m × 400 m, and into cell 
groups covering 2 km × 2 km. The choice of cell sizes was arbitrary. Cell groups do not have 
state variables, but are characterized exclusively by their location. They enable porpoises to 
navigate back to the places where they experienced the highest energy intake rates. Grid cells 
are characterized by their coordinates, average water depth, food level, maximum food level, 
distance to land and by whether they are used as food patches or not. The landscape includes 
land and bodies of water with unknown food levels (northern part of the North Sea; Figure 1), 
i.e. areas that are not used by simulated porpoises (42.0% of the grid cells), food patches 
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(0.67%) and water without food (57.3%). Each of the 30549 food patches covers one grid 
cell. Food level and maximum food level are always zero for grid cells that are not used as 
food patches. The distribution of the food patches is identical to the one used by Nabe-Nielsen 
et al. (2013b), i.e. it included on average 1000 food patches per 100 km × 100 km. The 
number of food patches is arbitrary, but sufficiently large to enable simulated porpoises to 
develop realistic movement patterns. The only other environmental parameter in the model is 
the time of year. 

2.3 Process overview and scheduling 
The model proceeds in time steps of half an hour and simulations typically last for 30 years. 
At the beginning of each time step porpoises detect noise originating from active pile-driving 
operations. This permits porpoises within a certain radius from pile-driving operations to 
know the direction of the noise source and the received sound level. The radius depends on 
the sound source level. 
The animals’ fine-scale movements are controlled by a combination of correlated random 
walk (CRW) behavior (Turchin 1998), their ability to move towards known food patches 
(directed by a spatial memory) and the extent to which they are deterred by noise. CRW 
movements predominate as long as energy intake is high, else animals gradually become more 
directed towards patches where they have previously found food (Nabe-Nielsen et al. 2013b). 
The animals turn and slow down if there is land ahead. Animals turn away from noise, and the 
strength of the bias away from the noise source depends on the received sound level. The 
noise level does not affect the length of their fine-scale moves. Animals can remain deterred 
for some time after the pile-driving stops, although to a decreasing extent (by default this 
behavior is turned off). The updating of this ‘residual deterrence’ takes place at the end of 
each time step. 
The animals’ energy levels and mortality are tightly coupled in the model. An animal’s 
energy level (scaled to lie in the range 0–20) increases when it encounters food in a food 
patch, but decreases with every move. Animals consume a decreasing fraction of the food as 
their energy levels increase from 10 to 20, assuming that there is a limit to how much energy 
they can store. Consumption of food causes their energy levels to increase equivalently. Their 
energy expenditure per time step depends on the season and whether they are lactating. The 
lower their energy levels, the higher their risk of dying. Animals with lactating calves do not 
die, but abandon their calves instead. Individual energy budgets were constructed following 
established principles of physiological ecology (Sibly et al. 2013). The animals move one at a 
time in an order that is randomized after each half-hour time step. Animals whose energy 
levels have been decreasing for some time stop using fine-scale movements, and start 
dispersing towards more profitable areas (cell groups) instead. 
Food is only found in the food patches, which are randomly distributed across the seascape. 
The maximum amount of food (energy) varies among patches and seasons. It is derived from 
seasonal maps of the relative porpoise densities in the North Sea (Figure 1; Gilles et al. 2016), 
assuming that porpoises are only observed in areas with sufficient food. Updating of the food 
distribution map takes place four times per year. The actual amount of food in the patches 
changes dynamically: When a porpoise visits a patch, it consumes all or part of the food 
found there, but afterwards the food (energy) level increases logistically until reaching the 
maximum level. The updating of patch energy levels, i.e. replenishment of food, takes place 
at the end of every simulation day, after porpoises have moved and consumed food. 
At the end of each day a number of life-history processes take place: Porpoises die if they 
reach their maximum age. They may mate, depending on the time of the year and their age. If 
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they are already pregnant, they may give birth. If accompanied by a lactating calf they may 
wean the calf, which results in the creation of a new, independent individual in the model (if 
the calf is a female). Independent male porpoises are not included in the model, as the number 
of males was not considered a limiting factor for reproduction. The number of males is 
therefore not expected to affect population dynamics. Once every year, new mating dates are 
calculated. 
The different variables in the model are updated asynchronously, i.e. immediately after a 
process has been executed. 

2.4 Design concepts 

2.4.1 Basic principles: The model builds on the assumption that the porpoise population is 
food limited, at least in the absence of noise. Noise acts by scaring porpoises away and by 
causing habitat fragmentation, thereby reducing the animals’ foraging efficiency. The 
animals’ foraging efficiency is also influenced by their ability to return to high quality areas 
they have previously visited, which assumes that they have a spatial memory (see Nabe-
Nielsen et al. 2013b). The animals’ energy budget is represented using the model presented by 
Sibly et al. (2013). 

2.4.2 Emergence: The equilibrium population size (carrying capacity) emerges from a 
Balance between mortality and reproduction, where mortality is linked to the energy levels of 
individual animals (i.e. porpoise agents). The energy levels, in turn, emerge from a balance 
between energy expenditure and food intake. Animals adapt their foraging behavior to 
increase food intake and fitness when they have not found food in the recent past. The 
animals’ spatial distribution in the landscape emerges from their tendency to disperse towards 
more profitable parts of the landscape and their age class distribution emerges from their 
starvation-related mortality. 
The rate at which local porpoise densities recover after a pile-driving operation ends emerges 
from the animals’ decision to either return to previously visited food patches close to the pile-
driving area, to utilize food patches in the area they were displaced to, or to start dispersing. 
Their choice between these three alternatives depends on their energetic state and their 
success finding food in the area they were displaced to (partially related to chance events and 
partially to fitness-optimizing behavior). 

2.4.3 Adaptation: Animals react to decreasing food levels in particular patches by being less 
attracted to them. They react to decreasing energy levels by dispersing towards parts of the 
landscape (i.e. cell groups) where they have previously experienced a high energy intake rate. 

2.4.4 Objectives: Animals attempt to optimize their foraging behavior, and hence maximize 
their fitness, by returning to previously visited food patches when correlated random walk 
movements result in a low food acquisition rate. They also attempt to optimize foraging by 
dispersing towards more profitable areas when fine-scale movements do not enable them to 
sustain their energy levels. 
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2.4.5 Learning: Animals do not learn from what other animals have experienced. They do 
remember the location of previously visited food patches for some days (Nabe-Nielsen et al. 
2013b), which enables them to adapt their fine-scale movements. They also have a persistent 
memory of the profitability (i.e. the energy intake rate) of all cell groups they have visited 
since they were born, so they gradually learn about the quality of different parts of the 
landscape. This guides their dispersal behavior. The animals learn/inherit their preferred 
dispersal distance from their mother before entering the model as independent individuals, but 
they do not inherit their mothers’ knowledge of where the most profitable cell groups are. 

2.4.6 Prediction: Animals base their prediction of how much food they can gather in 
different areas on their previous visits to those areas. 

2.4.7 Sensing: Animals are able to sense if there is land in the direction they are about to 
move, which permits them to turn towards deeper water to avoid the coast. They also sense 
noise, which causes them to turn away from the noise emitting object(s). The animals know 
when their energy levels decrease, which causes them to disperse and to be more likely to 
abandon their lactating calves, or to die. 

2.4.8 Interaction: The modeled animals only interact indirectly via competition for food. 

2.4.9 Stochasticity: Fine-scale movement, mating date and mortality involve stochastic 
events. The probability of surviving increases with increasing energy levels. 

2.4.10 Collectives: Social structure is not included in the model, but each agent represents 
several real animals. 
 

2.4.11 Observation: The number of animals, their energy levels and the total amount of food 
in the landscape are recorded daily. The number of animals in different parts of the landscape 
can be counted (based on the ‘blocks file’), and the movement tracks of a specified number of 
animals can be recorded to analyze for variations in home range sizes etc. The extent to which 
animals react to noise (i.e. the length of the deterrence vector, |VD|, see Eqn. 3) can be 
recorded for each half-hourly position. The age-class distribution and age specific mortalities 
are recorded yearly. 
 

2.5 Initialization 
The model was initialized by creating 10,000 randomly distributed porpoise agents. Their 
age-class distribution corresponded to that of stranded and by-caught animals (Lockyer & 
Kinze 2003), and 68% of the adults in the model were pregnant (corresponding to parameter h 
in Table 1). The energy level, Ep, of each porpoise was initially modeled as a random normal 
variable with mean 10 and standard deviation one (parameter Einit). Mating date was a random 
normal variable with mean 225 and standard deviation 20. Simulations were set to start on 1 
January 1981. They included 3900 piling operations distributed on 65 wind farms that were 
planned to be built in the period 2011–2020 as part of the European Union 2020 goals  
(Directive 2009/28/EC, http://eur-lex.europa.eu/legal-
content/EN/ALL/?uri=CELEX%3A32009L0028, summarized in 
http://www.ewea.org/fileadmin/ewea_documents/documents/publications/reports/Seanergy_2
020.pdf). The food levels in the patches were set to the location specific maximum food levels 
for 1 January.  

http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009L0028
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009L0028
http://www.ewea.org/fileadmin/ewea_documents/documents/publications/reports/Seanergy_2020.pdf
http://www.ewea.org/fileadmin/ewea_documents/documents/publications/reports/Seanergy_2020.pdf
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The model simulations can be initialized and executed through a Graphical User Interface 
(GUI) or through a batch procedure. The GUI allows for one simulation run at a time where 
the user can view the porpoise movements and distribution across the landscape, the location 
and construction period of wind farms, the population size, energy levels of porpoise agents, 
energy levels in food patches distributed across the landscape, as well as the age class 
distribution of the population. In the batch procedure the user can initialize multiple 
simulations that run simultaneously, but the user cannot see the aforementioned components 
on the screen or obtain information on age class distribution. Once the simulation(s) has 
completed the model output is automatically written out for both the GUI and batch 
procedure. 

 

Figure 1. Food distribution maps derived from seasonal maps of porpoise densities in the North Sea for (a) 
spring, (b) summer, and (c) autumn (Gilles et al. 2016). Green shows areas with high porpoise densities, grey 
shows land and white indicates missing data. No porpoise density map was available for the winter, so the map 
from the autumn was used instead. 

2.6 Input data 
Eight different background maps are used in the model: The maximum amount of food in 
each food patch was derived from a map of the porpoise densities in the different parts of the 
North Sea (see Gilles et al. 2016 for details). These are included as four raster files with a 
spatial resolution of 400 m × 400 m, one for each season (Figure 1). No food was found 
outside the food patches. The raster file for the winter season (December–February) is read in 
from the file ‘quarter1.asc’ at the start of simulations. The ETRS89 - EPSG:3035 projection is 
used throughout. As there was no map available for porpoise densities in the winter, the map 
from the autumn season was used during winter. The raster maps were standardized to have a 
mean value of 0.3914, corresponding to the mean food level previously used in simulations of 
the Inner Danish Waters population (Nabe-Nielsen et al. 2014). Four additional raster files 
with the same extent and resolution are used: a ‘patches’ file describing the location of the 
food patches, a ‘bathymetry’ file that allows animals to avoid water depths <wmin (see 
parameter list), a ‘distance-to-coast’ file (allowing animals to turn when approaching land) 
and a ‘blocks’ file that makes it possible to count the number of porpoises in user defined 
areas. 
The simulations include details about pile-driving events. These are provided in a tab 
separated ‘wind-farms’ text file with columns id (identifier), x, y (coordinates), impact (sound 
source level, dB SEL @1m), start and end (timing of pile-driving, measured in number of 
half-hour time steps since the beginning of the simulation). Noise is emitted during both the 
start and the end time step. The sound source level was 234 dB SEL for pile-driving in all 
scenarios, corresponding to the value calculated for the Gemini wind farm (see below). See 
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the Submodels section for details on how noise from wind turbine agents was represented in 
the model.  

 

Figure 2. Positions of wind turbines in the three pile-driving scenarios used in this study. The red square on (a) 
indicates the 50 km × 50 km area shown in greater detail in (b). 

Three different scenarios were used for investigating the population effect of wind farm 
construction in the North Sea. All scenarios included 65 wind farms with the same spatial 
distribution (Figure 2). A pre-specified number of wind farms were selected per country 
(Denmark: 1 wind farm; Germany: 21; Netherlands: 14; Belgium: 5; UK: 24), which enabled 
the individual countries to meet the EU 2020 target for renewable energy development (EU 
2009). Wind farms were selected in areas with water depths between 15–40 m and >4 km 
from any neighboring wind farm. Aside from these rules wind farms were placed at random. 
Each wind farm included 60 wind turbines distributed in a regular 1078 m x 1078 m grid. 6 
MW turbines constructed with monopile foundations was assumed throughout. Turbines were 
installed using pile-driving, which took two hours for each pile. No noise mitigation or soft 
start was included in the scenarios. The turbines were constructed in the 10-year period 
starting 1 January 2011, with 6–7 farms being built per year. In Scenario 1, the parks were 
constructed in random order, in Scenario 2 the parks in the eastern North Sea were built first, 
followed by the ones in the western North Sea (starting in the north in each area). In Scenario 
3 parks were constructed in the same order as in Scenario 1, but the time between individual 
pilings within the wind farms was halved (from 48 hours to 24 hours). The start time of the 
first pilings in the different wind farms were the same in scenarios 1 and 3. In addition to 
these scenarios, we used a reference scenario without any wind farms to establish the 
population size in the absence of noise. 
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Figure 3. Data from the Gemini wind farm construction site used for calibration of the porpoises’ response to 
noise. (a) Virtual landscape including wind turbine construction sites (black dots) and CPODS (red dots). The 
black line shows the border to Germany. (b) Received sound levels recorded using hydrophones at different 
distances [m] from two pilings. Sound source levels (SL) and sound transmissions were modeled assuming 
spherical spreading of the noise. 

A different landscape, combined with a different set of pile-driving events, was used for 
calibration of the parameters c and T (see parameter list). The landscape was a 400 × 400 cell 
subset of the North Sea landscape covering the area around the Gemini wind farm 
construction site in the Netherlands (Figure 3). The landscape included a number of virtual 
CPODS (i.e. acoustic monitoring stations that detect the presence of porpoises based on the 
clicks they emit while foraging and navigating) whose positions corresponded to those of real 
CPODS deployed during wind farm construction. The 160 pile-driving events had the exact 
same positions as those of the real pile-driving events. Their sound source levels (‘impact’; 
234 dB SEL @1m) were calculated based on data from four hydrophones placed near two of 
the pile-driving locations (Figure 3b). See details on calibration of the porpoises’ response to 
noise in the section ‘Data evaluation’. 

2.7 Submodels 
The different submodels are executed in the order they are listed below (see overview in 
‘Process overview and scheduling’). Names of variables and parameters are retained from 
Nabe-Nielsen et al. (2013b, 2014). 

2.7.1 Porpoises detect noise 
At the beginning of each time step, porpoises register the noise from active pile-driving 
operations. This is done by letting the wind turbine agents emit noise if they are under 
construction, thus producing a dynamic soundscape. Noise source levels (SL), positions and 
timings of pile-driving events are provided as input data. Animals react to noise only up to a 
certain distance from a pile-driving event. This distance is determined by the response 
threshold (T) and the extent to which sound is transmitted in water. Here T was determined 
based on data from the Gemini wind farm using pattern-oriented modeling. The sound level 
received by the animals (R) was modeled assuming spherical spreading (Figure 4a; Urick 
1983), so 
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R = SL – 20 log10(dist(p,k)) Eqn. A1 

where dist(p,k) is the distance from the porpoise p to the pile-driving event k. Noise emitted 
by a pile-driving operation only influences animals out to a certain distance, distmax, where R 
= T. By rearranging Eqn. 1 we get  

distmax = 10(SL – T) / 20  Eqn. A2 

Each pile-driving event equips all porpoise within the distance distmax with a deterrence vector 
that points directly away from the noise source (Figure 4). The length of the deterrence vector 
VD is determined by  

|VD| = c(R – T) Eqn. A3 

assuming a linear relationship between the received sound level and the strength of reaction. 
Here c is the deterrence coefficient. Each animal’s fine-scale movements are only influenced 
by the pile-driving event that yields the largest deterrence vector. This is usually without any 
practical implications, as wind farms are generally constructed by piling one turbine 
foundation at a time.  
Animals can be assumed to sense the distance to anthropogenic noise sources, (as 
demonstrated by DeRuiter et al. 2013) and to stop being deterred when they are further away 
from the noise than a certain distance. When dist(p,k) > dmax_deter the length of the deterrence 
vector is therefore set to 0. When using the default value of dmax_deter (Table 2), this parameter 
does not affect population dynamics. The parameter is only included to make it possible to 
assume a maximum deterrence distance in other studies. 

 

Figure 4. Relationship between received sound level (R) and deterrence behavior in the model. (a) Decrease in R 
with distance assuming spherical spreading for pile-driving in Gemini, without noise mitigation (SL=234 dB 
SEL). The green bar shows the length of the deterrence vector for a porpoise located 4 km from the pile-driving, 
|VD|, i.e. the bias away from the noise. (b) Vector VS represents the correlated random walk during one 30-min 
time step, VM represents the spatial memory move and VD represents the deterrence from North Sea pile-driving 
noise. V is the standardized resultant vector, i.e. the actual move in the presence of noise. Here shown for c=10 
(deterrence coefficient; arbitrary value) and Threshold (T)=155 dB SEL. Here distmax= 8913 m. 
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Figure 5. Tracks of 25 free-ranging porpoises equipped with ARGOS satellite tags providing a position every 1–
3 days. All animals were tagged at Skagen, northern Denmark (DNK). Each track shows positions from a 
maximum of 150 days. 

2.7.2 Disperse 
We distinguish large-scale movements/dispersal from the fine-scale movements described in 
section 2.7.3. In each time step each porpoise agent takes either a dispersal step or a fine-scale 
movement step depending on whether it is in dispersal mode (turned on in the submodel ‘Life 
history processes’). 
When an animal agent disperses, it is guided by a persistent spatial memory (PSM) of the 
energy intake rate it has achieved in each of the different parts (cell groups) of the landscape 
that it has visited since it was born. Fine-scale movements, in contrast, are guided by a 
gradually decreasing memory of the foraging success in recently visited food patches. The 
rationale for introducing PSM to guide large-scale movements is that satellite tagged animals 
tend to return to the same general part of the landscape after having been elsewhere for 
several weeks or months (Figure 5). Such behavior must be guided by a spatial memory. 
Often such dispersal moves gradually switch from being relatively directed to becoming 
increasingly exploratory, which would enable animals to search for new foraging grounds in 
the vicinity of areas where they previously experienced a high food intake rate. Most animals 
keep moving back and forth over the same area, thus maintaining a constant dispersal 
distance. 
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Figure 6. Dispersal behavior. When dispersal starts (A), the porpoise agent starts moving towards the most 
profitable 2 km × 2 km cell group (B) at its preferred dispersal distance. The distance from A to B is dtarget. All 
dispersal steps have the length ddisp and the total distance dispersed in a particular dispersal event is dcum. After 
each dispersal step, the porpoise makes a random turn δ. The turning angle increases the further the porpoise has 
dispersed. It stops dispersing when dcum=0.95 dtarget (at point C), but may start dispersing again at a later point 
(D). 

To incorporate PSM dispersal behavior into the model, the entire landscape was divided into 
2 km × 2 km cell groups. Each animal is equipped with a preferred, fixed dispersal distance 
(PSM_distp) at birth. Initially its value is drawn from a normal distribution, PSM_dist, but 
calves subsequently inherit the preferred dispersal distance from their mothers. Animals 
whose energy levels have been decreasing for ttodisp days stop using fine-scale movements and 
start dispersing (Figure 6).  
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Figure 7. Simulated change in turning angle distribution as the porpoise agent approaches the dispersal target. In 
this example, PSM_angle was set to 40 and each dot represents a dispersal step (1987 steps within 26 distinct 
dispersal events). Angles are larger for animals that have dispersed a larger proportion of the initial distance to 
their dispersal targets. 

When an animal starts dispersing, it turns towards the most profitable cell group at its 
preferred dispersal distance (PSM_distp ± PSM_tol, see Table 2), i.e. the group where it has 
previously obtained the highest energy intake rate (calculated as total amount of food eaten 
divided time spent in each cell group). The distance to this cell group is dtarget. Animals that 
have visited <50 cell groups disperse towards a random cell group at their preferred dispersal 
distance (burn-in behavior). All dispersal steps have the same length ddisp. Turning angles δ 
between consecutive steps increase logistically,  

δ = PSM_angle ω2/(1+e–z/PSM_log) Eqn. A4 

where ω2 is a random number in the range -1–1 and z is determined by  

z = (3 × dcum / dtarget) – 1.5 Eqn. A5 

Here dcum is the cumulated distance moved using dispersal moves during the current dispersal 
event, dtarget is the initial distance to the center of the selected cell group and PSM_log is >0 
(see Table 2). Turning angles gradually increase from a value close to 0 (depending on the 
choice of PSM_log) to a maximum of PSM_angle (see Figure 7). The animals remember the 
amount of food they encounter while dispersing and the amount of time they spend in 
different cell groups. This enables them to navigate back towards these cell groups during 
subsequent dispersal events. 

 
An animal stops dispersing (a) once it has moved 0.95 × dtarget using dispersal steps, or (b) if 
the next step would have caused it to move on land (i.e. to an area with water depth<wdisp) or 
(c) across the edge of the landscape, or (d) if its daily average energy level increases to a level 
that is higher than any of the daily energy levels they have experienced over the previous 
seven days, or (e) if it moves into an area with high noise levels (where R>T). 
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New independent calves inherit their preferred dispersal distance from their mother (but not 
their knowledge about relative profitability of different parts of the landscape). See Section 
3.2.2 for details regarding calibration of dispersal parameters. 

2.7.3 Fine-scale movement 
All animals that are not dispersing take a fine-scale move in each step. 
The length and direction of a fine-scale move is determined by the sum of three vectors: VS, 
which describes a correlated random walk (CRW) move (Turchin 1998), VM, which describes 
a spatial memory move, and VD, which describes the deterrence from noise. The CRW 
behavior introduces a positive correlation between the lengths of consecutive steps and a 
negative correlation between consecutive turning angles. This corresponds to the behavior 
described in detail in the appendix of (Nabe-Nielsen et al. 2013b). Here  

VS = x(k + E) Eqn. A6 

where x is a vector defining an unweighted CRW move and k is an ‘inertia constant’ (see list 
of parameters related to movement, Table 2). E is a measure of the benefit of using an 
undirected search for food, which is determined by how much food the animal remembers 
that it has found in the recent past. This is controlled by the actual amount of food 
encountered and the satiation memory decay rate rS (see details in Nabe-Nielsen et al. 2013b). 
As k is small, the length of VS is mostly related to E, which is used as a proxy for how much 
food the animal should expect to find if taking an undirected CRW step. The vector x allows 
the autocorrelation in turning angles and in step length, and the variance in these variables, to 
be controlled through the parameters a, b, m and R1–R3. The equations describing these 
relationships are provided in Nabe-Nielsen et al. (2013b). 
Fine-scale movements, in contrast to large-scale dispersal, are guided by a gradually 
decreasing memory of its foraging success in recently visited food patches. The animals’ 
tendency to move towards previously visited food patches is determined by their memory of 
where they have found food in the past, and how much. This spatial memory move, VM, is 
determined by 

VM = ΣM[c] i[c] Eqn. A7 

where M is a measure of the amount of food that the animal remembers that it has found in 
patch c, weighed by the costs of going there (i.e. a measure of the benefit of returning to patch 
c). The animal’s memory of previously visited patches decreases logistically with time. The 
shape of the logistic function is controlled by the reference memory decay rate rR. i is a unity 
vector pointing in the direction of patch c (Nabe-Nielsen et al. 2013b). The calculation of the 
deterrence vector is explained in Eqn. A3. The standardized resultant vector, i.e. the fine-scale 
move taken in the presence of noise, is then determined by  

 Eqn. A8 

This equation is equivalent to Eqn. A2 of Nabe-Nielsen et al. (2014). In Eqn. A8 V* has been 
standardized to have the same length as VS, so the length of the step is not affected by the 
noise level. 
If the move defined by V* would cause the porpoise to move to an area with too shallow 
water (<wmin) it turns in the direction with deepest water (40°, 70°, 120° or 180° as needed). 
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2.7.4 Update energy level and mortality 
Porpoises increase their energy levels Ep when moving through food patches and reduce the 
amount of food (energy) in the patches equivalently. They never eat more than 99% of the 
food they encounter in a patch, and always leave at least Umin food units (see Table 1) to allow 
food levels to replenish (see section 2.7.6). Their energy levels are scaled to lie in the range 
0–20. The animals consume a smaller proportion of the food as their energy levels increase 
from 10–20, and animals with an energy level of 20 do not consume any of the food they 
encounter (Nabe-Nielsen et al. 2014).  
Porpoises use a season-dependent amount of energy Euse in every step. They spend more 
energy during the summer (Euse×Ewarm in the months May–September and Euse×(0.5×(1–
Ewarm)+1) in April and October) and when they are lactating (Euse×Elact).  
The porpoises’ risk of dying increases as their energy levels decrease. The yearly survival 
probability sy (Figure 8) is calculated as 

 Eqn. A9 

which is subsequently converted to a per-step survival probability 

 Eqn. A10 

If ω1 is a random number in the range 0–1 and the animal is lactating, the calf is abandoned if 
ω1 > ss (calves do not appear as independent individuals in the model). If ω1 > ss and the 
animal is not lactating, it dies (following the principles described by Sibly et al. 2013). 
These processes take place in every time step. 

2.7.5 Update food distribution map 
Every 3rd month (on simulation day 60, 150, 240 and 300), a new seasonal food distribution 
map is loaded. The map is used for determining the maximum amount of food that can be 
present in food patches in different parts of the landscape (Figure 1). The spatial distribution 
of the patches remains constant.  

2.7.6 Update patch energy level 
Takes place every day. 

Ek[t+1] = Ek[t] + rU × Ek[t] (1– Ek[t] / Mk[t]) Eqn. A11 

where rU is the food replenishment rate, Ek[t] is the food level in patch k at time t and Mk[t] is 
the maximum amount of food in each patch (derived from season-specific map of porpoise 
densities in the different parts of the North Sea; Gilles et al. 2016). This is equivalent to Eqn. 
A4 of Nabe-Nielsen et al. (2014). 
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Figure 8. Relationship between energy level and yearly mortality for β=0.4. 

2.7.7 Calculate mating dates 
Takes place every year, on 1 January. Each porpoise’s mating date, tmating, is drawn from a 
normal distribution. 

2.7.8 Life-history processes 
This submodel is executed at the end of every day, i.e. every 48th time step. 
Update the animals’ dispersal status based on their daily average energy level. Animals start 
dispersing when their energy levels decrease for ttodisp consecutive days. 
Die of old age: Animals older than tmaxage years are removed from the simulation. 
Mate and become pregnant: If the simulation date is tmating the animals that are not already 
pregnant mate and become pregnant with a probability h.  
Give birth: Animals that have been pregnant for tgest days give birth to a calf and start 
lactating. 
Wean calf: Lactating animals stop nursing their calves after tnurs days. This results in the 
creation of a new independent individual in the model with probability 0.5 (assuming equal 
sex ratios). From the time of weaning male porpoises are omitted from the model. 
See Table 1 for list of parameters related to animal life history. 

2.7.9 Update residual deterrence 
Animals may keep being deterred by a noise source for some time after the noise stops. This 
is termed ‘residual deterrence’. At the end of each step their movements become less biased 
by these noises that they are no longer exposed to. The decrease in residual deterrence is 
controlled by ψdeter, so 

 |VD|t+1 = |VD|t (100–ψdeter)/100 Eqn. A12 

After tdeter time steps animals are assumed to stop being deterred by noise sources that no 
longer emit noise. By default tdeter is set to 0 (see Table 2). 
(Go to process overview). 
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3 Data evaluation 
 

This TRACE element provides supporting information on: The quality and sources of numerical and 
qualitative data used to parameterize the model, both directly and inversely via calibration, and of the observed 
patterns that were used to design the overall model structure. This critical evaluation will allow model users to 
assess the scope and the uncertainty of the data and knowledge on which the model is based.                                                                                         

 

Summary: 
There is a total of 45 parameters in the DEPONS model, all of which can be 
specified by the user. Thirteen are related to animal life history and energetics, 23 
are related to animal movement and reactions to noise, and 9 are related to 
general model behavior (specification of input and output files etc.). Seven of the 
parameters related to animal movement and reactions to noise are not currently 
used, but maintained to increase model flexibility and facilitate easy re-
parameterization for other applications. The 36 parameters related to animal life 
history, energetics and movement are region-specific. Values are obtained from 
the literature for six parameters; four parameters controlling the animals’ 
response to noise and dispersal movements were calibrated following a pattern-
oriented modeling approach.  

 
 
Section contents 

3.1 Parameters and data related to animal life history and energetics ................... 20 
3.2 Parameters and data related to animal movements and response to noise ...... 22 

3.2.1 Parameters related to fine-scale movements ........................................... 22 
3.2.2 Parameters related to dispersal ................................................................ 26 
3.2.3 Parameters related to response to noise ................................................... 29 

3.3 Parameters controlling general model behavior .............................................. 32 
 

 

3.1 Parameters and data related to animal life history and energetics 
The processes and parameter names of the DEPONS model related to birth and death of 
animals and to how animal survival is related to their energetic status are identical to the ones 
in the model described in Nabe-Nielsen et al. (2014). 
Seven of the 13 parameters related to life history and energetics were obtained from the 
literature (Table 1). The parameter values for h and tmature were based on data collected in the 
northwest Atlantic, off the coast of Maine (United States). The parameters are inherently hard 
to estimate due to difficulties studying harbor porpoises in the wild, and may vary among 
regions and among years. The parameters tgest and tnurs are based on a Danish study of captive 
animals and on studies of harbor porpoises in Danish waters. There are no data on how much 
the parameters vary among populations. The parameter tmaxage is an upper limit for how old 
porpoises are likely to get, based on records of stranded animals in Denmark. The parameter 
tmating may vary among populations and years, but again this is difficult to assess due to the 
limited number of studies of porpoises in the wild. The parameter Ewarm was obtained from a 
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study of captive animals, based on their food consumption. It is difficult to assess to what 
extent the parameter varies among animals and depending on the size and health of the 
animals. 
Six parameters related to energetics were either obtained from unpublished studies or 
calibrated based on general considerations regarding animal energetics (Sibly et al. 2013). 
The parameter Elact was obtained from a study of Danish captive animals. This is unlikely to 
vary much among populations due to energetic constraints related to animal energy 
consumption, but is likely to vary depending on the age of the lactating calf. The parameter 
Umin is the minimum amount of food in a patch. The unit is scalable to kJ and other measures 
of energy content (hence we use the term ‘relative unit’ for energy-related variables). Umin 
influences how fast food recovers in a patch after being nearly depleted. Euse was calibrated to 
ensure that the population reached a dynamic equilibrium size, assuming that food recovered 
after approximately 2 days. This is based on the observation that satellite tagged porpoises in 
the inner Danish waters often return to the same area after approximately two days (J Nabe-
Nielsen, unpubl. data). As porpoises have a high energetic demand (Wisniewska et al. 2016), 
we take such repeated returns to the same area as an indication that food has recovered. 
Details of the calibration procedure are provided in the appendix of Nabe-Nielsen et al. 
(2014). When letting the maximum amount of food in a patch be 1 during winter in the Inner 
Danish Waters simulations, the average food level in the patches was 0.3914 (Nabe-Nielsen et 
al. 2014). In the current study, the average food level in the patches was scaled to be the same 
(see input data), i.e. the average food level was assumed to be the same in the North Sea and 
the inner Danish waters. One unit of food in a patch is equivalent to one unit of energy 
available for the porpoise agents, and it is assumed that no energy is lost when food is 
consumed. The value of β determines the relationship between the animals’ energetic status 
and their risk of dying (Eqn. A9). The value used in this study was obtained through 
calibration (see details in Nabe-Nielsen et al. 2014). The relationship between the animals’ 
energetic status and mortality is likely to vary among populations, but the use of a slightly 
different value of β has a very small impact on population dynamics and carrying capacity 
(appendix of Nabe-Nielsen et al. 2014 and sensitivity analyses in chapter 7). The value of rU 
was calibrated to ensure that the population reached a stable population size (Nabe-Nielsen et 
al. 2013a, 2014). Unfortunately, there are no field studies that allow us to determine how rU 
varies among geographic regions.  
 
Parameter Standard value Code name Description [units] (reference) 

h 0.68 h Probability that adult females 
become pregnant (Read & Hohn 
1995). 

tgest 300 tgest Gestation time [days] (Lockyer 
et al. 2003). 

tnurs 240 tnurs Nursing time [days] (Lockyer 
2003; Lockyer & Kinze 2003). 

tmaxage 30 tmaxage Maximum age of porpoises 
[years] (Lockyer & Kinze 2003). 

tmature 3.44 mage Age of maturity [years] (Read 
1990). 

tmating   N(225, 20) randomMatingDayNormal Mating day [day of year] 
(peaking in August; Lockyer 
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Parameter Standard value Code name Description [units] (reference) 
2003). 

Elact 1.4 Elact Energy use multiplier for 
lactating mammals [unitless] 
(Magnus Wahlberg, unpubl. 
data). 

Ewarm 1.3 Ewarm Energy use multiplier in warm 
water [unitless] (Lockyer 2003). 

Euse 4.5 Euse Energy use per half-hour step in 
May–September [relative unit] 
(calibrated, Nabe-Nielsen et al. 
2014). 

Einit N(10, 1) porpInitEnergyNormal Initial energy level for porpoises 
[relative unit] (arbitrary). 

rU 0.1 rU Food replenishment rate; the rate 
that food recovers after being 
eaten [unitless] (calibrated, 
Nabe-Nielsen et al. 2014). 

Umin 0.001 regrowthFoodQualifier Minimum food level in a patch; 
the starting value for logistic 
replenishment of the food 
[relative unit] (arbitrary). 

β 0.4 beta Survival probability constant 
[unitless] (calibrated, Nabe-
Nielsen et al. 2014). 

Table 1. Model parameters related to life history and energetics. The parameter names and parameter values are 
the same as used in Nabe-Nielsen et al. (2013b, 2014). The ‘code names’ are the names used in the Repast Java 
code in the current version of the model. Standard values of parameters written as N(x,y) indicate random values 
drawn from a Gaussian distribution with mean x and standard deviation y. In the input parameter files x and y 
are separated by ‘;’. The units of the parameters Euse, Einit and Umin are scaled by the same factor relative to Joule, 
hence the term ‘relative unit’. 

3.2 Parameters and data related to animal movements and response to noise 

3.2.1 Parameters related to fine-scale movements 
The parts of the DEPONS model related to simulation of fine-scale movements are identical 
to the model described by Nabe-Nielsen et al. (2013b, 2014), except that the model has now 
been ported from NetLogo to the Repast framework to increase simulation speed. Fine-scale 
movements are influenced by the first 10 parameters in Table 2. Parameter names are kept the 
same as in Nabe-Nielsen et al. (2013b). 
Fine-scale movements are simulated using a mixture of correlated random walk (CRW) 
behavior and spatial memory moves. The parameterization of the fine-scale movement model 
was done after log10 transforming the distance moved per 30-minutes step, as step lengths 
were approximately log-normally distributed in the movement data that was used for 
parameterization. The CRW is specified using the parameters a, b, m, R1, R2, and R3, where 
Rx, provide mean and variation in distance moved per step, turning angles and in the 
relationship between turning angle and distance moved. The spatial memory behavior is 
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controlled by the parameters rS, rR, and k. All parameters were calibrated to ensure realistic 
fine-scale movement behavior (see Nabe-Nielsen et al. 2013b).  
 
Parameter Standard 

value 
Code name Description [units] (reference) 

rS 0.2 rS Satiation memory decay rate [unitless] (Nabe-
Nielsen et al. 2013b). Value used in (Nabe-
Nielsen et al. 2014). 

rR 0.1 rR Reference memory decay rate [unitless] 
(Nabe-Nielsen et al. 2013b). Value used in 
(Nabe-Nielsen et al. 2014). 

k 0.001 k Inertia constant; the animal’s tendency to keep 
moving using CRW irrespective of foraging 
success [unitless] (arbitrary). 

a 0.94 a Autocorrelation constant for log10(d/100), 
where d is distance moved per time step 
[unitless] (Nabe-Nielsen et al. 2013b). 

b 0.26 b Autocorrelation constant for turning angles in 
CRW [unitless] (Nabe-Nielsen et al. 2013b). 

m 0.74 m Value of log10(d/100) where turning angles 
stop decreasing with speed. d is distance 
moved per time step [m] (Nabe-Nielsen et al. 
2013b). 

R1 N(0.42, 
0.48) 

r1 Log10(d/100), where d is distance moved per 
time step [m] (Nabe-Nielsen et al. 2013b). 

R2 N(0, 38) r2 Turning angle between steps [degrees] (Nabe-
Nielsen et al. 2013b). 

R3 N(96, 28) r3 Relationship between turning angle and log10 
step length [unitless] (Nabe-Nielsen et al. 
2013b). 

dmaxmove 1.18 dmax_mov Maximum value of log10(d/100) while using 
fine-scale moves. Here d is distance moved 
per time step [m]. 

ddisp 1.25 ddisp Dispersal distance per time step [km] 
(calibrated in current study). 

ttodisp 3 tdisp Time before onset of dispersal [days]. 
Standard value based on the observations that 
captive porpoises appear to starve after not 
eating for three days (Magnus Wahlberg, 
unpubl. data). 

PSM_angle 20 psmType2RandomAngle Maximum absolute turning angle after each 
persistent spatial memory (PSM) dispersal 
step [degrees] (calibrated in current study). 

PSM_dist N(210, 50) psmDistancePreference, 
psmDistanceStddev  

Preferred distance to dispersal target. [km] 
(calibrated in current study). 

PSM_log  0.3 psmLogDecrease Parameter controlling logistic increase in 
turning angle during dispersal [unitless] 
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Parameter Standard 
value 

Code name Description [units] (reference) 

(calibrated in current study). 

PSM_tol 5 psmDistancePreferenceTolerance Tolerance band within which the dispersal cell 
is selected (PSM dist±PSM tol) [km] 
(calibrated in current study). 

wdisp 4 wdisp Minimum water depth when dispersing [m] 
(Nabe-Nielsen et al. 2014). 

wmin 1 wmin Minimum water depth [m] required by 
porpoises (J. Tougaard, pers. obs). 

T 155 drespthreshold Response threshold; received sound level 
above which porpoises start getting deterred 
[dB] (calibrated in current study). 

c 0.07 c Deterrence coefficient [unitless] (calibrated in 
current study). 

dmax_deter 1000 dmax_deter Maximum deterrence distance [km]. Animals 
that are more than this far from the noise 
source should stop being deterred (worst-case 
scenario based on Brandt et al. 2012). 

tdeter  0 tdeter Residual deterrence time; number of time 
steps the deterrence effect lasts when the 
animal is no longer exposed to noise [time 
steps] (arbitrary).  

ψdeter  50 ddecay Deterrence decay constant; decrease in 
deterrence per time step after noise has 
stopped [percent] (arbitrary). 

Table 2. Model parameters related to animal movements and response to noise. Parameter names and parameter 
values are the same as used in Nabe-Nielsen et al. (2013b, 2014), except for parameters that were introduced and 
calibrated in the current study. The ‘code names’ are the names used in the Repast computer code. Standard 
values of parameters written as N(x,y) indicate random values drawn from a Gaussian distribution with mean x 
and standard deviation y. In the input parameter files x and y are separated by ‘;’. The three last parameters in 
the table are not used (i.e. they are turned off) in the current study. 

The CRW movement behavior of real porpoises, i.e. the animals’ tendency to zig-zag and 
their speed while doing so, is likely to vary among animals and to depend on local 
environmental conditions. In the DEPONS model (version 1.1) the CRW behavior was 
calibrated based on data from a single animal equipped with a dead reckoning tag† in the 
inner Danish waters (Figure 9; J. Teilmann, unpublished data). Its movements are unlikely to 
be representative for all animals in all parts of the North Sea, but these were the only data 
available at the time the model was parameterized.  
The spatial memory allows animals to navigate back to patches where they have found food 
in the past, which enables them to remain in the same area for several days or weeks. The 

                                                 
† Dead reckoning provides a means for calculating animal movements by integrating the 
speeds and headings for consecutive small segments of a movement path to construct the 
entire path, see (Wilson et al. 2007) for details. 
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behavior is controlled by the parameters rS (satiation memory decay rate, controlling whether 
animals keep using a correlated random walk), rR (reference memory decay rate, controlling 
animals’ ability to navigate back to previously visited patches), k and wmin. Here k is a 
constant that only influences animal movements in the rare cases where they do not have any 
memory of previously visited food patches (e.g. in the beginning of simulations). wmin, which 
determines the minimum water depth required by porpoises, influences animal movements in 
the vicinity of the coast only. rS and rR were calibrated using pattern-oriented modeling 
(POM; Grimm et al. 2005; Kramer-Schadt et al. 2007) to ensure that animals developed 
movement tracks that closely resembled those observed for satellite-tracked animals in the 
inner Danish waters, i.e. with the same home range sizes, mean residence times and 
displacement distances (Nabe-Nielsen et al. 2013b). Again, these movements are unlikely to 
be representative for animals in all parts of the North Sea. The spatial memory behavior may 
therefore be improved by obtaining values of rS and rR that enable simulated animals to move 
similarly to North Sea animals equipped with satellite tags. 

 

Figure 9. Movement track used for calibration of fine-scale movements (from animal equipped with Dead 
Reckoning tag). Each line segment shows a 30-min step. The legend shows the bathymetry in the area. The 
distance moved per step was weakly correlated with bathymetry (r=0.17). The same was the case for absolute 
turning angles (r= –0.23). 

The fine-scale movements are not only influenced by the movement-related parameters 
themselves, but also by the spatial distribution of food patches and the average food levels in 
the patches. On the average, the food levels were the same in the current study as those used 
in the inner Danish waters (Nabe-Nielsen et al. 2013b, 2014) and the animals’ fine-scale 
movements are therefore, on the average, the same as those previously documented for the 
inner Danish waters. The food levels were derived from maps of the spatial distribution of 
porpoises in the North Sea (see Figure 1). Further refinements of these maps can be expected 
to make fine-scale movements even more realistic for North Sea conditions. In order to use 
the model in other regions of the world similar maps must be produced for the entire area 
used by the population of interest. 
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3.2.2 Parameters related to dispersal 
Dispersal behavior was modeled based on a persistent spatial memory (PSM) movement 
behavior that enabled animals to navigate back to the 2 km × 2 km cell group where they had 
previously obtained the highest energy intake rate and that was located at their preferred 
dispersal distance. The seven parameters used for controlling dispersal are listed in Table 2.  
To find the optimal values of the parameters ddisp (distance moved per dispersal step), 
PSM_angle (maximum turning angle after each step) and PSM_dist (preferred dispersal 
distance) we simulated animal movement tracks based on a range of parameter values. The 
aim was to enable the model to produce tracks similar to those observed for 25 satellite-
tracked porpoises (Figure 5). For ddisp we considered the range 0.3–0.9 km 30 min-1 (with 0.2 
km 30 min-1 increments), for PSM_angle we considered the values 20°, 40° and 60°, and for 
PSM_dist we considered mean values in the range 50–300 km (with 50 km increments). The 
standard deviation in PSM_dist, which controlled the variation in preferred dispersal distances 
among porpoise agents, was calibrated visually. The selected value allowed the variation in 
home range size of simulated animals to resemble that of satellite-tracked animals (Figures 5 
and 11). All possible combinations of ddisp, PSM_angle and PSM_dist were tested. For each 
combination we recorded the movements of 25 porpoise agents over a 3-year period. All 
agents were initialized at Skagen (northern Denmark), which was where the satellite-tracked 
animals were tagged. We discarded the tracks for the first 2 simulation years, which was the 
time it took the agents to develop their spatial memory.  
We compared the tracks of simulated animals with those of satellite-tracked animals based on 
three statistics: home range size, home range length and cumulative distance moved. The 
different statistics were calculated for day 150 of each track. The median value for the 25 
satellite-tracked animals was compared to the corresponding median value for 25 simulated 
animals for each statistic. The procedures for calculating the different statistics are provided 
in TRACE Appendix A. 
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Figure 10. Calibration of the dispersal parameters PSM_dist, ddisp and PSM_angle using pattern-oriented 
modeling. Each row in the figure represents one of the patterns observed for 25 satellite-tracked animals. Green 
regions indicate parameter values that enabled the simulation model to produce patterns similar to those 
observed for free-ranging animals. The similarity index is calculated as 1–(abs(xnature–xsimulated)/max(xnature, 
xsimulated)), where x is one of the three patterns. The axes values at the dashed red lines provided the highest 
similarity with those observed in the field and are therefore used in all simulations. 

Two of the remaining parameters used for controlling dispersal behavior (PSM_log and 
PSM_tol) were calibrated visually to make the simulated tracks resemble those of satellite-
tracked animals as closely as possible. This was done both before and after calibrating ddisp, 
PSM_angle, and PSM_dist. For PSM_log, a simple one-parameter logistic function (Eqn. A4) 
was used to enable animals to gradually become less directed the longer they dispersed. The 
movement statistics were relatively insensitive to the choice of PSM_log. PSM_tol defined 
the tolerance band within which a porpoise agent should find the most profitable PSM-cell 
when starting to disperse. 
The parameter ttodisp determines the number of days with decreasing average energy levels 
before the animal starts dispersing. The default value is based on the observations that captive 
porpoises lose weight after not eating for three days, which in nature would probably cause 
them to disperse to more profitable foraging areas. The parameter wdisp determines the 
minimum depth at which porpoises were allowed to disperse. The value was visually assessed 
based on satellite-tracking data. 
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Figure 11. Daily movements of 25 simulated porpoises using values of ddisp, PSM_angle, and PSM_dist that 
caused their median home range length and cumulated distance moved after 150 days to closely match those of 
satellite tracked animals. 

The dispersal tracks produced by the calibrated model resembled those of free-ranging 
animals in several respects. Animals developed home ranges with the same length (measured 
at day 150 of the tracking period), and with the same cumulated distance moved, as satellite-
tracked animals (Figure 10). Their movement speeds also matched those observed in nature 
(see TRACE Appendix A – Calibration of dispersal behavior). Simulated home ranges were, 
however, more rounded, and therefore larger, than those observed in nature. Examples of 
tracks generated with the calibrated model (with parameters as in Table 2) are shown in 
Figure 11. 
The parameters used for defining dispersal movements in this study are not necessarily 
suitable for other geographic regions. The majority of the parameters were obtained through 
inverse parameterization (using pattern-oriented modelling; Grimm et al. 2005; Kramer-
Schadt et al. 2007; Grimm & Railsback 2012) based on animal tracks observed in the north-
eastern part of the North Sea. The shapes of these tracks are influenced by the food 
distribution (defined as background maps; see Input data) and by proximity to land. As many 
of the simulated animals moved into the central part of the North Sea, their movements were 
less constrained by land than those of the satellite-tracked animals tagged by Skagen. This 
enabled them to develop more rounded, and therefore larger, home ranges than the ones 
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observed for free-ranging animals (Figure 10). Animals may also be influenced by other 
environmental conditions than proximity to land, which could cause them to disperse 
differently in other parts of the North Sea and elsewhere (other prey species, presence of 
predators etc.). Unpublished data for satellite-tracked porpoises reveal larger dispersal 
distances for animals in South Greenland waters (N. Nielsen, pers. comm.), suggesting that it 
may be important to re-parameterize the model based on local movement data when using it 
for populations outside the North Sea. The differences between the tracks of simulated and 
free-ranging animals are discussed further in the section ‘Assumptions regarding dispersal’. 

3.2.3 Parameters related to response to noise 
The porpoise agents’ response to noise is controlled by the parameters T, c, dmax_deter, tdeter, and 
ψdeter (Table 2). The first two parameters determine the length of the deterrence vector (VD in 
Figure 4). T determines the maximum distance at which porpoise movements are influenced 
by noise for a given sound source level, whereas c determines the strength of their response at 
close ranges. The other parameters determine the maximum distance at which porpoises can 
be influenced by noise and the ‘residual deterrence’, i.e. the animals’ tendency to move away 
from an area for some time after the noise has stopped. 

 

Figure 12. Recovery of porpoise densities after end of pile-driving. Black lines show changes in porpoise 
densities (mean % porpoise positive minutes±1SE) at different distances from closest pile-driving in the Gemini 
wind farm. The red lines show the corresponding relative number of porpoises in simulations based on c=0.07 
and T=155 dB. 
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The parameters T and c were calibrated to make recovery of simulated porpoise densities 
resemble those observed during construction of the Gemini wind farm (Figure 12; Luuk 
Folkerts, unpubl. data). In the field, the relative porpoise densities were measured using 
CPODS that recorded the clicks emitted by echo-locating porpoises. Sound source levels were 
calculated based on noise data collected at different distances from two of the pile-driving 
sites using hydrophones (Figure 3). This was done using linear regressions, assuming 
spherical spreading of noise (Eqn. A1). Simulations were based on a landscape that included 
virtual CPODS (each covering 2 × 2 cells) placed in the exact same positions as those used in 
the field. The simulations included pile-driving events with the same timings and sound 
source levels as the real ones (Figure 3). Due to the limited size of the landscape, dispersal 
was turned off. We ran simulations using a range of parameter combinations (c in the range 
0.00–0.15 and T in the range 151–158 dB SEL). The simulated porpoise densities were 
standardized to obtain the same overall mean and variance as observed around Gemini. The 
aim was to find the values of c and T that simultaneously minimized the squared difference 
between field and simulated data across a range of different distances from the nearest pile-
driving. The optimal values of c and T were therefore the ones that yielded the smallest value 
of ε in  

 Eqn. A13 

Here n is the number of simulated porpoises observed at a particular distance interval d from a 
virtual CPOD and p is the number of porpoises observed at the same distance interval from a 
pile-driving at Gemini and t is time since end of pile-driving. We used the distance intervals d 
shown in Figure 12. 

The smallest value of ε was obtained for T=155 dB SEL and c=0.07 (Figure 13). In Figure 13, 
ε is referred to as ‘Sum of Squared Deviation’. 
 
The parameter dmax_deter defines an upper boundary for the distance at which porpoises can 
react to noise. It is only influencing model behavior if sound source levels (SL) are so high 
that they would otherwise have caused animals to react at very long distances. The reason for 
introducing the parameter dmax_deter is, that a study of Cuvier’s beaked whale suggests that the 
way cetaceans respond to noise may depend on the distance to the noise source rather than on 
the received sound level (DeRuiter et al. 2013), at least for relatively low received levels. The 
parameter dmax_deter makes it possible to ensure that simulated animals are only deterred out to 
a certain distance, irrespective of the noise level. When dmax_deter is set to 1000 km (default), 
the parameter has no impact on the animals’ response to noise, as this is far beyond the area 
where R > T (see Figure 4). 
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Figure 13. Calibration of c and T using pattern-oriented modeling. The target was to find values of c and T that 
enabled the model to produce porpoise recovery rates that resembled those observed at different distances from 
real pile-driving. This was obtained for c=0.07 and T=155 (red dotted line). 

The parameters tdeter and ψdeter determine how long porpoises keep moving away after the 
sound that deterred them has stopped, i.e. their ‘residual deterrence’ behavior. tdeter determines 
the number of 30-minute time steps that porpoises remain deterred and ψdeter determines the 
reduction in deterrence after each time step (in percent, i.e. a reduction relative to the 
deterrence that remained prior to the step). Our knowledge of how free-ranging porpoises 
respond to loud noises is limited to one study (van Beest et al. 2018 subm.). Here some 
porpoises appeared to remain slightly deterred up to ca. 10 hours after being exposed to loud 
impulsive noises, whereas others did not respond. As there is limited evidence that animals 
remain deterred when they are no longer exposed to noise, we use a default value of tdeter=0 
(i.e. no residual deterrence). 
The parameters related to the animals’ response to noise are likely to be site-specific. The way 
porpoises and other cetaceans respond to noise may depend on their condition, on whether the 
area where the disturbance takes place is an important foraging ground and on whether they 
have become habituated to noise (Richardson & Würsig 1997; Bejder et al. 2006). These 
factors are likely to cause the optimal values of c and T to vary among different wind farm 
construction sites. In Gemini porpoises only respond to noise out to a distance of 6–9 km 
(Figure 11), which is less than reported in most studies. Diederichs et al. (2009) found 
reduced porpoise numbers at 14–18 km from active pilings during construction of the Alpha 
Ventus wind farm, and Tougaard et al. found animals to respond at distances >20 km from 
Horns Reef I (Tougaard et al. 2009) in the eastern North Sea. Brandt et al. (2011) reported 
negative effects out to a distance of 17.8 km from the Horns Reef II wind farm, but no effect 
at 22 km. This suggests that T values that would cause animals to respond approximately 20 
from the piling zone might be more representative for simulating population effects of pile-
driving in the North Sea. 
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3.3 Parameters controlling general model behavior 
The DEPONS model can run simulations using any landscape provided by the user, or one of 
the four built-in landscapes (parameter: ‘landscape’). It requires eight different background 
maps to run simulations with any given landscape (see input data). The default landscape is 
the North Sea (Figure 1). This landscape was used for assessing the impact of pile-driving 
noise on the porpoise population. The Gemini landscape was created for parameterizing the 
animals’ response to noise (see section Parameters related to response to noise). Simulations 
can also be run in the DanTysk landscape, in a Homogeneous landscape, which has no 
land/coast line, and where habitat quality and bathymetry are constant, or in a user defined 
landscape. 
Although DEPONS simulations use realistic landscapes, agents that hit the edge of a 
landscape are unable to exit or disappear. It is sometimes (e.g. during model development and 
testing) useful to allow the landscape to wrap (i.e. using a non-bounded landscape). Wrapping 
of landscape borders is only possible in the Homogeneous landscape (parameter: 
‘wrapBorderHomo’).  
The DEPONS model can run a wide variety of wind farm construction scenarios (parameter: 
‘turbines’), including the three North Sea scenarios used in this study (Figure 2), the Gemini 
scenario (Figure 3) and the DanTysk scenario (not shown). It is possible to run simulations 
with alternative scenarios by selecting the ‘User-def’ turbines file after modifying the 
accompanying file (see input data). The default option is to run simulations without 
construction (with ‘turbines’ set to ‘off’).  
The number of simulation years is set with the parameter “simYears”. The default value is 50 
simulation years, which allows for a 20 year burn in period, a 10 year period at carrying 
capacity prior to wind farm construction, a 10 year period with pile-driving noise, and a 10 
year recovery period post wind-farm construction. 
The number of porpoise agents to be created at the start of a simulation is set with the 
parameter ‘porpoiseCount’. The default value of 10 000 will produce a stable population size 
in the North Sea landscape within the first 20 years of simulation. 
Movement data of porpoise agents can be recorded by specifying how many porpoises to 
track using the parameter ‘trackedPorpoiseCount’. Two options are available to track 
movements of porpoise agents. First, the user can record movement data for an unlimited 
number of agents from the very start of the simulation. To do so, the user must provide the 
starting position (x, y coordinates), and heading of the first step for each porpoise agent to 
track in a comma separated text file (trackedporpoise.txt; file without headers) stored in the 
data/landscape directory. If the file is empty, the tracked porpoise agents will have random 
starting locations. The second option to track movements of porpoise agents allows the user to 
set a delay in the start of the recording (i.e. starting from a specified time step during the 
simulation). This is done by writing a single line, in a semicolon separated .txt file 
(trackedporpoise.txt; file without headers) stored in the data/landscape directory, starting with 
the text delayedSelection; followed by the time step when recording should initiate; followed 
by the starting position (x, y coordinates). Here only one starting position can be specified, 
and movements of porpoise agents closest to the specified starting location are recorded. The 
two options of tracking the movements of porpoise agents cannot be combined.  
The harbor porpoise population is subject to multiple anthropogenic disturbances and 
stressors, including by-catch in commercial gillnet fisheries (Read et al. 2006; van Beest et al. 
2017). Although by-catch was not considered in the current study, it is possible to assess the 
impact of by-catch on the population in the DEPONS model (parameter: ‘bycatchProb’). The 
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parameter was first introduced by Nabe-Nielsen et al. (2014) and ported directly into the 
DEPONS model (as part of the one-to-one conversion from NetLogo to Repast).  
Two different parameters are used for code testing. The parameter ‘randomSeed’ makes it 
possible to repeatedly reproduce the exact same simulation (when not set to ‘random’). This 
option should not be selected when investigating population effects of pile-driving noise. A 
range of built-in testing options were included to test model output under various conditions 
(parameter ‘debug’, see details in the section ‘Implementation verification’).  
 
Parameter Standard value Code name Description [units] 

Landscape NorthSea landscape The landscape that is used in a 
simulation. Can take the values 
"NothSea", "Homogeneous", 
"Gemini”, "DanTysk" or 
"UserDefined". 

Turbines off turbines The wind farm construction 
scenario that is used in a 
simulation. It reads in the 
selected text file that defines 
the turbine locations and 
period of activity etc. Can take 
the values “off”, “DanTysk-
construction”, “Gemini-
construction”, 
“NorthSea_scenario1”, 
“NorthSea_scenario2”, 
“NorthSea_scenario3”, and 
“User-def”. 

simYears 50 simYears Number of simulation years. 

porpoiseCount 10000 porpoiseCount Number of porpoise agents in 
the simulation when initiated. 

trackedPorpoise   
Count 

1 trackedPorpoiseCount Number of porpoise agents for 
which to track the xy 
coordinates (to monitor their 
movements). 

bycatchProb 0 bycatchProb Randomly selected proportion 
of the population to remove 
each year. Can take any value 
in range 0–1. [unitless] 

wrapBorderHomo true wrapBorderHomo Whether the border of the 
landscape should wrap. Can 
take the values "false" or 
"true". The landscape is 
without borders when 
“wrapBorderHomo”=“true” 
and 
“landscape”=”Homogeneous”. 

randomSeed random  randomSeed Allows the user to reproduce 
simulation output of earlier 
model runs by using the same 
random seed as previously 
used. Can take any integer 
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Parameter Standard value Code name Description [units] 
value. 

debug 0 debug Built-in code testing parameter 
(values 0–5). When set to 0 no 
code testing/debugging occurs 
(see details in section 
‘Implementation verification’). 
 

Table 3. Model parameters controlling general model behavior and output types. The ‘code names’ are the 
names used in the Repast code in the current version of the model. 

 

4 Conceptual model evaluation 
 

This TRACE element provides supporting information on: The simplifying assumptions underlying a 
model’s design, both with regard to empirical knowledge and general, basic principles. This critical evaluation 
allows model users to understand that model design was not ad hoc but based on carefully scrutinized 
considerations.  

 

Summary: 
The DEPONS model builds on an existing model that simulates harbor porpoise 
movements and population dynamics in the inner Danish waters. We discuss the 
simplifying assumptions underlying the submodels that control animal movement, 
energetics and responses to noise in the existing model. We further discuss the 
assumptions underlying the dispersal behavior that was introduced when 
extending the model to become suitable for simulating effects of pile-driving noise 
in the North Sea. The rationale for the design and choice of simplifying 
assumptions are discussed. 

 

4.1 Assumptions regarding fine-scale movements 
The fine-scale movement behavior builds on the assumption that animals attempt to optimize 
their foraging when not exposed to noise. Although fine-scale movements are influenced by 
the animals’ energetic status and proximity to places where they have previously found food, 
it is unaffected by social behavior, animal age and whether they are nursing. The movements 
were parameterized based on data collected for one animal (Nabe-Nielsen et al. 2013b). At 
the time when the model was parameterized, the available fine-scale movement data (i.e. data 
on a 30-min resolution or finer) did not suggest that the distance moved per 30-minutes or 
turning angles between steps were strongly related to environmental variation (Figure 9), fine-
scale movements are therefore assumed to be independent of environmental variability in 
DEPONS model version 1.1.  
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The values of rR and rS, estimated for animals in the inner Danish waters, were assumed to be 
representative for North Sea animals. These parameters controlled the animals’ ability to 
return to previously visited food patches based on a spatial memory (Nabe-Nielsen et al. 
2013b). 

4.2 Assumptions regarding effects of noise 
Noise from pile-driving operations is assumed to influence the fine-scale movements of 
harbor porpoises by introducing a bias to their moves (Figure 4). This type of response to 
noise enables the model to reproduce the decline in population densities often observed in the 
vicinity of pile-driving (Brandt et al. 2011; Dähne et al. 2013), but the results of the only 
study where wild porpoises were exposed to noise did not yield a clear indication that noise 
introduces a consistent noise-level dependent bias to the fine-scale movements in wild 
animals (van Beest et al. 2018 subm.). As such, there might be considerable variation in how 
individual porpoises respond to noise in terms of their tendency to move away from noise. 
Such variation was not incorporated in DEPONS model version 1.1. 
In the DEPONS model the parameters c and T were assumed to be constant. This may not be 
the case for wild animals, where habituation to noise may cause either c to decrease or T to 
increase in the habituated animals. Such habituation to noise may be prevalent in cetaceans 
(Richardson & Würsig 1997; Nowacek et al. 2007). The way wild animals react to noise may 
also depend on their energetic status and the quality of the area where the noise exposure 
takes place (Bejder et al. 2006). This is to some extent accounted for in the DEPONS model: 
animals that get disturbed in an unfavorable area are more likely to get permanently displaced 
than the animals that get disturbed in a favorable area. This results from the simulated 
animals’ tendency to return to places where they have previously found food when they have 
not been able to find food for some time. 

4.3 Use of constant vital rates 
The animals’ probability of becoming pregnant, the gestation time, nursing time and mating 
day are all assumed to be constant. In reality, they may be influenced by the animals’ health, 
which in turn depends on a number of environmental parameters, and they may also be 
influenced by the age structure of the population. The choice of using temporally constant 
parameter values was based on a lack of empirical data indicating otherwise. 

4.4 Assumptions regarding energetics 
Population dynamics are directly linked to the balance between individuals’ energy 
expenditure and their ability to replenish their energy reserves by finding patches with food. 
Assumptions regarding the animals’ energy balance and availability of food in the landscape 
are therefore crucial to the behavior of the model. 
The energy balance of individual animals depends on their energy use, which is assumed to be 
constant (except for increases associated with lactation and with high water temperatures in 
the summer months). This is likely to be realistic, as animals must maintain a fairly constant 
speed to forage enough to meet their high energy requirements (Kastelein et al. 1997; 
Wisniewska et al. 2016). 
The dynamics of the food patches is influenced by how fast food replenishes after being 
consumed. This is influenced by the food growth rate (rU) and by how much food that is left 
in a patch when it is nearly depleted (Umin). The selected value of rU (which allowed food to 
replenish after approx. two days with the selected value of Umin) was based on the observation 
that satellite-tracked animals in the inner Danish waters often returned to the same place 
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several times over a period of a few weeks. As the porpoise depends on a continuously high 
food intake (Kastelein et al. 1997) this was thought to indicate that food had replenished in 
the areas visited.  
Both the animals’ food intake rates and the amount of time they spend within a confined area 
depend on the spatial distribution of the food patches. There is currently no data on the spatial 
distribution of the fish that porpoises forage on in the North Sea (or in the inner Danish 
waters). The only indication that the spatial distribution of food patches used in our 
simulations is sensible comes from the similarity of the simulated movement tracks and those 
of satellite-tracked animals (Nabe-Nielsen et al. 2013b). When using landscapes with a low 
patch density in the simulations, animals return to the same area less often than they do in 
nature, causing them to develop larger home ranges than they do in nature (whereas animals 
maintained realistic home ranges in our simulations). 

4.5 Assumptions regarding dispersal 
The dispersal behavior included in the DEPONS model is based on the assumption that 
animals have a persistent memory of places they have previously visited. Although it has not 
been demonstrated that harbor porpoises have a persistent spatial memory (PSM), the ability 
to repeatedly return to the same area is common across a wide range of animal species 
(Berger-Tal & Bar-David 2015). The satellite tracks for porpoises tagged by Skagen in 
northern Denmark suggest that porpoises also have the ability to navigate back to places they 
have not visited for weeks or months (Figure 5). These tracks suggest that North Sea 
porpoises prefer to forage in particular areas, although it is unclear if they move over long 
distances in order to reach areas where they can maximize their food intake rate. The dispersal 
behavior implemented in the model assumes that animals disperse towards the area where 
they have previously obtained the highest energy intake rate, i.e. they are assumed to attempt 
to forage optimally, but to not take the costs of travelling to a new area into account when 
deciding where to go. Similar optimal foraging behavior has been demonstrated for several 
other species (e.g. Austin et al. 2004; Fagan et al. 2013). The dispersal behavior also builds on 
the assumption that animals gradually drift away from the route that would take them straight 
to the place where they previously experienced the highest energy intake rate. This allows 
them to gradually become more exploratory when approaching a region with high food 
availability. 
The calibration of dispersal behavior is based on the assumption that home ranges of 
simulated animals and free-ranging animals are influenced in the same way by environmental 
variations. This is not always the case. Some of the satellite-tracked animals moved out of the 
area used in the simulation model, and as their movements were not constrained by the 
presence of a landscape border, their home ranges were potentially larger than those of 
simulated animals. The satellite-tracked animals also remained in the easternmost part of the 
landscape longer than the simulated animals, presumably due to the presence of local high-
quality food patches that were not included in the simulation landscape. The simulated 
animals often moved out of this area and into the central parts of the North Sea. This enabled 
their home ranges to become more rounded and larger than those of the satellite-tracked 
animals (Figure 5 vs. Figure 11). 

5 Implementation verification 
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This TRACE element provides supporting information on: (1) whether the computer code for implementing 
the model has been thoroughly tested for programming errors and (2) whether the implemented model performs 
as indicated by the model description. 

 

Summary: 
The computer code was continually tested during model development to ensure 
that each consecutive step in development was only initiated after the model had 
passed a wide range of visual and statistical tests. Visual inspection of movement 
tracks was continuously carried out using the NetLogo and Repast graphical user 
interfaces (GUIs). The majority of the program code was initially developed and 
tested in NetLogo and subsequently scrutinized and re-implemented in Repast by 
independent programmers. Only the animals’ response to noise and dispersal 
behavior was not part of this first version of the model. 
 

5.1 Testing the fine-scale movement model and reactions to noise 
The fine-scale movement model was the first component of the DEPONS model to be 
developed. The structure of this submodel is described in the section ‘Fine-scale movement’. 
All aspects of the model (including default parameter values) were kept exactly as described 
in the original publication (Nabe-Nielsen et al. 2013b), which described how a spatial 
memory could enable animals to stay in the same area for several weeks. The landscapes used 
during development of this model included food patches, but no other types of environmental 
variation. The simulated tracks were inspected visually in the homogeneous landscape as well 
as in landscapes including land (Figure 14). A wide range of movement statistics were 
calculated based on simulations in a homogeneous landscape (Nabe-Nielsen et al. 2013b). 
After porting the model to Repast, it was tested that the new version of the model produced 
movement tracks identical to those of the original NetLogo model. This was done by 
comparing the coordinates, spatial memory variables and energy levels of simulated animals 
that had been initiated on the same location in the two versions of the models (using fixed 
randomSeed parameter values). 

 

Figure 14. Tracks simulated with fine-scale movement model in landscapes with land and identical, randomly 
distributed food patches, but no other types of environmental variation. The tracks were produced using the 
porpoise movement model developed in NetLogo (doi: 10.5281/zenodo.53149). The spatial distribution of the 
patches was retained in the DEPONS model version 1.1. 

http://dx.doi.org/10.5281/zenodo.53149
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Dedicated code was developed for testing the different submodels in the fine-scale movement 
model (controlled with the parameter ‘debug’). This was used for developing the NetLogo 
version of the code (DOI:10.5281/zenodo.53097). The debug value 1 was used for developing 
and testing the porpoises’ behavior when approaching land and to develop code that enabled 
them to back-track in rare situations where they got trapped by land. When setting the debug 
parameter to 2, the porpoises’ behavior when approaching land was tested to ensure that 
animals turned as little as possible, while still avoiding land (distance to land, positions and 
turning angles were written to the console for a subset of the simulated animals). Debug value 
3 was used for debugging turning angles related to CRW behavior. Debug value 4 enabled 
inspection of the length of the porpoises’ attraction to previously visited food patches by 
writing the perceived/remembered value of the patch and the direction of the attraction vector 
to the console. Debug value 5 was used for writing out the position of the porpoise and the 
length of the contribution of the CRW and spatial memory moves to the console (Eqns. A5 
and A6), allowing a close inspection of whether turning angles and the direction of the vector 
that characterized fine-scale movement were related to food availability and proximity to the 
visited patch as expected. This dedicated debugging code was used in combination with stress 
tests, where simulations were run with extreme parameter values, to identify errors that would 
be difficult to detect with the default/realistic parameter values. 
The reaction to noise was verified by checking that the length of the deterrence vector VD was 
exactly as specified in Figure 4 and the ODD. We used a visual inspection of the simulation to 
double-check that simulated porpoises reacted to noise out to the distance specified in Eqn. 
A1 in the submodel ‘Porpoises detect noise’ (see also Figure 15). 

 

Figure 15. Porpoise movement tracks in the presence of continuous pile-driving noise. The yellow circle 
indicates the area where porpoises react to noise when the model is parameterized based on data from the 
Gemini wind farm. 

5.2 Testing the dispersal model 
The persistent spatial memory (PSM) dispersal behavior was developed exclusively in 
Repast/Java. It differs from the dispersal model described by Nabe-Nielsen et al. (2014), 
which was specific to the inner Danish waters. We tested that the dispersal model produced 
the desired output by plotting and analyzing the movement tracks for dispersing porpoise 
agents. This was done using the parameter “trackedPorpoiseCount” and the 
trackedporpoise.txt file that records movements (coordinates) of random agents after each 

https://zenodo.org/badge/latestdoi/59695538
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time step. We plotted how the turning angles following each dispersal step changed as the 
simulated animals approached their dispersal targets (Figure 7) and by monitoring variations 
in step lengths and energy levels. Further, we conducted stress tests of the PSM dispersal by 
analyzing simulated tracks for extreme values of ddisp, PSM_angle, PSM_dist, PSM_log and 
PSM_tol.  

5.3 Testing population dynamics 
The population model (Nabe-Nielsen et al. 2014) was tested by inspecting how porpoise agent 
movements were influenced by their energetic status and by analyzing relationships between 
their average energetic status of porpoises and food patches. The inspection of individual 
porpoise agents was done using the built-in inspector in NetLogo as well as custom made 
code for writing out the track, food consumption, energy use and fate of individual porpoises. 
Population dynamics were inspected using the built-in functionality for creating dynamic 
plots in NetLogo and by close inspection of generated output. 

6 Model output verification 

 
This TRACE element provides supporting information on: (1) how well model output matches observations 
and (2) how much calibration and effects of environmental drivers were involved in obtaining good fits of model 
output and data.  

 
Summary: 

The DEPONS model was able to reproduce the fine-scale movement patterns and 
dispersal patterns observed for porpoises in nature. It was also able to reproduce 
the relative animal densities observed at different distances from a wind farm 
during construction. These three types of output were parameterized using 
pattern-oriented modeling. Emergent patterns related to variations in population 
size could not be compared to observations due to lack of field data.  

 

6.1 Types of model output 
The DEPONS model writes out three data files after each simulation. (1) The first file (.csv) 
reports the change in population size over time. By default it produces one line of output per 
30-min time step, but the reporting interval can be changed in the graphical user interface 
(GUI). (2) Data on the distribution of porpoise agents (.csv) among ‘blocks’ in the simulation 
landscape (defined in a raster file, see the section ’Input data’), which is by default recorded 
for each 30-min step. (3) Data on the movements (.csv) of individual porpoise agents during 
the simulation, measured and recorded by default for each 30-min step. By default, one 
porpoise is tracked, but multiple agents can be tracked using the parameter 
trackedPorpoiseCount.  
In the GUI version of the model an additional data set is written out: Data on number of 
animals per age class in the population and number of animals that have died in the preceding 
year in that age class. When running simulations in batch mode only the first three files are 
produced, but in addition the associated parameter input values used during the simulation are 
written to a separate file. The data files are written out to the working directory when 



TRACE document: Nabe-Nielsen et al. 2018. Individual-based model of habor porpoise.  

40 
 

simulations are run in the GUI while output from the batch procedure is written out to the 
output folder within the working directory. Each output file has a date and time stamp in the 
title, which reflects when the simulation finished. 

6.2 Comparison of model output and observations 
Only animal movement patterns and recovery of local population densities after pile-driving 
could be compared to corresponding field data recorded in the North Sea. The emergent 
population dynamics could not be compared to field data, as the available data on variations 
in population densities are either unavailable for the North Sea, or available on a very rough 
temporal and spatial resolution (Hammond et al. 2013). In the inner Danish waters, the 
predecessor of the DEPONS model was, however, capable of reproducing the spatial 
distribution observed for porpoises using acoustic survey data (Figure 7 in Nabe-Nielsen et al. 
2011). The age class distribution observed for simulated animals that died each year 
corresponded to the one observed for stranded animals along the Danish shores (Nabe-Nielsen 
et al. 2014). 
The fine-scale movement model enabled animals to develop a range of track characteristics 
observed for animals in the inner Danish waters (Nabe-Nielsen et al. 2013b). In version 1.1 of 
the DEPONS model, the correlated random walk component of the fine-scale movement 
model was calibrated to ensure a close match with field data (by iteratively calibrating the 
parameters a, b, m, R1, R2 and R3 as described in the appendix of Nabe-Nielsen et al. 2013b; 
see Table 2 for description of parameters). Subsequently the parameters rR and rS were 
calibrated using pattern-oriented modeling (POM) to ensure that animal home range sizes and 
residence times (Barraquand & Benhamou 2008) closely resembled those observed for 
satellite-tracked animals (see details on POM). Here residence time is a measure of how long 
animals have spent in the neighborhood of each position in a track, which is often interpreted 
as a measure of how suitable the area is for foraging. Although fine-scale movements may 
depend on various types of environmental variation in nature (e.g. bathymetry, salinity and 
distance to coast), these did not have a direct impact on the distance animals moved per step 
or on turning angles in DEPONS model version 1.1. The reason was that there was no data 
available to parameterize such variations. We consistently used the simplest possible model 
(i.e. the model that involved the smallest number of parameters) if there was no data to 
support the use of a more complex relationship in the model. 
The recovery of relative porpoise densities after the pile-driving ended resembled those 
observed at different distances from the Gemini wind farm during construction (Figure 12). 
The recovery resulted from the simulated animals’ tendency to move back to known food 
patches after deterrence stops.  
The simulated dispersal patterns matched those observed for satellite-tracked animals in the 
north-eastern part of the North Sea after calibrating parameters related to persistent spatial 
memory (see details on POM). 

7 Model analysis 
 

This TRACE element provides supporting information on: (1) how sensitive model output is to changes in 
model parameters (sensitivity analysis), and (2) how well the emergence of model output has been understood.  
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Summary: 
A sensitivity analysis was performed to explore how the equilibrium population 
size changed in response to variations in each of the parameters in the model. The 
emergent equilibrium population size was most sensitive to variations in food 
replenishment rate and to parameters related to animal energetics, but relatively 
insensitive to changes in the parameters related to animal movements. It is 
discussed to what extent the realism of the patterns that emerge from the model 
have been tested against field data. 
 

7.1 Sensitivity analysis 

7.1.1 Sensitivity – parameters related to general porpoise behavior  
We conducted a sensitivity analysis to explore how the equilibrium population size changed 
when varying parameters related to life history, energetics, fine-scale movements and 
dispersal in simulations without noise (Figure 16). Parameters were changed one at a time to 
produce a local sensitivity analysis (cf. Bar Massada & Carmel 2008). In this study 
parameters were increased or decreased by 20% relative to their default values and the 
corresponding impact on equilibrium population size was calculated as the mean daily 
population size for 8 replicate simulations. For the sensitivity analyses we used 40-year 
simulations, but calculated the equilibrium population size based on the last 20 years only (a 
20-year burn-in period was always sufficient to ensure that the population had stabilized).  
The equilibrium population size was most sensitive to variations in parameters related to 
energetics (2nd group of parameters in Figure 16), and variations in the food replenishment 
rate, rU were particularly important. The default value for this parameter caused food to 
replenish after approximately 48 hours (see appendix of Nabe-Nielsen et al. 2013b). When 
increasing rU by 20% relative to its default value (see Table 1) food replenished faster, 
leading to generally higher food availability and a larger population size. The equilibrium 
population size is nearly equally sensitive to parameters that influence the individual animals’ 
energy consumption per time step, Euse, their increased energy use while lactating, Elact, and 
increased energy use in periods with warm water, Ewarm. It is, however, insensitive to 
variations in the survival probability constant β, which determines the exact relationship 
between the animals’ energetic status and their survival probability.  
Equilibrium population size was less sensitive to variations in parameters related to animal 
life history (1st group in Figure 16), fine-scale movement (3rd group) and dispersal (4th group). 
One exception is the maximum distance moved during a fine-scale move, dmaxmove. When 
decreasing this parameter by 20% relative to its default value (provided in Table 2) it caused 
the mean population size to decrease by 16.5%, suggesting that the distance animals move 
while using fine-scale movements is important for their ability to rapidly return to previously 
visited patches when they do not find much food using a correlated random walk. For R1 and 
R3, which control distance moved and turning angles during fine-scale movements, 
respectively, only the parameter means were varied (standard deviation components were kept 
constant). 
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Figure 16. Sensitivity analysis for parameters related to animal life history, energetics, fine-scale movements and 
large-scale movements/dispersal. Bars show changes in equilibrium population size when increasing or 
decreasing each parameter by 20% relative to its default value. Error bars show confidence intervals based on 8 
replicate simulations. 

The relatively low sensitivity for most parameters related to animal movements, as compared 
to parameters related to energetics, does not indicate that population dynamics are unaffected 
by animal movements. Inclusion of, e.g., novel types of dispersal might result in changes in 
the equilibrium population size that exceed those observed with the current dispersal model 
for any parameter combinations.  
Only parameters that could potentially influence the behavior of all animals, and where an 
adjustment of ±20% made sense, were included in the sensitivity analysis. The sensitivity to 
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the life history/energetics parameters tmaxage, Einit, tmating, Umin was not studied. The tmaxage only 
influenced the few, old animals. Einit was only important during the burn-in period. For tmating 
it did not make sense adjusting by ±20%. The same was the case for R2 (turning angle 
between consecutive fine-scale moves), which had a mean of 0. Umin affects the time it takes 
food in patches to replenish, which could be adequately analyzed by adjusting rU. PSM_tol 
presumably mostly affected animals while they gathered information about potential areas to 
disperse to (i.e. during the burn-in phase). The parameters wdisp, wmin influenced only the 
relatively few animals that were close to land, and varying these parameters by ±20% 
therefore inevitably has small impact on overall population dynamics. 

 

Figure 17. Sensitivity analysis for parameters related to noise, i.e. residual deterrence time tdeter, deterrence 
coefficient c, and response threshold T. T equal to 139.8 dB, 133.8 dB and 127.8 dB cause simulated animals to 
respond to distances of 51.3 km, 102 km and 204 km, respectively. Error bars show 95% confidence intervals 
based on 8 simulations. 

7.1.2 Sensitivity – parameters related to impacts of noise 
To assess the model’s sensitivity to variations in parameters influencing individual animals’ 
response to noise, we measured the population size in the year where it was most affected by 
noise. This happened in the second year of the 10-y wind farm construction period in Scenario 
1 (i.e. in year 2012 in the ‘Random, slow’ scenario; Figure 3 in main text). The population 
effect of noise was measured after increasing or decreasing the noise parameters by 20%, one 
at a time, and recording the corresponding mean population size in eight replicate simulations. 
The same was done for the default parameter values, which yielded the ‘reference level’, 
where animals responded up to 8.9 km from the noise source.  
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When decreasing the noise parameter T to 139.8 dB, 133.8 dB and 127.8 dB (causing 
simulated animals to react to noise out to distances of 51.3 km, 102 km and 204 km from the 
noise source, respectively) it resulted in a much larger decrease in the mean population size 
than the one observed when using default parameter values (Figure 17). There was, however, 
a large variation in mean population size among simulations. When increasing c to either 0.15 
or 0.30, which caused individual animals to respond much more strongly to noise than 
observed during construction of the Gemini wind farm (Figure 13), it did not significantly 
influence the population impact of noise, i.e. the confidence intervals overlapped with the 
reference level. Increasing the residual deterrence time, tdeter, to either 10 or 20 did not cause 
the population impact to differ from the reference level either. Here 20 corresponds to a 
residual deterrence of 10 hours, which is the highest likely value of tdeter as based on field 
data; van Beest et al. (2018). The sensitivity of ψdeter was not investigated as it was closely 
related to tdeter, and that of dmax_deter was not relevant with the default parameter settings. The 
simulated population effect of noise was therefore only influenced by decreasing T, which 
also caused the population size to drop below the equilibrium level. 

7.1.3 Sensitivity – impact of energetics parameters on response to noise 
To test if the population impact of noise was sensitive to the choice of energetics parameters, 
which were the parameters with the largest influence on equilibrium population size (Figure 
16), we increased or decreased these parameters one at a time in simulations including noise. 
This is equivalent to testing for interactions between T and each of the energetics parameters. 
The reference population size was obtained as the daily mean population size during the 
second year of the 10-y wind farm construction period in scenario 1 (i.e. in 2012; mean of 8 
simulations). It was based on default parameter values, except that T was decreased to 127.8 
dB SEL (causing animals to react up to 204 km from the pilings). The population impact of 
noise was considered sensitive to an energetics parameter when either increasing or 
decreasing the parameter by 20% resulted in a change in the population size relative to the 
reference population size. 
The population impact of noise was sensitive to Elact, Ewarm and rU, as changing either of these 
parameters caused the population size during the second year of the wind farm construction 
period to differ from the reference population size (i.e. the confidence intervals did not 
overlap with the reference value; Figure 18). When reducing Elact or Ewarm by 20%, wind farm 
construction noise no longer had a significant impact on the population, even when letting 
animals be deterred up to 204 km from the piling. The population impact of noise was not 
sensitive to changes in Euse or β, but a 20% decrease in Euse caused the impact of noise to be 
non-significant. Only an increase in Ewarm caused noise to have a larger impact on the 
population, but only slightly so. Although improved estimates of the noise parameters could 
potentially result in more accurate estimates of the population impacts of noise, it is unlikely 
that larger population effects would be predicted with moderately altered energetics 
parameters. 
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Figure 18. Sensitivity of population effect of noise to parameters related to energetics. Bars show mean 
population sizes during the second year of the wind farm construction period, when increasing or decreasing 
parameters by 20% relative to their default values. Error bars show 95% confidence intervals. Simulations were 
based on T=127 dB, assuming that animals reacted up to 204 km from pilings. 

7.2 Tests of emergence 
The model produces four different emergent patterns: (1) population size, (2) spatial 
distribution of animals, (3) their age class distribution, and (4) local recovery of populations 
after exposure to pile-driving noise (see ‘Design concepts’). All four patterns emerge from 
ubiquitously valid mechanisms derived from ‘first principles’ (Nathan et al. 2008; Sibly et al. 
2013), including use of energy for maintenance and movement and acquisition of food by 
actively searching for optimal foraging areas. Such models where population and community-
level patterns emerge from adaptive traits related to general evolutionary and physiological 
principles are more likely to maintain their predictive power across a wide range of 
environmental conditions than other models (Stillman et al. 2015).  
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Figure 19. Population dynamics in model without dispersal. Impacts of noise are illustrated for the ‘Random, 
slow’ scenario. 

In order to test which elements of the model were responsible for the observed emergent 
patterns, we gradually refined the model until reaching the level of complexity present in the 
current version of the DEPONS model. While increasing model complexity we monitored the 
changes in population size and spatial distribution of animals and in the animal movement 
patterns. The simplest model, where animal movements were simulated using a correlated 
random walk model without spatial memory of previously visited patches did not allow 
realistic fine scale space-use patterns to emerge. This suggested that the model was too simple 
to represent real animals (see Table A1 in Nabe-Nielsen et al. 2013b for details on the 
relationship between animal space use and spatial memory). Inclusion of a mechanism that 
allowed animals to return to previously visited food patches (see ‘Fine-scale movement’) 
allowed simulated animals to develop space-use patterns that closely resembled those of 
satellite-tracked animals by balancing their tendency to move at random (i.e. following a 
correlated random walk) and their tendency to return to previously visited food patches 
(Nabe-Nielsen et al. 2013b). This also enabled simulated animals to forage optimally, thereby 
facilitating fitness-maximization. Although this suggested that the inclusion of spatial 
memory in the model was required to faithfully simulate the movements and energetics of real 
animals, it did not permit the simulated animals to develop long-term home ranges that 
resembled those observed for satellite-tracked animals. It is essential that simulated animals 
have home ranges of a realistic size in order to ensure that they have access to the same 
amount of food resources as real animals have. Only in that case will the decreased food 
intake that they experience when being scared away from a wind-farm construction site result 
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in a realistic decrease in in the population size. The model was only able to simulate home 
ranges that resembled those of satellite-tracked animals after including a dispersal mechanism 
that allowed individuals to return to the area where they had previously experienced the 
highest energy intake rate (Figure 10 illustrates how animals that disperse less, i.e. with 
smaller PSM_dist, have unrealistically small home ranges). The inclusion of this dispersal 
mechanism in the model caused the equilibrium population size to increase (relative to a 
model without dispersal; Figure 19). It also resulted in the emergence of realistic movement 
patterns at multiple spatial and temporal scales (see TRACE Appendix A), and in the 
emergence of realistic local population densities. This suggests that the mechanisms that 
control animal foraging and food acquisition in the current version of the DEPONS model are 
sufficiently realistic for the purpose of the model. It also suggests that the model cannot be 
simplified without compromising its realism. 
 

8 Model output corroboration 

 
This TRACE element provides supporting information on: How model predictions compare to independent 
data and patterns that were not used, and preferably not even known, while the model was developed, 
parameterized, and verified. By documenting model output corroboration, model users learn about evidence, 
which, in addition to model output verification, indicates that the model is structurally realistic so that its 
predictions can be trusted to some degree.  

 

Summary: 
The model’s ability to faithfully predict population effects of wind farm 
construction noise cannot be corroborated using independent data, as harbor 
porpoise population estimates based on field data are scarce and inherently 
imprecise. The simulated effects of noise on local population densities have not 
been compared with independent data due to the scarcity of data from comparable 
wind farm construction sites. 

 
Only some of the model predictions can be directly compared to independent data due to the 
scarcity of harbor porpoise survey data from the North Sea and due to the large variability 
associated with such data. Four different patterns emerged from the model: (1) variations in 
total population size in time; (2) spatial distribution of animals, (3) their age class distribution, 
and (4) local recovery of populations after exposure to pile-driving noise (see ‘Design 
concepts’). In the following we discuss to what extent each of these patterns can be 
corroborated using independent data and which types of independent data that should be 
collected to further evaluate the realism of the model predictions. 
A direct comparison of the predicted porpoise population size with population estimates based 
on survey data (e.g. those collected during SCANS surveys; SCANS II 2008) is unlikely to be 
informative for two reasons: (i) The North Sea population estimates based on SCANS data are 
associated with considerable variation, making it relatively easy for the simulation model to 
produce population estimates within the confidence limits of these estimates. (ii) The SCANS 
surveys are conducted relatively infrequently, making them unsuited for validation of the 
fine-scale temporal population dynamics produced by the DEPONS model. The robustness of 
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the model predictions regarding variations in population sizes in space and time is therefore 
only ensured by the generality of the mechanisms responsible for producing this emergent 
pattern. 
The predicted spatial distribution of animals could, in principle, be compared to independent 
data, but although alternative porpoise distribution maps exist (e.g. Reid et al. 2003) they are 
partly based on the same underlying data as the study by Gilles et al. (2016), so they are not 
truly independent. The spatial distribution patterns produced by the predecessor of the 
DEPONS model in the inner Danish waters, did, however, closely match those obtained from 
acoustic survey data that were not used for designing or calibrating the model (see page 23 in 
Nabe-Nielsen et al. 2011; monthly average densities per 40 km x 40 km block). These 
simulations of the inner Danish waters population did not include wind-farm construction 
scenarios. The model’s ability to reproduce the porpoise distributions observed in nature is 
reassuring, as this causes a realistic proportion of the simulated porpoises to get exposed to 
noise during wind farm construction scenarios. 
The age class distribution of the simulated animals can be directly compared to the age class 
distribution of stranded and by-caught animals. This comparison has already been conducted 
in the inner Danish waters (Nabe-Nielsen et al. 2014). Here the age class distribution that 
emerged from the model corresponded closely to that in the field data. 
Recovery of local population densities following the construction of individual wind turbine 
foundations was studied in the Gemini wind farm during construction. This data set was the 
only one available providing both noise measurements and relative porpoise population 
densities at different distances from the mono-pile pilings, and where no noise mitigation was 
used. This data set was used for simultaneously calibrating deterrence and local population 
recovery (Figures 11 and 12). As the only available data set was used for model calibration, 
there are no data available for model output corroboration. 
In addition to using already collected data for model output corroboration, the collection of 
local population densities around other wind farm construction sites would help us obtaining a 
better understanding of the structural realism of the DEPONS model and of the generality of 
the model predictions. This would also make it possible to verify that the sound propagation 
model employed is realistic for the sound frequencies that porpoises react to. In such field 
studies it is essential to measure how porpoise densities change during and after pile-driving 
at large distances from the wind farm construction sites in order to determine whether model 
predictions are realistic at these distances. 
It is possible that the animals’ tendency to return to areas they have been deterred from 
depends on the food availability in that area, in nature as well as in the model. Animals are 
more likely to return to profitable areas. The model’s ability to faithfully simulate local 
population recovery in areas with different levels of food availability could be corroborated 
using long-term data collected with CPODS in areas where wind farms are constructed. This 
would provide an independent measure of local food availability as well as local population 
recovery. 
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TRACE Appendix A – Calibration of dispersal behavior 

 
This appendix provides supporting information on: How porpoise movement tracks were analyzed to make it 
possible to calibrate animal dispersal using pattern-oriented modeling. The appendix is not part of the standard 
TRACE documentation. 

 
Summary: 

This appendix provides information on the procedure used for calibrate the 
simulated porpoises’ dispersal behavior using pattern-oriented modeling. The 
animal dispersal patterns obtained from animals equipped with Argos satellite tags 
and from the DEPONS model were analyzed using non-linear mixed effects 
models. This yielded estimates of the asymptotic home range sizes for each 
movement track. We here demonstrate that the median asymptotic values for 
simulated animals resembled those of satellite-tracked animals. 
 

Analysis of porpoise dispersal patterns 
To ensure that the simulated dispersal movements resembled those of satellite-tracked 
animals as closely as possible, we calibrated the parameters controlling dispersal, i.e. ddisp 
(distance moved per dispersal step), PSM_angle (maximum turning angle after each step) and 
PSM_dist (see section 3.2.2 for details). To do so we used three different statistics for 
comparing simulated tracks to those of satellite-tracked animals: (1) home range size (km2), 
(2) home range length (km) and (3) cumulative distance moved. These statistics characterize 
complementary aspects of the animals’ space use. As all three statistics are sensitive to the 
number of positions in the movement track, i.e. the number of days from the beginning till the 
end of the track, we decided to compare the statistics for day 150 of each tracks. All tracks 
were based on 3-year simulations with 2-years burn in period. Not all tracks lasted 150 days 
(because the satellite tags stopped working), so the first step in the analysis was to fit a 
function that enabled us to extract the values for day 150 of the tracks. 
The temporal change in home range size and length was modeled using non-linear mixed 
models for both simulated and satellite-tracked animals. These were fitted using a negative 
exponential function (i.e. asymptotic regression function through the origin) 

x = Asym × (1–exp(–exp(lrc) ×t) Eqn. A14 

where x is the track statistic, Asym is the horizontal asymptote, lrc is the rate constant and t is 
time since the start of the track (unit: days) (Pinheiro et al. 2016). Both Asym and lrc were 
fitted as fixed and random effects to capture individual variation in the large-scale 
movements. Temporal autocorrelation in the residuals was reduced by fitting a continuous 
autocorrelation structure to t (corCAR1 class). Homogeneity of residuals was ensured by 
incorporating a power variance weights structure to t.  
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Figure 20. Median home range size, home range length and distance moved after 150 days for 25 free-ranging 
porpoises equipped with satellite tags. 
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Figure 21. Median home range size, home range length and distance moved after 150 days for 25 porpoise 
agents. Simulations were based on parameter values provided in Table 2. 

Cumulative distance moved over time was quantified with a linear mixed model forced 
through the origin. Here t was both a fixed and random effect and porpoise ID was included 
as an additional random effect. Again, we included the corCAR1 autocorrelation function and 
the power variance weights structure to td to ensure the validity of the model residuals. All 
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statistical analyses were performed in the package nlme (Pinheiro et al. 2016) within R (R 
Development Core Team 2016). 
For each of the three statistical models, we extracted the median predicted value at day 150 
(t150; Figure 20), which were set as the target values in the POM procedure. This procedure 
consisted on running simulations corresponding to all different combinations of the 
parameters ddisp, PSM_angle and PSM_dist and calculating home range size, home range 
length and distance moved after day 150 for each combination. Figure 21 shows the value of 
these statistics for the best fitting combination of the three parameters (correspondence 
between statistic based on simulated and satellite-tracked animals shown in Figure 10).  
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TRACE document 
 
This is a TRACE document (“TRAnsparent and Comprehensive model Evaludation”) which 
provides supporting evidence that our model presented in: 

Ayllón, D., Railsback, S.F., Vincenzi, S., Groeneveld, J., Almodóvar, A., Grimm, 
V., 2016. InSTREAM-Gen: modelling eco-evolutionary dynamics of trout 
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1 Problem formulation 
This TRACE element provides supporting information on: The decision-making context in which the model 
will be used; the types of model clients or stakeholders addressed; a precise specification of the question(s) that 
should be answered with the model, including a specification of necessary model outputs; and a statement of the 
domain of applicability of the model, including the extent of acceptable extrapolations.  

Summary: 
Climate change and other anthropogenic pressures are key drivers and 
accelerators of the short-term dynamic feedbacks resulting from ecological and 
evolutionary interactions. Consequently, understanding how rapid 
anthropogenic-driven evolutionary and adaptive processes can influence 
ecological dynamics is crucial for defining ecosystem conservation and 
management strategies under ongoing global change. This is particularly relevant 
in freshwater ecosystems, where the impacts of climate change on ecosystem 
functioning pose additional complex difficulties to management and threaten the 
implementation of several environmental directives, conventions and protocols, 
especially the European Water Framework Directive. InSTREAM-Gen was 
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developed to simulate the eco-evolutionary consequences of river management 
decisions on trout river systems under a climate change context. 

InSTREAM-Gen was designed to understand how environmental conditions and 
anthropogenic disturbances drive the evolution of demographics and life-history strategies of 
stream-dwelling trout populations. Therefore, it is particularly suited to simulate the eco-
evolutionary consequences of river management decisions under a climate change context. 
Recent human-induced species extinction rates are likely a thousand times higher than the 
background rate of extinction (Pimm et al. 2014), while current rates of population extirpation 
are at least three orders of magnitude higher than species extinction rates (Hughes et al. 1997). 
Human growth and increasing per capita consumption together with associated anthropogenic 
climate disruption are main drivers of population extirpations and finally species extinctions 
(Parmesan 2006, Pimm et al. 2014). As the climate changes, species might undergo 
adaptation, migration or extinction depending largely on their life history and dispersal traits 
in relation to habitat fragmentation and the rate of environmental change (Woodward et al. 
2010). Since habitat fragmentation potentially constrains range shifts to track the optimal 
environment, populations of many species will have to locally adapt to the changing 
environment to avoid extinction, particularly when demographic rescue from neighbouring 
populations is unlikely or impossible (Reed et al. 2011, Vedder et al. 2013). In this case, 
evolution over short-term must reverse demographic threats due to altered or novel selection 
pressures to prevent otherwise inevitable extirpation (i.e., evolutionary rescue). However, 
there is concern that the rate of environmental change is currently exceeding the capacity of 
populations to adapt (Bell and Gonzalez 2011). This is the case of resident freshwater fish 
populations, which are responding to climate change at higher extirpation rates than terrestrial 
organism as shifts in range toward higher elevation or latitude are not keeping pace with the 
rate of warming in streams and rivers (Comte and Grenouillet 2013). However, most 
assessments of population extinction risk due to climate change are based on statistical 
approaches (e.g., climate envelope models) that neglect accounting for a population’s capacity 
to adapt to changing environmental conditions. In contrast, mechanistic eco-genetic modelling 
is an integrative approach for studying life-history evolution, in particular at contemporary 
timescales and in realistically complex ecological settings (Dunlop et al. 2009).  
InSTREAM-Gen is an individual-based model (IBM) developed with an eco-genetic 
structure, whose ecological structure is a replicate of a previous IBM, inSTREAM (Railsback 
et al. 2009). Aside from fundamentals applications to ecological research, inSTREAM was 
intended to support environmental impact assessment on trout systems, as it was developed 
to address critical river management issues such as instream flow assessment, effects of 
channel modification or restoration, or analysis of cumulative effects of multiple stressors 
(e.g., modification of instream habitat and/or channel morphology, changes in environmental 
and/or ecological conditions). InSTREAM, and thus inSTREAM-Gen, were consequently 
designed in a way that their predictions could easily be coupled with socio-economic models, 
or models for decision analysis, in the wider context of river management. InSTREAM-Gen 
would be thus framed within evolutionary impact assessment (Jørgensen et al. 2007), whose 
goal (in a wide sense) is to predict how alternative management options change the impacts of 
human-induced evolution on utility metrics, so that management decisions can provide for the 
greatest long-term benefit to ecosystems and society (Dunlop et al. 2009, Palkovacs and 
Hendry 2010). Bringing together socio-economic, climatic, eco-hydrological, eco-hydraulic, 
genetic, life-history and demographic aspects allows the development of a general modelling 
and conservation framework to support decision-making under the current climate change 
context, especially regarding the implementation of the European Water Framework 



TRACE document: Ayllón et al. 2016, Eco-evolutionary individual-based model for trout populations. 

4 
 

Directive (Directive, 2000/60/EC; WFD) in Mediterranean salmonid systems. The WFD 
emphasises a whole-basin approach and requires both the determination and restoration of 
ecological quality rather than simply water quality. It is underpinned by the concept of 
baseline conditions or reference systems, defined as those unaltered or only negligibly altered 
by human activity. As climate change will have an effect on the status of both impacted water 
bodies as well as sites used for reference, it will affect the characterisation of water bodies, 
and the definition of reference conditions and the ecological thresholds currently used to set 
the targets on which river basin management plans are based (see Battarbee et al. 2008, 
Laaser et al. 2009). Likewise, climate change will affect ecosystem recovery trajectories by 
shifting baselines (or, more accurately, targets), adding uncertainty to the success of river 
restoration plans (Verdonschot et al. 2012). One of inSTREAM-Gen's main purposes is to 
simulate the long-term dynamics of biological reference conditions, ecological thresholds and 
targets, and system recovery trajectories of Mediterranean mountain trout rivers under 
different climate change and river basin management scenarios at multiple temporal and 
spatial scales. 
InSTREAM-Gen can only be used to model populations of stream-dwelling trout. Clearly, 
InSTREAM-Gen is not appropriate (or extrapolations must be considered with caution) for 
study sites or problems where trout population dynamics are strongly dependent on processes 
that are not represented, or represented only coarsely, in the model. Therefore, inSTREAM-
Gen might not be suitable to model sites where: 1) other fish species are significant 
competitors for food or habitat; 2) water quality elements other than temperature have strong 
effects or are the management issues of interest; 3) the effects of ice are important. (See 
Section "Conceptual model evaluation" of the present TRACE document for further details on 
the matter.) 
 

2 Model description  
This TRACE element provides supporting information on: The model. Provide a detailed written model 
description. For individual/agent-based and other simulation models, the ODD protocol is recommended as 
standard format. For complex submodels it should include concise explanations of the underlying rationale. 
Model users should learn what the model is, how it works, and what guided its design. 

Summary: 
We present the complete model description following the ODD (Overview, Design 
concepts, Details) protocol for describing individual-based models (Grimm et al. 
2006, 2010). The model was implemented in NetLogo 5.0.4 (Wilensky 1999), a free 
software platform for implementing individual-based models. The NetLogo code 
has been made available in the Supplementary Material of Ayllón et al. (2015).  

Section content 
2.1 Purpose ............................................................................................................... 5 
2.2 Entities, state variables, and scales ..................................................................... 5 
2.3 Process overview and scheduling ....................................................................... 7 
2.4 Design concepts .................................................................................................. 8 
2.5 Initialization ...................................................................................................... 10 
2.6 Input data .......................................................................................................... 11 
2.7 Submodels ........................................................................................................ 11 
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2.1 Purpose 
InSTREAM-Gen was designed to understand how environmental conditions and 
anthropogenic disturbances drive the evolution of demographics and life-history strategies of 
stream-dwelling trout populations. Therefore, it is particularly suited to simulate the eco-
evolutionary consequences of river management decisions under a climate change context. 

2.2 Entities, state variables, and scales 
Spatial scales: The entire model is represented by one spatially-explicit stream reach of a 
length defined by the user, but never longer than 300 meters nor wider than 50 meters. The 
stream habitat within the reach is depicted as a grid of cells of variable size. 
Temporal scale: The model includes a temporal scaling factor which allows the user to set the 
time step (never less than one day), so that it is user-specified. At any case, there are three 
trout actions (habitat selection, feeding and growth, and survival) which are always performed 
on a daily basis irrespective of the time step defined. The extent (duration) of the simulation is 
also defined by the user through the length of the environmental and habitat time-series. 
Entities: This IBM includes three types of entities: Cells, trout and redds. Cells are objects 
that represent patches of relatively uniform habitat within a reach. Trout are modelled as 
individuals. Redds are spawning nests made by trout that are modelled as individual objects. 
State variables: The global (reach) environment is characterized by its environmental and 
biological conditions. Each cell is characterized both by its physical habitat, and also by its 
production rate of two different kinds of food, drift and search (stationary) food. Each trout 
has 21 state variables, while redds’ state is described through 18 variables. All state variables 
of agents are described in Table A1. 

Table A1. Agents included in inSTREAM-Gen with their state variables and units of 
measurement. 

Agent Variable Description Unit 

Cells cellArea* Area of the cell cm2 

 

CellAreaCover* Area of the cell with  cover cm2 

 

cellAreaShelter*  Area of the cell with velocity shelters cm2 

 

cellDepth Value of depth at specific time cm 

 

cellDistanceToHide Average distance from hiding cover from the cell’s center  cm 

 

cellFracCover* Fraction of the cell with cover Unitless (0-1) 

 

cellFracGravel* Fraction of the cell with spawning gravel Unitless (0-1) 

 

cellFracShelter* Fraction of the cell with velocity shelters Unitless (0-1) 

 

cellFracSpawn* Fraction of the cell with spawning gravel Unitless (0-1) 

 

cellNumber* Number of the cell number 

 

cellVelocity Value of velocity at specific time cm s-1 

 

driftHourlyCellTotal Production rate of drift food items g h-1 

 

my-adjacentCells* Adjacent cells agents 

 

my-patches* Patches composing the cell agents 

 

searchHourlyCellTotal Production rate of search food items g h-1 

 

Transect* Transect where the cell is located number 

Redds creationDate* Date when the redd is created date 
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days-after-hatch Number of days since emergence starts in the redd days 

 

eggsLostToDewateringTot Total number of eggs lost due to scouring eggs 

 

eggsLostToHighTempTot Total number of eggs lost due to high water temperatures eggs 

 

eggsLostToLowTempTot Total number of eggs lost due to low water temperatures eggs 

 

eggsLostToScourTot Total number of eggs lost due  to dewatering eggs 

 

eggsLostToSuperimpTot Total number of eggs lost due  to superimposition of redds eggs 

 

fracDeveloped Developmental status of a redd’s eggs Unitless (0-1) 

 

my-cell* Cell where the redd is located cell-id 

 

numberOfEggs Number of eggs in the redd eggs 

 

numberOfHatchedEggs Number of eggs hatched (creating a new trout) eggs 

 

reddFathersgenNeutralTrait* Genotypic values of neutral trait of fathers User-specific 

 

reddFathersgenNewlength* Genotypic length at emergence of fathers cm 

 

reddFathersgenSpawnMinLength* Genotypic minimum length to spawn of fathers cm 

 

ReddID * Identity number of the redd  id 

 

reddMothergenNeutralTrait* Genotypic value of neutral trait of the mother User-specific 

 

reddMothergenNewlength*  Genotypic length at emergence of the mother cm 

 

reddMothergenSpawnMinLength* Genotypic minimum length to spawn of the mother cm 

Trout age Number of days since the fish was born days 

 

age-class Age class  Age0-Age5Plus 

 

CauseOfDeath* Mortality source by which the fish is dead 8 sources 

 

cMax Physiological maximum daily intake g d-1 

 

energyAvailableforGrowth Net energy gain in my-cell during the time step J d-1 

 

fishCondition Condition factor  Unitless (0-1) 

 

fishLength Body length  cm 

 

fishMaxSwimSpeed Maximum sustainable swimming speed  cm s-1 

 

fishNeutralTrait* Phenotypic value of the neutral trait  User-specific 

 

fishNewLength* Phenotypic length at emergence cm 

 

fishSpawnMinLength* Minimum length to spawn cm 

 

fishWeight Body weight  g 

 

genNeutralTrait* Genotypic value of the neutral trait  User-specific 

 

genNewLength* Genotypic length at emergence  cm 

 

genSpawnMinLength* Genotypic minimum length to spawn  cm 

 

is-sheltered? Access to a velocity shelter  True/False 

 

maturityStatus Maturity status mature/non-mature 

 

my-cell Cell where the fish is located cell-id 

 

sex* Sex M/F 

 

spawnedThisSeason? Spawned this spawning season true/false 

 

status Status alive/dead 

* Fixed state variables. 
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2.3 Process overview and scheduling 
Processes: The model is developed to cover the whole life-cycle of a stream-dwelling trout 
species. It is structured in nine processes: one related to the reach and cells (update of 
environmental and habitat conditions), five concerning trout (habitat selection, feeding and 
growth, survival, reproduction, and ageing) and three performed by redds (development, 
survival, and hatching of eggs and genetic transmission of traits to new trout).  
The reach and cells update their state variables every time step over the whole simulation; 
trout perform each process every time step of the simulation, but for reproduction, which only 
occurs during the spawning season (every time step), and angling and hooking mortality, 
which is restricted to the angling season (every time step); trout age every time step but 
change their age-class once a year (the Julian day they were born); redd’s development and 
survival processes occur on a time-step basis since redd creation until all eggs have hatched; 
transmission of heritable traits occurs just when the egg hatches and the new trout is created. 
Schedule: The simulation starts at an initial date set by the user through the input parameter 
initial-date. Environmental and habitat updates are scheduled first because subsequent trout 
and redd actions depend on the time step’s environmental and habitat conditions. Trout 
actions occur before redd’s because one trout action (reproduction) can cause redd mortality 
via superimposition. Reproduction is the first trout action because spawning can be assumed 
the primary activity of a fish on the day it spawns. Spawning also affects habitat selection 
because 1) spawners move to the spawning habitat when a redd is created and fertilized, and 
2) spawners incur on weight, and thus body condition, loss after spawning, which affects their 
choice of habitat. Habitat selection is the second trout action each time step because it is the 
way that trout adapt to the new habitat conditions; habitat selection strongly affects both 
growth and survival. Feeding and growth precedes survival because changes in a trout’s 
length or condition factor affect its probability of survival. Survival has its own sub-schedule 
because the order in which survival probabilities for the different mortality sources are 
evaluated strongly affects the number of trout killed by each mortality source. Widespread, 
less random mortality sources are scheduled first: 1) high temperature, 2) high water velocity, 
3) stranding, 4) poor condition, 5) predation by terrestrial animals, 6) predation by piscivorous 
fish, and 7) angling and hooking. The user has the possibility of choosing which mortality 
sources can kill trout during the simulation and which ones are not taken into account. Redd 
actions occur after cell and most trout actions because redds do not affect either habitat or 
fish, with the exception of creating new trout, which do not execute therefore their first 
actions until the day after their emergence. Redd survival is the first redd action to be 
executed. It includes five separate egg mortality sources that follow their own sub-schedule, 
from least to most random: 1) low temperature, 2) high temperature, 3) scouring, 4) 
dewatering, 5) superimposition. Trout emergence and genetic transmission of heritable traits 
is the last redd action. Since survival is scheduled before emergence, trout within redds are 
subject to redd mortality on the day they emerge (but not to trout mortality). Trout ageing is 
the last agent’s executed action each time step so that both pre-existent and new created trout 
can increase their age. Finally, observer actions (plotting graphs and writing output files) take 
place at the end of the time step. All actions occur in the same predetermined order: 
1. Reach updates environmental and biological conditions. Cells update depth and velocity as 
a function of flow, and drift/search food production rate. 
2. Trout reproduce:  

2.1. Trout become spawners. 
2.2. Trout spawn and create redds.  
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3. Trout select habitat. 
4. Trout feed and grow: update length, weight and body condition factor. 
5. Trout survive or die. 
6. Redds’ eggs survive or die.  
7. Redds’ eggs develop. 
8. Redds’ eggs hatch, new trout are created and heritable traits are transmitted. 
9. Trout age. 
10. Observer plots model graphical outputs and write model output files. 
 

2.4 Design concepts 
Learning and Collectives concepts do not apply to this IBM. 

Basic principles: The model was designed with an eco-genetic structure to analyze both 
ecological and genetic effects on population dynamics and life-history evolution on 
contemporary timescales.  Accounting for inheritance of quantitative genetic traits allows the 
study of the eco-evolutionary responses of populations to changing environmental conditions, 
extreme climate events and strong anthropogenic selection pressures. InSTREAM-Gen is 
therefore a spatial dynamics model, which integrates the demographic, genetic and spatial 
dimensions of individual variability through its underlying spatially explicit bioenergetics 
model and its quantitative genetic model of inheritance of genetic traits. 
InSTREAM-Gen is underpinned by "State and prediction-based theory", a new approach that 
combines existing trade-off methods with routine updating: individuals make a prediction of 
the future growth and risk conditions over an entire time horizon under different alternative 
behaviours, but each time they update their decision by considering how their internal state 
and external conditions have changed, so that they can select the alternative optimizing a 
fitness measure (see review by Railsback and Harvey 2013). 
In inSTREAM-Gen, population abundance and structure can be influenced by density-
dependent or density-independent processes. Direct density dependence is only represented 
through the aquatic predation mortality function, which partly depends on density of 
piscivorous fish in the reach. Indirect density-dependent mortality occurs during the spawning 
season, since increasing number of spawners increases the probability of redds dying by 
superimposition. Density-independent mortality factors include terrestrial predation, flow and 
temperature extreme events and recreational fishing. 
Emergence: Dynamics of population demographics (abundance, biomass, production, age- 
and size-structure) and genetics (evolutionary changes in life-history traits such as size-at-
emergence, size maturity threshold, age-at-first-reproduction, time of spawning and 
emergence) emerge from the growth, survival, and reproduction of individuals, individual-
level processes which are driven by complex interactions between individuals and their 
spatio-temporally heterogeneous habitat. Likewise, other population-level responses, like 
density-dependent mortality and growth, and habitat selection patterns, are emergent 
properties of the modelled systems. 
Adaptation: Habitat selection (i.e., the decision of which cell to occupy each time step) is the 
primary adaptive trait of trout, strongly driving trout growth and survival. Other adaptive trait 
is the selection of the feeding strategy (drift-feeding vs. search-feeding) a fish uses each time 



TRACE document: Ayllón et al. 2016, Eco-evolutionary individual-based model for trout populations. 

9 
 

step, since it directly affects growth and, indirectly, survival. Trout are able to adapt some of 
their reproductive behaviors to environmental conditions and their own state: The decision by 
female spawners of when and where to spawn affects offspring production as well as 
recruitment survival and growth; selection of male spawners by female spawners is based on 
the male’s body condition factor, and offspring’s genotypic body size and size maturity 
threshold are inherited from their parents. 
Objectives: Habitat selection is modelled as a fitness-seeking process, by which trout select 
the cell that maximizes “Expected Reproductive Maturity”, a fitness measure developed by 
Railsback et al. (1999) that represents the expected probability of surviving and reaching 
reproductive size over a future time horizon. 
Prediction: Trout are able to predict the probability of both surviving starvation and other 
mortality sources (except fishing mortality), and approaching maturity size over a future time 
horizon defined by the user. 
Sensing: Trout sense water temperature, which influences growth and survival, and 
consequently, habitat selection. Redds sense water temperature too, affecting survival, 
development and the timing of hatching. Trout perceive the cell’s habitat conditions, both 
hydraulic conditions and structural features (cover and substrate). This is a main driver of 
habitat selection. In the case of redds, they also sense their hydraulic environment, which 
determines the probability of survival of eggs. Trout are aware of all mortality sources in the 
model and are able to estimate the risk posed by each of them (but for fishing mortality, 
whose risk is not sensed).  
Interaction: Competition for food and feeding habitat (velocity shelters) are modelled 
explicitly, at the cell scale, according to a size-based dominance hierarchy. Each habitat cell 
contains a limited daily food supply and a fixed area of velocity shelter, so that the food 
consumed and the sheltered area once used by larger trout are not available for smaller fish. 
Sexual selection is simulated by indirect interactions of males through their relative weight 
and condition factor. 
Stochasticity: InSTREAM-Gen is not a highly stochastic model. The most important process 
represented as stochastic is trout and redd mortality. While mortality is modelled by 
calculating the daily probability of each individual agent’s survival through deterministic 
logistic functions, whether the agent actually lives or dies is a stochastic event. Stochasticity 
is also used in the reproduction process for setting the timing of redd creation, and for the 
selection of the number and identity of males fertilizing the eggs of a redd, as well as of the 
identity of the male spawner transmitting its genetic inheritance to each egg. The genotypic 
and phenotypic values of heritable traits of new created trout are drawn from empirical 
probability distributions. Likewise, position, sex, age (in days), body size, as well as the 
genotypic value and its phenotypic expression of heritable life-history traits of trout at 
initialization are stochastic (drawn from probabilistic functions). 
Observation: The model produces both graphical displays and output files. 
The model provides a graphical display of habitat cells and the location of fish and redds as 
the model executes. In addition, the model provides several graphical displays of model 
outputs: population structure updated on a tick basis; fish numbers and biomass, dead fish 
numbers broken out by mortality source, and total number of eggs in the reach, all updated on 
a tick basis; yearly demographic outputs (written on the Julian date set by OutputDate 
parameter) including fish numbers and biomass, dead fish numbers broken out by mortality 
source, number of breeders, and number of initial eggs and fry hatched; yearly life-history 
outputs including minimum, mean and maximum values of  length-at-age, length and age at 
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spawning broken out by sex, spawning date, emergence date, and age at death; yearly genetic 
outputs including minimum, mean and maximum values of  genotypic length at emergence, 
neutral trait and length maturity threshold, the latter broken out by sex. 
The following demographic and genetic outputs can be recorded at the population level to 
follow the changes through time of the population ecogenetic structure: 1) Summary 
population statistics (LiveFishOutput file): These statistics include abundance, abundance of 
mature fish, total fish biomass, and mean and variability (standard deviation) of fish length, 
weight, and phenotypic values of length maturity threshold, length at emergence and neutral 
trait, broken out by age-class; 2) Summary breeder population statistics (BreedersPopOutput 
file): These statistics include abundance, and mean, minimum value and variability (standard 
deviation) of age and fish length at spawning, all broken out by sex. It includes also both 
phenotypic and genotypic values of length at emergence, neutral trait and length maturity 
threshold, the latter broken out by sex. Finally, the output file records the mean, minimum 
value and standard deviation of spawning date and date of emergence of the offspring; 3) Fish 
mortality (DeadFishOutput file): It records the number of fish that have died of each mortality 
source during a time step, broken out by age class; 4) Redd status and mortality (ReddOutput 
file): It reports when a redd was created, how many viable eggs were created, and when the 
redd was removed from the model because all its eggs had died or emerged, together with  the 
number of eggs died from each redd mortality source and the number of emerged new trout. 
The model also allows the possibility of recording life-history features of breeders at the 
individual level (BreedersIndOutput file): It records the trout and fertilized redd’s IDs, the 
sex, age-class, age, length and weight at spawning, as well as both the phenotypic and 
genotypic values of length maturity threshold, length at emergence and neutral trait. Habitat 
use and availability can be recorded through the HabSelecOutput file: It reports, for every 
cell, its area, depth, velocity, fraction with velocity shelters, fraction with cover from 
predation, average distance to hiding cover, and food availability (drift and search food 
production rates, as well as the number of trout in the cell broken out by age-class. The output 
file also provides the flow, temperature and total trout abundance in the reach. 
Both demographic fish output files (LiveFishOutput and DeadFishOutput) can be either 
written on a yearly or tick basis (set through the AnnualFishOutput? global parameter). When 
written on a tick basis, the parameter fileOutputFreq sets the frequency. The OutputDate 
parameter defines the Julian date when the yearly population outputs are written, but for the 
ReddOutput file, which is updated every time a redd is dead or emptied. 

2.5 Initialization 
At initializing a model run, the user must specify the initial date of simulation and the 
duration of a time step. State of reach’s environmental variables, as well as cells’ hydraulic 
and habitat variables are input data. Trout population numbers, age-structure and length-
distribution are input data. Population-level distributions of heritable traits are also input data.  
Each individual’s state variable (sex, age, length, and genotypic and phenotypic values of 
heritable traits) is initialized by drawing from probability distributions describing their 
variability. Length and genotypic values of heritable traits are truncated at 4 standard 
deviations from the center of the probability distributions. Length of 0+ trout cannot be lower 
than a minimum user-defined value fishMinNewLength. Trout weight is calculated as a 
function of length: 
fishWeight = fishWeightParamA × (fishLength)fishWeightParamB        
(1) 
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and condition factor is subsequently calculated as a function of body length and weight. The 
condition factor variable used in the model (fishCondition) can be considered the fraction of 
“healthy” weight a fish is, given its length (approach adopted from Van Winkle et al. 1996). 
The value of fishCondition is 1.0 when a fish has a “healthy” weight for its length, according 
to the length-weight relationship. Trout maximum sustainable swimming speed is a function 
of the fish’s length and water temperature. It is modelled as a two-term function, where the 
first term represents how it varies linearly with fish length, while the second modifies 
maximum swimming speed with a non-linear function of temperature: 
                
(2) 
fishMaxSwimSpeed [cm s-1] = [fishMaxSwimParamA × fishLength + fishMaxSwimParamB] 
× [fishMaxSwimParamC × (temp)2 + fishMaxSwimParamD × temp + fishMaxSwimParamE)]  
Status is set to “alive”. Maturity status is set to either “mature” or “non-mature” depending on 
whether trout’s initial length is over or under the phenotypic value of the length maturity 
threshold (fishSpawnMinLength). The spawnedThisSeason? variable is set to “NO”. 
Each trout’s location is assigned stochastically while avoiding extremely risky habitat. The 
model limits the random distribution of trout to cells where the trout are not immediately at 
high risk of mortality due to high velocity or stranding. Therefore, each trout is located in a 
random wetted cell (cellDepth > 0) with a ratio of cell velocity to the trout’s maximum 
swimming speed (cellVelocity / fishMaxSwimSpeed) lower than the parameter 
mortFishVelocityV9, the value at which the probability of surviving high velocity mortality 
equals 0.9 (see 2.7 Submodels Section 5). 

2.6 Input data 
Times series of three reach environmental variables (temperature, flow and Julian date) are 
input data. Temporal series of cells’ hydraulics (water depth and velocity) are input data too. 
Fixed physical habitat features of cells (spatial location, and fraction of the cell’s area having 
velocity shelters, elements providing cover from predators and gravels) are specified by 
means of input files. 

2.7 Submodels 
Since the demographic structure of inSTREAM-Gen is a replicate of inSTREAM IBM, the 
formulation of all its submodels follows the approaches and equations originally developed by 
and described in Railsback et al. (2009), unless it is otherwise explicitly stated.  
2.7.1. Environmental and habitat conditions update:  
2.7.1.1. Reach updates temperature and flow from input time series. Day length is calculated 
and updated: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ = 24 − 2 ��12
π
� arcos �tan �π × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

180
� tan 𝛿𝛿��   (3) 

where    𝛿𝛿 = ��23.45
180

� π cos �� 2π
365
� (173 − 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝑑𝑑𝑗𝑗𝑑𝑑𝑑𝑑𝑑𝑑)��    (4) 

2.7.1.2. Cells update hydraulics (depth and velocity) from input time series. wettedArea and 
cellDistanceToHide  are calculated accordingly. wettedArea is simply the sum of the area of 
all cells with cellDepth > 0. cellDistanceToHide represents the average distance a fish located 
in the cell would need to move to find hiding cover. While in inSTREAM, 
cellDistanceToHide is fixed along time, in inSTREAM-Gen it dynamically changes its value 
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every time step. Importantly, cover is only available if the covered cell is not dry; in a cell 
with cover, it is the average distance within the area with cover (0 meters) plus the average 
distance within the area without cover (represented as a circumference); in a cell without 
cover, it is the sum of the distance to the closest covered cell plus the average distance within 
the area without cover of the closest covered cell.  
2.7.1.3. Production rates of both drift and search (stationary) food in the cell are updated. 
Importantly, the trout feeding submodel uses hourly food production and consumption rates 
because the number of feeding hours per day varies.  
Drift food production rate is calculated from hydraulic data, being modelled as the rate at 
which prey items flow into the cell from upstream, plus the rate at which consumed prey are 
regenerated within the cell: 
driftHourlyCellTotal [g h-1] = 3600 [s h-1] × cellDepth [cm] × cellVelocity [cm s-1] (5) 
× cellArea [cm2] × habDriftConc [g cm-3] / habDriftRegenDist [cm] 
where habDriftConc and habDriftRegenDist are reach parameters representing the drift food 
density in the reach and the drift regeneration distance, respectively. 
The rate at which search food is produced in a cell is simply the cell area multiplied by a 
reach parameter defining the search food density rate: 
searchHourlyCellTotal [g h-1] = habSearchProd [g cm-2 h-1] × cellArea [cm2] (6) 
2.7.1.4. The density of piscivorous fish (PiscivFishDens) is calculated as the number of trout 
with a fish length greater than the reach parameter fishPiscivoryLength divided by the reach’s 
wetted area (wettedArea). The value of the temperature function of the trout’s physiological 
maximum daily food consumption (cmaxTempFunction) is updated as a function of updated 
water temperature. 
2.7.2. Trout Reproduction and Redd creation: 
It is scheduled in two main actions: 
2.7.2.1. Trout become spawners:  
Every day, each female trout determines whether to spawn based on whether it meets all of 
the following fish- and habitat-based spawning criteria: 
- Trout only spawn within a spawning date window (spawning season) defined by the global 
parameters fishSpawnStartDate and fishSpawnEndDate. 
- Trout have to be sexually mature (maturity is attained when the trout reaches an age and 
length equal to fishSpawnMinAge and fishSpawnMinLength, respectively) and have enough 
energy reserves to spawn (its condition factor must exceed the minimum condition factor 
parameter fishSpawnMinCond). 
- Female trout are assumed not to spawn more than once per annual spawning season. At the 
start of the first day of the spawning season the Boolean variable spawnedThisSeason? is set 
to NO for all trout. Once a female trout spawns, the variable is set to YES so that the trout is 
not allowed to spawn again during the rest of the spawning season. 
- Trout only spawn within a temperature range defined by parameters for maximum and 
minimum temperatures for spawning (fishSpawnMaxTemp and fishSpawnMinTemp, 
respectively). 
- Trout cannot spawn if the flow in the reach is higher than a maximum threshold defined by 
the reach habitat parameter habMaxSpawnFlow. 
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- Trout are assumed not to spawn when flows are unsteady. Therefore, if the fractional change 
in flow from the previous day is greater than the value of the parameter 
fishSpawnMaxFlowChange then spawning is not allowed. This fractional change in flow is 
evaluated as: 
fracFlowChange = abs(todaysFlow - yesterdaysFlow)/todaysFlow   (7) 
Finally, on the time-steps when all the spawning criteria are met for a female, then whether it 
actually spawns is determined stochastically. The probability of spawning on any such day is 
the parameter fishSpawnProb (unitless). 
A male trout becomes spawner, only within the spawning season, when it is sexually mature 
(its age and length are equal or greater than fishSpawnMinAge and fishSpawnMinLength, 
respectively) and has a body condition over fishSpawnMinCond. Males are able to spawn 
multiple times over the spawning season, as it is typically described in the literature (Jonsson 
and Jonsson 2011). 
2.7.2.2. Redd creation and fertilization:  
This action assumes a size-based dominance hierarchy for spawning, so that the following 
steps are carried out in descending order of fish length. 
2.7.2.2.1. Selection of the spawning cell.  
Female spawners select the cell in which they then build a redd. The first step in identifying 
the location for a new redd is identifying all the cells that are potential spawning sites. It 
follows the same method used by trout to identify potential destinations during habitat 
selection (2.7 Submodels Section 3). Afterwards, potential spawning cells are rated by the 
spawner to identify the cell with the highest value of variable spawnQuality: 
spawnQuality = spawnDepthSuit × spawnVelocitySuit × spawnGravelArea  (8) 
where variables spawnDepthSuit and spawnVelocitySuit are unitless habitat suitability factors, 
whose values are interpolated linearly from suitability functions provided as parameters. The 
value of spawnGravelArea is the cell area times its fraction with spawning gravel (cellArea × 
cellFracGravel). If spawnGravelArea is 0 then the female trout moves to the cell that 
maximizes (spawnDepthSuit × spawnVelocitySuit). 
The female trout moves then to the selected spawning cell to create a redd. 
2.7.2.2.2. Selection of male spawners. 
InSTREAM-Gen allows for both monogamy (each cross involving two parents) and 
polygamy (each cross involving one female and several satellite males) mating strategies. 
Both monogamous and polygamous matings have been commonly observed in trout breeding 
systems (García-Vázquez et al. 2001, Serbezov et al. 2010a). The number of males per female 
(number-males) is randomly drawn from a uniform distribution from 1 to max-n-males-per-
female (a global parameter). Following Piou and Prévost (2012), the probability of a male 
spawner j of being selected to fertilize a redd depends on its weight:  
P (selected│ fishWeightj) = (fishWeightj / ∑ fishWeightl)    (9)  
where l is the number of available male spawners. The largest male is always selected. The 
rest of number-males males are then randomly selected among a list containing the n male 
spawners having the highest probability (candidate-spawners). This number n is 
stochastically chosen. If the number of selected spawners is lower than number-males, then 
additional males are randomly selected (if possible) among the remaining male spawners until 
number-males is reached. If no male meets the criteria as a spawner, or there are no more 
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male spawners available, there is no effect on the female or redd and the female still produces 
a fertile redd, so that transmission of heritable traits depends only on the mother's genotypic 
values. 
Contrarily to inSTREAM, male spawners move to the spawning cell selected by the female. 
2.7.2.2.3. Redd creation and fertilization. 
- When a female spawner has selected a spawning cell, it creates a redd in the cell. The 
number of eggs in the redd depends on the spawner’s fecundity (a function of length) and 
losses during spawning: 
numberOfEggs = (eggsize-fecund-tradeoff × fishFecundParamA × fishLengthfishFecundParamB) 
× EggViability          (10) 
Since trout length at emergence is a heritable trait in the model and it is typically correlated to 
egg size (see references in reviews by Klemetsen et al. 2003, and Jonsson and Jonsson 2011), 
we introduced the term eggsize-fecund-tradeoff to deal with the fact that in salmonids the 
number of eggs in a redd is traded-off with egg size (see again Klemetsen et al. 2003, Jonsson 
and Jonsson 2011). It was modelled as the relationship between the number of eggs that 
would be created by the trout if the offspring had the population mean length at emergence 
and such number if the offspring had the female spawner's genetic length at emergence, which 
is mathematically expressed as: 
eggsize-fecund-tradeoff = (fishNewLengthMean / genNewLength)fishWeightParamB (11) 
The parameter fishSpawnEggViability is the fraction of eggs that are successfully fertilized 
and placed in the redd.  
- After the redd is created by the female trout, it is fertilized by the selected male spawners. 
That means that the genotypic value of heritable traits of both the mother and all fathers are 
stored in the genetic trait map of the redd (reddMothergenSpawnMinLength, 
reddMotherNewLength, reddMotherNeutralTrait; reddFathersgenSpawnMinLength, 
reddFathersNewLength, reddFathersNeutralTrait). 
2.7.2.2.4. Incur weight loss. 
Both female spawner and all males contributing to the redd incur on weight loss. Their weight 
is reduced according to the parameter fishSpawnWtLossFraction, so that fishWeight is 
multiplied by (1- fishSpawnWtLossFraction). In consequence, the body condition factor is 
accordingly reduced, which can significantly affect subsequent habitat selection and survival. 
 
 
2.7.3. Trout Habitat selection:   
The habitat selection trait is modelled as follows: every time step, each trout moves to the 
habitat cell that (1) is close enough that the fish can be assumed to be aware of conditions in 
it, and (2) offers the highest “expected fitness”, where expected fitness is approximated as the 
expected probability of surviving and reaching reproductive size over a future time horizon. 
The habitat selection trait assumes a size-based dominance hierarchy: trout can only use 
resources (food and velocity shelters) that have not been consumed by larger trout. The 
number of trout feeding in a cell is limited by its daily food production. Each trout using a 
drift-feeding strategy can use a maximum velocity shelter area (cm2) equal to (fishLength)2.   
2.7.3.1. Identify potential destination cells:  
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When each individual trout begins its habitat selection procedure, its first action is to identify 
the cells that are potential movement destinations. Distance and depth can limit potential 
destination cells, but the number of fish already in a cell does not limit its availability as a 
destination.  
Only wetted (cellDepth > 0) habitat cells within a certain distance are included as potential 
destinations. This maximum movement distance should be considered the distance over which 
a fish is likely to know its habitat well enough to be aware when desirable destinations are 
available, over the time step. It is an exponential function of fish length (Diana et al. 2004): 
maxMoveDistance (cm) = fishMoveDistParamA × (fishLength) fishMoveDistParamB (12) 
However, as discussed by Railsback et al. (2009), for small fish, it is possible that no cells 
other than the current one are within this maxMoveDistance, which poses an artificial barrier 
to movement, an artifact of the model’s spatial resolution. Consequently, a fish’s potential 
destinations always include the cells adjacent to the fish’s current cell. 
2.7.3.2. Evaluate potential destination cells: 
A trout evaluates each potential destination cell to determine the fitness it would provide, 
using the “Expected Reproductive Maturity” fitness measure of Railsback et al. (1999), 
where: 
expectedMaturity = nonstarvSurvival × starvSurvival × fracMature   (13) 
nonstarvSurvival is the probability of survival for all mortality sources except starvation and 
angling and hooking over the fitness horizon (see Submodels Section 5); its formulation 
implicitly assumes that trout consider all mortality sources in their habitat selection decision. 
This means that the trout are assumed to be aware of all the kinds of mortality in the model 
and are able to estimate the risk posed by each, except for fishing mortality: 
nonstarvSurvival = (Shightemp × Shighvel × Sstrand × Sterrpred × Saqpred)fishFitnessHorizon (14) 
starvSurvival represents the probability of surviving starvation over the fitness horizon; the 
method assumes that trout evaluate expected maturity using the simple prediction that the 
current time-step’s growth rate would persist over the time horizon. It is implemented 
following the next steps: 
First, determine the foraging strategy, food intake, and growth for the trout and habitat cell in 
question, for the current time step, using the methods described in Section 2.7.4.   
Second, project the fish’s weight, length, and condition factor that would result if the current 
day’s growth persisted over the fitness time horizon specified by fishFitnessHorizon.  
Third, approximate the probability of surviving starvation over the fitness horizon, estimated 
as the first moment of the logistic function of poor condition survival vs. condition factor: 

𝑠𝑠𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗𝑠𝑠𝑠𝑠𝑗𝑗𝑠𝑠𝑑𝑑𝑗𝑗 =  �
�1𝑏𝑏�ln�

1+e(𝑎𝑎 + 𝑏𝑏 × 𝐾𝐾𝑡𝑡+𝑇𝑇)

1+e(𝑎𝑎 + 𝑏𝑏 × 𝐾𝐾𝑡𝑡) �

(𝐾𝐾𝑡𝑡+𝑇𝑇−𝐾𝐾𝑡𝑡)
�

𝑇𝑇

      (15) 

where Kt is the fish’s value of fishCondition at the current time-step and Kt+T is the projected 
condition factor at the end of the fitness horizon, T is equal to fishFitnessHorizon, and a and b 
are the logistA and logistB variables of the logistic function of poor condition survival 
[described in Section 2.7.5, equation (42)]. 
This equation can cause significant computational errors when Kt+T is extremely close to Kt 
(and a divide-by-zero error when they have the same value). To avoid it, starvSurvival is set 
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equal to the daily survival probability for Kt, raised to the power fishFitnessHorizon, 
whenever (Kt+T - Kt) is less than 0.001. 
fracMature represents how close to the size of sexual maturity a fish would be at the end of 
the fitness time horizon. It is simply the ratio between (a) the length the fish is projected to be 
at the end of the time horizon, and (b) the parameter fishSpawnMinLength (see Section 2.7.2), 
limited to a maximum of 1.0. 
 
2.7.4. Trout Feeding and Growth:  
In the model, trout can use either of two feeding strategies, drift or active search feeding. The 
feeding and growth methods calculate the potential food intake and metabolic costs a fish 
would experience in a cell, for both drift and search feeding. Standard bioenergetics 
approaches are used to calculate net energy intake (the difference between energy intake from 
food and metabolic energy cost) for each feeding strategy (following Hanson et al. 1997). The 
fish then selects the strategy that provides the highest net energy intake. Daily growth is 
proportional to net energy intake. A fish’s length and condition factor at the end of the time-
step are updated from its daily growth. The following steps describe the process used by a 
trout to determine the feeding strategy it would use, and the resulting food intake and growth 
it would obtain, for a particular habitat cell. 
2.7.4.1. Feeding:  
1. Determine the potential daily drift intake that would be obtained in the absence of more 
dominant fish in the cell. This dailyPotentialDriftFood is determined from the hourly intake 
rates and hours spent feeding: 
dailyPotentialDriftFood [g d-1] = driftIntake [g h-1] × feedTime [h d-1]  (16) 
Hours spent feeding is the day length plus one hour before sunrise and one after sunset: 
feedTime = dayLength + 2  
A fish’s intake rate is calculated as the mass of prey passing through the capture area times 
the capture success: 

driftIntake [g h-1] = habDriftConc [g cm-3] × cellVelocity [cm s-1] × captureArea [cm2] (17) 
× 3600 [s h-1] × captureSuccess [unitless] 
The capture area models the area over which drift-feeding trout can detect prey and is 
depicted as a rectangular area perpendicular to the current, whose dimensions ultimately 
depend on fish size through the detection distance. Fish are assumed able to detect all drift 
that comes within the detection distance to their left and right, while the height of the capture 
area is the minimum of the reactive distance and the depth (which often is lower): 
              
(18) 
captureArea [cm2] = [2 × detectDistance [cm]] × [min (detectDistance, cellDepth) [cm]]   
Detection distance is defined as the distance over which fish can see and attack - but not 
necessarily capture - prey. Detection distance is primarily a function of the size of the fish: 
              
(19) 
detectDistance (cm) = fishDetectDistParamA + fishDetectDistParamB × fishLength [cm]  
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Railsback et al. (2009) developed this model based on empirical data from the study of 
Schmidt and O’Brien (1982) for arctic grayling, whose results had been used successfully as 
the basis of the previous drift feeding models of Hughes (1992a) and Hughes et al. (2003). 
The linear model is not, however, a regression fit to those data, but rather it was derived from 
pre-calibration of the growth model. In fact, an exponential model provided a better fit to the 
data, but the linear model, nevertheless, was able to capture a series of qualitative patterns the 
exponential formulation was not (see Railsback et al. 2009 or the “Data evaluation” element 
of the present TRACE document for further details). 
Capture success represents what fraction of detected prey is actually caught. Capture success 
is largely a function of water velocity but also of the fish’s maximum sustainable swimming 
speed: 
captureSuccess ~ logistic (cellVelocity / fishMaxSwimSpeed)     (20) 
Maximum sustainable swimming speed is a component of not only the drift feeding trait but 
also of high velocity mortality (Submodels Section 5.2), and strongly affects the relationship 
between a cell’s velocity and habitat quality for various size trout. The maximum swim speed 
used for both drift-feeding and high velocity mortality must be a speed that fish can swim for 
hours, not a burst or short-term maximum speed. It is a function of a fish’s length and water 
temperature, as described in equation (2). 
2. Determine the daily drift intake available after more dominant fish in the cell have 
consumed their intake: 
dailyAvailableDriftFood [g d-1] = driftHourlyCellAvail [g h-1] × feedTime [h d-1] (21) 
The drift food production rate in a cell driftHourlyCellTotal is updated every time a trout 
moves to that cell, so that the drift food available in a cell for a trout is the drift food 
production rate in the cell at the beginning of the time-step minus the driftIntake of all larger 
trout using a drift-feeding strategy that already occupy the cell. Therefore, hierarchical 
competition for food is implemented via the food availability rates. 
driftHourlyCellAvail [g h-1] = driftHourlyCellTotal – ∑ driftIntake      (22) 
3. Determine the physiological maximum daily consumption (cMax):  
Maximum daily consumption (cMax) represents the maximum rate of food consumption if a 
fish is limited only by its physiology. The equation for cMax includes (a) an allometric 
function, relating cMax to fish size; and (b) a temperature function (Hanson et al. 1997), 
which is represented as a set of seven points used to interpolate a value of cmaxTempFunction 
from the reach’s temperature: 
cMax (g d-1) = fishCmaxParamA × (fishWeight)(1 + fishCmaxParamB) × cmaxTempFunction (23) 
4. Calculate the actual daily drift food intake, considering whether it is limited by actual 
food availability or the physiological maximum intake: 
              
(24) 
dailyDriftFoodIntake [g d-1] = min(dailyPotentialDriftFood, dailyAvailableDriftFood, cMax) 
5. Convert daily drift intake in grams of food to joules of energy by means of the Prey energy 
density reach parameter: 
              
(25) 
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dailyDriftEnergyIntake [j d-1] = dailyDriftFoodIntake [g d-1] × habPreyEnergyDensity [j g-1] 
6. Conduct the bioenergetics energy balance to get net energy intake for drift feeding: 
dailyDriftNetEnergy [j d-1] = dailyDriftEnergyIntake [j d-1] - respTotal [j d-1] (26) 
The model uses the Wisconsin Model equation 1 for respiration (Hanson et al. 1997), as 
modified by Van Winkle et al. (1996) to apply the activity respiration rate only during active 
feeding hours. Respiration is therefore modelled as the energetic cost of metabolism and 
swimming, including then (a) standard respiration that is independent of the fish’s activity, 
and (b) an additional activity respiration that increases with the daily swimming speed. 
Drift-feeding fish are assumed to swim at a speed (swimSpeed, cm s-1) equal to their habitat 
cell’s water velocity unless they have access to velocity shelter. If a drift-feeding fish has 
access to velocity shelter, then its swimSpeed is assumed equal to a constant fraction of its 
habitat cell’s mean water velocity, defined by the reach parameter habShelterSpeedFrac. A 
fish has access to velocity shelter in a cell only if the sum of shelter areas occupied by larger 
drift-feeding fish in the cell (each drift-feeding fish is assumed to use up an area of velocity 
shelter equal to the square of its length) is less than the cell’s total shelter area. 
respTotal [j d-1] =respStandard [j d-1] + respActivity [j d-1]     (27) 

respStandard = (fishRespParamA × (fishWeight)fishRespParamB) × e(fishRespParamC × temp)  (28) 

respActivity = (feedTime / 24) × (e(fishRespParamD × swimmSpeed) - 1) × respStandard  (29) 

7. Determine the potential daily search feeding intake that would be obtained in the absence 
of more dominant fish in the cell: 
dailyPotentialSearchFood [g d-1] = searchIntake [g h-1] × time feeding [h d-1]    
(30) 
The model assumes that the rate of search food intake is proportional to the rate at which 
search food becomes available: every fish searches for food at about the same rate, so intake 
increases linearly with food production. Search feeding intake is also assumed to decrease 
linearly to zero as water velocity increases to the fish’s maximum sustainable swim speed. 
This velocity function represents how the ability of a fish to see and search for food decreases 
with velocity. The rate of search food intake is formulated as follows: 
searchIntake [g h-1] = habSearchProd [g cm-2 h-1] × fishSearchArea [cm2]     (31) 
× max([(fishMaxSwimSpeed – cellVelocity) / fishMaxSwimSpeed], 0) 
where habSearchProd is the rate at which search food is produced, fishMaxSwimSpeed is the 
fish’s maximum sustainable swimming speed, and cellVelocity is the velocity of the fish’s 
cell. The proportionality constant fishSearchArea can be loosely interpreted as the area over 
which the production of stationary (non-drifting) food is consumed by one fish. 
8. Determine the daily search intake available after more dominant fish have consumed their 
intake: 
dailyAvailableSearchFood [g d-1] = searchHourlyCellAvail [g h-1] × feedTime [h d-1] (32) 
In the same way that drift feeding is modelled, search food available in a cell for a trout is 
calculated as the search food production rate in the cell at the beginning of the time-step 
minus the searchIntake of all larger trout using a search-feeding strategy that already occupy 
the cell. Again, hierarchical competition for food is implemented via the food availability 
rates.  
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searchHourlyCellAvail [g h-1] = searchHourlyCellTotal – ∑ searchIntake   (33) 
9. Calculate the actual daily search intake considering whether it is limited by food 
availability or maximum daily intake: 
              
(34) 
dailySearchFoodIntake [g h-1] = min(dailyPotentialSearchFood, dailyAvailableSearchFood, 

cMax)               

10. Convert daily search intake in grams of food to joules of energy by means of the Prey 
energy density reach parameter: 
              
(35) 
dailySearchEnergyIntake [j d-1] = dailySearchFoodIntake [g d-1] × habPreyEnergyDensity    

[j g-1] 

11. Conduct the bioenergetics energy balance to get net energy intake for search feeding: 
dailySearchNetEnergy [j d-1] = dailySearchEnergyIntake [j d-1] – respTotal [j d-1] (36) 
Respiration costs for fish using a search feeding strategy are calculated in the same way than 
for drift-feeding fish. However, fish using the search feeding strategy are assumed to swim at 
a speed equal to their cell’s mean water velocity. There is no reduction in swimSpeed due to 
velocity shelters. 
12. Select the most profitable feeding strategy by comparing dailyDriftNetEnergy to 
dailySearchNetEnergy; and determine the energy intake for the best strategy: 
bestNetEnergy [j d-1] = max(dailyDriftNetEnergy, dailySearchNetEnergy)  (37) 
2.7.4.2. Growth:  
13. Convert net energy intake to daily growth by means of the Fish energy density reach 
parameter: 
dailyGrowth [g d-1] = bestNetEnergy [j d-1] / fishEnergyDensity [g j-1]  (38) 
14. Update the fish’s weight at the end of the time-step: 
FishWeight [g] = fishWeight [g] + dailyGrowth [g d-1] × timestep-scale [d]  (39) 
15. Update the fish’s length at the end of the time-step: 
Fish length is then the maximum length between current length and potential length 
(fishWannabeLength; the length the fish would be if its condition factor were 1.0). This 
potential length is calculated with the fish’s new weight and the inverted length-weight 
relation for healthy fish: 
fishWannabeLength [cm] = (fishWeight / fishWeightParamA)(1 / fishWeightParamB) (40) 
If the fish’s current length is less than fishWannabeLength (indicating that the fish is not 
underweight), then its new length is set to fishWannabeLength. Otherwise, its length is not 
changed. 
16. Update the fish’s condition factor at the end of the time-step: 
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The new value of fishCondition is equal to the fish’s new weight divided by the “healthy” 
weight for a fish given its length: 

fishCondition = fishWeight / (fishWeightParamA × (fishLength)fishWeightParamB) (41) 
 
2.7.5. Trout Survival:  
Survival simulations determine, each day, which fish die from what causes. Mortality sources 
are represented separately because the probability of surviving each varies differently with 
fish state and habitat conditions. Mortality sources are represented as survival probabilities: 
the daily probability of not being killed by one specific mortality source. Survival 
probabilities are used (1) during habitat selection (Section 2.7.3) as a major input trout use in 
deciding which habitat cell to occupy, and (2) to model mortality: when and why each fish 
actually dies. The same methods are therefore used to determine survival probabilities in 
modelling both habitat selection and mortality. 
On every simulated time step, each fish determines whether it dies of each mortality source 
following a two-step process: first is calculating the daily survival probability from the current 
state of the fish and its cell and project it over the time extent defined by timestep-scale; 
second is determining, stochastically, whether the fish actually dies by comparing a random 
number drawn from a uniform distribution between zero and one to the projected survival 
probability. If the random number is greater than the survival probability, then the fish dies as 
a result of the mortality source and no further mortality sources are evaluated for the fish. If 
the fish does not die, then the next mortality source is evaluated. The user has the option to 
select the mortality sources that can actually kill the trout. 
The survival probabilities are modelled through logistic functions, so that their values increase 
from zero to one, or decrease from one to zero, along the range of the predictor used as a 
proxy for the evaluated mortality source. In the model, logistic functions are defined via 
parameters that specify the predictor values at which the survival probability value equals 0.1 
and 0.9. The logistic functions are defined as: 
S = eZ / (1 + eZ)         (42) 
where 
Z = LogistA + (LogistB × habitatVariable), 
LogistA = LogistC – (LogistB × habVarAtS01), 
LogistB = (LogistC – LogistD) / (habVarAtS01 – habVarAtS09), 
LogistC = ln(0.1/0.9), and 
LogistD = ln(0.9/0.1). 
While death due to each mortality source is treated independently, the order in which 
mortality sources are evaluated can have a (usually very small) effect on how many fish die of 
each kind of mortality. They are scheduled in the following order: 
2.7.5.1. High temperature: 
This mortality source represents the breakdown of physiological processes at high 
temperatures. It does not represent the effect of high temperatures on bioenergetics (reduced 
growth at high temperature). The survival probability is based on the daily mean water 
temperature. 
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2.7.5.2 High velocity: 
The high velocity survival function represents the potential for trout to suffer fatigue or lose 
their ability to hold position in a cell with high velocity. This function is included not because 
trout often die due to high velocity, but because it strongly affects habitat selection: mortality 
due to high velocities is not observed in nature because fish avoid it by moving. The survival 
probability is based on the ratio of the swimming speed a fish uses in a cell to the fish’s 
maximum sustainable swim speed (described in Section 2.7.4.1).  
2.7.5.3. Stranding: 
Stranding mortality represents the death of fish that are unable to move out of cells that 
become extremely shallow or dry as flow decreases. Survival of stranding is modelled as an 
increasing logistic function of depth divided by fish length in order to scale how the risks of 
low depths vary with fish size. 
2.7.5.4. Poor condition: 
Fish in poor condition (low value of the condition factor, weight in relation to length) are at 
risk of starvation, disease, and excess vulnerability to predators. These risks are combined in 
the poor condition survival probability. Poor condition can have a strong effect on habitat 
selection as well as mortality. As commented, the survival probability is based on the fish’s 
condition factor. 
2.7.5.5. Terrestrial predation:  
The formulation of this mortality source assumes a minimum survival probability 
mortFishTerrPredMin that applies when fish are most vulnerable to terrestrial predation, and 
a number of “survival increase functions” that can increase the probability of survival above 
this minimum. Survival increase functions are described as logistic functions that have values 
between zero and one, with higher values for greater protection from predation. The survival 
increase functions are assumed to act independently. Therefore, the terrestrial predation 
survival probability is obtained by increasing the minimum survival (decreasing the difference 
between minimum survival and 1.0) by the maximum of the independent survival increase 
functions. This assumption is expressed mathematically as: 
              
(43) 
terrPredSurv = mortFishTerrPredMin + [(1 – mortFishTerrPredMin) × max(terrPredDepthF, 

terrPredLengthF, terrPredFeedTimeF, terrPredVelF, terrPredCoverF)] 

where terrPredDepthF is the value of the survival increase function for depth. The depth 
survival increase function is an increasing logistic curve: survival increases as depth 
increases; terrPredLengthF is the value of the survival increase function for fish length. 
Survival of terrestrial predation is assumed to decrease with fish length; terrPredFeedTimeF 
is the value of the survival increase function for feeding time. The survival increase function 
is modelled as a decreasing function of feedTime (h), the hours spent feeding per day; 
terrPredVelF is the value of the survival increase function for water velocity. The survival 
increase function is an increasing logistic curve: survival increases with velocity; 
terrPredCoverF is the value of the survival increase function for distance to hiding cover. 
Hiding cover is represented with a survival increase function that increases as distance to 
hiding cover (cellDistanceToHide, cm) decreases.  
2.7.5.6. Aquatic predation:  
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The aquatic predation formulation represents mortality due to predation by fish. By adjusting 
parameter values, the formulation can be made to apply both to sites where the modelled trout 
are the only piscivorous fish and sites where non-trout fish, not otherwise represented in the 
model, are a significant risk. The formulation can represent the effect of adult trout density on 
aquatic predation survival, making this survival probability the only component of the model 
with direct density dependence. It allows a type of feedback that is potentially important in 
regulating trout populations: when adult abundance is greatly reduced, juveniles can safely 
use a wider range of habitat and, hence, have greater growth and survival to adulthood. 
As with terrestrial predation, the formulation uses a minimum survival probability 
mortFishAqPredMin that applies when fish are most vulnerable to aquatic predation, and a 
number of survival increase functions: 
              
(44) 
aqPredSurv = mortFishAqPredMin + [(1 – mortFishAqPredMin) × max(aqPredDensF, 

aqPredDepthF, aqPredLengthF, aqPredFeedTimeF, aqPredTempF)] 

where aqPredDensF is the value of the survival increase function for piscivorous trout 
density. This function represents only the effect of trout included in the model and not of 
other piscivorous fish that may be present in the reach. Any trout with length greater than the 
parameter fishPiscivoryLength (cm) is assumed to be a piscivorous trout. Predation is 
represented at the reach spatial scale (as opposed to the cell scale) because large, piscivorous 
trout are likely to foray and attack fish in other cells. The predator density survival increase 
function causes the survival increase function to increase as the density of piscivorous trout 
decreases; aqPredDepthF is the value of the survival increase function for depth. The depth 
survival increase function is a decreasing logistic function; aqPredLengthF is the value of the 
survival increase function for fish length. Survival of aquatic predation is increases with fish 
length; aqPredFeedTimeF is the value of the survival increase function for feeding time. The 
survival increase function is modelled as a decreasing function of the hours spent feeding per 
day; aqPredTempF is the value of the survival increase function for water temperature. This 
survival increase function reflects how low temperatures reduce the metabolic demands and, 
therefore, feeding activity of piscivorous fish. The survival increase function is therefore a 
decreasing logistic curve. 
2.7.5.7. Angling and hooking:   
This mortality component follows the models implemented in inSTREAM-SD (Railsback et 
al. 2013). 
The angler mortality model includes three separate components: fishing pressure, capture rate, 
and survival probability. Survival of angling mortality depends on how many times a trout 
is hooked (the rate at which trout are caught being a function of fishing pressure) and whether 
it is kept vs. released each time hooked. Hooking mortality (the subsequent death of fish 
caught and released by anglers) is modelled as a separate but related mortality source. 
The fundamental assumption of the angler mortality formulation is that the risk to an 
individual fish of being hooked by anglers is a function of fishing pressure and not directly a 
function of trout abundance. The model also assumes that an individual trout can be caught 
more than once in a day. We assume that the trout are not aware of angling mortality risk and 
how it varies with habitat, and therefore we do not include angling among the risks that trout 
consider when selecting their habitat. 
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The angler model is executed as follows: 
1. The daily capture rate is calculated from the fishing pressure and the trout’s length.  
Fishing pressure (variable anglerPressure) is evaluated as angler hours per day per km of 
stream. Capture rate is represented as the average number of times a fish is hooked per day. 
This capture rate is assumed to be a linear function of fishing pressure, with the 
proportionality constant being the parameter mortFishAngleSuccess. This parameter 
represents fishing success as the fraction of catchable fish hooked per angler hour. Capture 
rate is also assumed to be a logistic function of trout size. The capture probability model is: 
              
(45) 
captureRate (trout caught per trout catchable per day) = mortFishAngleSuccess [trout caught 

per trout catchable per angler-hr] × anglePressure [angler-hr km-1 day-1] × reachLength [cm] 

× 10-5 [km cm-1] × logistic(fishLength) 

where the logistic function of fish length is defined by two trout parameters mortFishAngleL1 
and mortFishAngleL9.  
2. The number of times a trout is hooked during a time-step (variable timesHooked) is 
drawn from a Poisson distribution parameterized with the capture rate (average captures per 
day) and time step size (number of days defined by timestep-scale parameter). If timesHooked 
is zero, the survival probability is 1.0 for angling and hooking mortality. 
3. If timesHooked is one or more, the model first determines whether it is legal to keep the 
trout according to a “slot limit”: it is legal to keep trout that have length greater than the 
value of the parameter mortFishAngleSlotLower (cm) or less than the value of 
mortFishAngleSlotUpper (cm).  
4. The following steps are conducted once for each time the trout is hooked.  
5. If the trout is of legal size to keep, a random draw is applied to the parameter 
mortFishAngleFracKeptLegal to determine whether the trout is kept. If the trout is not of 
legal size, a random draw and the parameter mortFishAngleFracKeptIllegal determine 
whether the trout is kept. If the trout is kept, the survival probability is 0.0. Hooked fish that 
are kept by anglers are considered dead by a mortality source called “angling”. Fish that die of 
angling mortality are not subject to hooking mortality. 
6. If the trout is released (not kept), the survival probability for angling is 1.0, but the fish is 
then subject to the hooking mortality source. The probability of surviving hooking mortality is 
defined by the parameter mortFishAngleHookSurvRate. Trout that do not survive are 
considered dead by the mortality source called “hooking”. 
 
2.7.6. Redd Survival:   
Eggs incubating in a redd are subject to five mortality sources: low and high temperatures, 
scouring by high flows, dewatering, and superimposition (having another redd laid on top of 
an existing one). Redd survival is modeled using redd “survival functions”, which determine, 
for each redd on each day, the probability of each egg surviving one particular kind of 
mortality. Then, a random draw is made on a binomial distribution to determine how many 
eggs survive each redd mortality source. The binomial distribution returns a randomly drawn 
number of eggs that die each day, given the number of live eggs in the redd and the per-egg 
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mortality probability (one minus the survival function value). (The alternative approach of 
multiplying the mortality probability by the number of live eggs introduces a number of 
numerical difficulties when the number of live eggs is small.) The number of eggs dying over 
the whole time step is calculated as the number of eggs that die each day multiplied by the 
parameter timestep-scale (it only applies to low and high temperature as well as dewatering 
mortality sources, since superimposition mortality only occurs once per time step and 
scouring results in mortality of all eggs in the redd). 
The separate redd mortality sources are executed sequentially: the eggs killed by one source 
are subtracted from the number alive before the next source is processed. The order in which 
redd survival functions are evaluated is as follows: 
2.7.6.1. Low temperature: 
The daily fraction of eggs surviving low temperatures is modeled as an increasing logistic 
function of temperature. 
2.7.6.2. High temperature: 
The fraction of eggs surviving high temperatures is modeled as a decreasing logistic function 
of temperature. 
2.7.6.3. Scouring and deposition: 
Scouring and deposition mortality results from high flows disturbing the gravel containing a 
redd. The model assumes that the probability of a redd being destroyed is equal to the 
proportion of the stream reach scouring or filling to depths greater than the value of the fish 
parameter mortReddScourDepth (cm). Consequently, the probability of a redd not being 
destroyed (scourSurvival) is equal to the proportion of the stream scouring or filling to a depth 
less than the value of mortReddScourDepth. This scour survival probability is estimated from 
the exponential distribution model of Haschenburger (1999); the proportion of the stream 
scouring to less than a given depth is the integral of the exponential distribution between zero 
and the depth: 
scourSurvival =1 - e-(scourParam × mortReddScourDepth)     (46) 
The value of scourSurvival is set to 1.0 if (scourParam × mortReddScourDepth) is greater 
than 100. The value of scourParam was modeled by Haschenburger (1999) empirically: 
scourParam = 3.33 × e-1.52 (shearStress / 0.045)      (47) 
where shearStress is the peak Shields stress (measured at a reach scale) occurring during the 
high-flow event. Shields stress is a dimensionless indicator of scour potential often used in 
modeling sediment transport, described in the sediment transport literature. Shields stress 
increases with flow, a relationship represented in the model by the equation: 
shearStress = habShearParamA × (flow)habShearParamB    (48) 
where habShearParamA (s m-3) and habShearParamB (unitless) are habitat reach parameters. 
Since scourSurvival is 1.0 when (scourParam × mortReddScourDepth) is greater than 100, 
this allows users to effectively turn scouring and deposition mortality off by using a very large 
value of mortReddScourDepth, e.g., 10,000 cm. 
2.7.6.4. Dewatering: 
Dewatering mortality occurs when flow decreases until a redd is no longer submerged. The 
dewatering survival function is simply that if depth is zero then the daily fraction of eggs 
surviving is equal to the fish parameter mortReddDewaterSurv. 
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2.7.6.5. Superimposition: 
Superimposition redd mortality can occur when a new redd is laid over an existing one. 
Importantly, superimposition only occurs when the redds are laid in gravel. Otherwise, it is 
assumed that they cannot be disturbed by another spawner. Therefore, in the event that 
cellFracGravel is zero, there is no risk of superimposition. Otherwise, superimposition redd 
mortality is modelled as a function of the area disturbed in creating the new redd and the area 
of spawning gravel available. The following steps are used for each redd, for each time step: 
1. Determining if one or more new redds were created in the same cell on the current time 
step. If not, then superimposition survival is 1.0. 
2. If one or more redds were created in the same cell, the probability of each new redd causing 
superimposition (reddSuperImpRisk, unitless) is equal to the area of a redd (reddSize, cm2) 
divided by the area of spawning gravel in the redd. 
reddSuperImpRisk =  reddSize / (cellArea × cellFracGravel)   (49) 
3. A random number is drawn from a uniform distribution between zero and one; if it is less 
than reddSuperImpRisk, then superimposition mortality occurs. 
4. If superimposition mortality occurs, then the fraction of eggs surviving is the value of 
another random number drawn from a uniform distribution between zero and one. 
5. Steps 2-4 are executed once for each new redd placed in the cell on the current time-step. 
2.7.7. Redd Development:   
To predict the timing of emergence, the developmental status of a redd’s eggs is updated 
daily. We used the fractional development approach of Van Winkle et al. (1996) which is 
based on accumulated degree-days. Model redds accumulate the fractional development that 
occurs each day (reddDailyDevel), a function of temperature. This means the redd has a state 
variable fracDeveloped that starts at zero when the redd is created and is increased each day 
by the value of reddDailyDevel. When fracDeveloped reaches 1.0, then the eggs are ready to 
emerge. The daily value of reddDailyDevel is determined using this second-order polynomial 
equation: 
reddDailyDevel = reddDevelParamA + (reddDevelParamB × temp)      
(50) 
+ (reddDevelParamC × temp2) 
The fractional development that occurs over the whole time step is then calculated as the daily 
development multiplied by the parameter timestep-scale. 
 
2.7.8. Emergence from the redds and Transmission of traits: 
2.7.8.1. Emergence:   
“Emergence” is the conversion of each surviving egg into a new trout agent. Emergence 
begins on the day when fracDeveloped reaches 1.0, and then the new fish emerge over a 
period of several days. As a simple way to spread emergence over several days, the 
emergence model assumes that 10% of the redd’s eggs emerge on the first day of emergence; 
20% of the redd’s remaining eggs emerge on the next day; 30% of the remaining eggs emerge 
on the third day; etc, until 100% of remaining eggs emerge. The time at which all eggs have 
emerged depends on the time step defined by the user through the parameter timestep-scale. 
As emergence proceeds, the eggs remaining in a redd remain susceptible to egg mortality. 
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2.7.8.2. Transmission of heritable traits:   
For modelling the transmission of heritable traits, we followed the approach of Vincenzi et al. 
(2012). Only length at emergence and the size threshold value for maturation are considered 
genetically coded and heritable. We additionally included a neutral trait (not affecting the 
fitness of individuals) to assess whether potential changes along time in the genotypic values 
of heritable traits are actually due to directional selection and not by genetic drift. We assume 
that each egg is fertilized by just one male spawner. Therefore, each new trout emerging from 
the redd inherits its traits from a father randomly assigned from the number-males males 
contributing to the redd (see Section 2.7.2.2).  
As commonly modelled (Lynch and Walsh 1998), the phenotype z of an individual i, zi, is 
defined in our model as the sum of its genotypic (also called breeding) value ai (representing 
additive genetic variance) randomly drawn from a normal distribution N(𝜇𝜇𝐺𝐺 , σ𝐺𝐺2 ), and a 
statistically independent random environmental effect from N(𝜇𝜇𝐸𝐸, σ𝐸𝐸2 ): 

zi = ai + ei           (51) 

where the narrow-sense heritability h2 = σ𝐺𝐺2  / σ𝑍𝑍2  indicates how much of the phenotypic 
variance σ𝑍𝑍2  present in the population is explained by the additive genetic variance σ𝐺𝐺2 . 

In our model, a genotypic value genTraitZ of the heritable traits is set at initialization of the 
individuals following a normal distribution around the mean phenotypic value at the 
population level (fishTraitZMean; input parameter) and with an additive genetic variance 
computed as:  

additivevarTraitZ = ℎ𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑍𝑍2  × fishTraitZVar      (52) 

where fishTraitZVar is the phenotypic variance of the trait at the population level and ℎ𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑍𝑍2  
is the narrow-sense heritability of the trait. Both fishTraitZVar and ℎ𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑍𝑍2  are input 
parameters to the model. 
The phenotypic expression of the trait (fishTraitZ) for each individual at initialization is then 
calculated as genTraitZ plus the environmental effect drawn from a normal distribution with 
mean 0 and an environmental variance σ𝐸𝐸2  equal to (1 - ℎ𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑍𝑍2 ) × fishTraitZVar. The 
environmental variance is maintained constant along the whole simulation. 
Inheritance rules are based on the infinitesimal model of quantitative genetics theory. Each 
offspring's genTraitZ value for a trait z under selection is drawn from a normal distribution 
centered on the arithmetic mean of the two parental values, while the variance of this 
distribution is equal to half the total additive genetic variance for the trait at the population 
level (i.e., the within-family additive variance remains constant).  
In an idealized population with no input of new variation from mutation or migration, the 
additive variance generated from the initial variation in the base population eventually 
declines. Ultimately, a selection limit or plateau is reached, and as the genetic variation in the 
base population becomes exhausted, the effects of new mutations become increasingly 
important for continued response (Johnson and Barton 2005). In our model, the user has the 
option to choose whether the total additive genetic variance fixed at initialization remains 
constant across generations or it changes otherwise, being then computed as the variance of 
the breeding genotypic values. The inheritance model is a modified version of the inheritance 
model of the infinitesimal model of quantitative genetics theory, adapted to account for new 
input of variation from mutation. Offspring then inherit the trait genTraitZ from a normal 
distribution centered on the arithmetic mean of the two parental values and with the variance 
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σ𝐺𝐺,𝑜𝑜𝑜𝑜𝑜𝑜
2  of the distribution equal to half the mean of population additive genetic variance 

(additivevarTraitZ) plus the mutational variance σ𝑚𝑚2  multiplied by a factor M defining the 
amplitude of mutation: 

σ𝐺𝐺,𝑜𝑜𝑜𝑜𝑜𝑜
2 = 1

2
(𝑑𝑑𝑑𝑑𝑑𝑑𝑗𝑗𝑑𝑑𝑗𝑗𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠𝑎𝑎𝑠𝑠𝑑𝑑𝑗𝑗𝑑𝑑𝑎𝑎 + 𝑀𝑀σ𝑚𝑚2 )      (53) 

In our model, the mutational variance σ𝑚𝑚2  (variance introduced by mutation per generation) at 
the population level is computed as (mutationalVarParam × σ𝐸𝐸2 ), where mutationalVarParam 
is in the order of 10-3 to 10-2, as suggested by reviews of empirical data (Lynch and Walsh 
1998, Johnson and Barton 2005). Variation from mutation can be turned off by the user by 
setting the amplitude of mutation factor M to 0.  
The environmental ei component of the trait is drawn from a normal distribution of mean 0 
and variance equal to the environmental variance σ𝐸𝐸2  fixed at initialization. Offspring 
phenotypes are then formulated as fishTraitZ = genTraitZ + ei. 
The model allows the possibility of defining different maturation thresholds for males and 
females. Therefore, the way this trait is transmitted is slightly different from the other two 
heritable traits. We used a standard transformation for this purpose. The parental genotypic 
values of the trait are standard transformed as follows: 
              
(54) 

𝑠𝑠𝑑𝑑𝑑𝑑𝑆𝑆𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑠𝑠𝑆𝑆𝑑𝑑𝑆𝑆𝑑𝑑𝑀𝑀𝑗𝑗𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ =
𝑃𝑃𝑠𝑠𝑇𝑇𝑠𝑠𝑃𝑃𝑠𝑠𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑠𝑠ℎ − 𝑃𝑃𝑠𝑠𝑆𝑆𝑃𝑃𝑜𝑜𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑠𝑠ℎ 

�12(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑎𝑎𝑠𝑠𝑇𝑇𝑃𝑃𝑃𝑃𝑠𝑠𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑃𝑃𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃𝑠𝑠ℎ+𝑃𝑃σ𝑚𝑚2 )
  , 

where StdParentgenSpawnMinLength is the standard transformed of the genotypic value of 
either the father or the mother (ParentgenSpawnMinLength), SexPopMeanSpawnMinLength 
is the mean genotypic value of either males or females at the population level (depending on 
the sex of the new trout and equal to SpawnMinLengthMean if additive variance is fixed 
across generations or computed as the mean genotypic value of either male or female breeder 
population otherwise), additivevarSpawnMinLength is the additive genetic variance for the 
trait and 𝑀𝑀σ𝑚𝑚2  represents the mutational variance. The two parental standardized values are 
then averaged (stdMean) and a random number (randStd) is drawn from a normal distribution 
N(stdMean, 1). Finally, the genotypic value of the maturity threshold for the new trout is 
calculated by transforming back as follows:  
genSpawnMinLength = SexPopMeanSpawnMinLength        
(55) 

+ randStd × �1
2

(𝑑𝑑𝑑𝑑𝑑𝑑𝑗𝑗𝑑𝑑𝑗𝑗𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑆𝑆𝑑𝑑𝑆𝑆𝑑𝑑𝑀𝑀𝑗𝑗𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ + 𝑀𝑀σ𝑚𝑚2 )  

Both the genotypic value and the environmental component of the heritable traits are 
truncated at 4 standard deviations from the centers of the normal distributions from which 
they are drawn. 
 
2.7.9. Trout Ageing: 
Trout update every time step their state variable age, which track the number of days since a 
trout was born. Trout update their age-class state variable the Julian date where they were 
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born.  When new trout are born, then all trout from the older cohorts update their age-class to 
avoid that some fish could have the same age-class while belonging to different cohorts. The 
same action happens likewise when the first fish of older cohorts updates its age-class and 
new recruits have not been born yet. 
 

3 Data evaluation 
This TRACE element provides supporting information on: The quality and sources of numerical and 
qualitative data used to parameterize the model, both directly and inversely via calibration, and of the observed 
patterns that were used to design the overall model structure. This critical evaluation will allow model users to 
assess the scope and the uncertainty of the data and knowledge on which the model is based. 

Summary: 
There are a total of 203 global parameters in inSTREAM-Gen. Thirty-four of 
them are user-specified parameters by which the user sets the spatio-temporal 
resolution of the simulations, selects among different options regarding the 
mortality and genetic models, and chooses the desired graphical and file outputs. 
There are 47 site-specific parameters; although the values of 20 of them could be 
potentially borrowed from existing studies in the case they are not available for 
the simulated population. T33here are 114 parameters whose values are typically 
derived from the literature. Finally, there are six parameters that are specially 
suited for calibration since they are pretty uncertain and model results are highly 
sensitive to them. They were calibrated following a pattern-oriented modelling 
approach, using site-specific quantitative demographic and life-history patterns.  

Section content 
3.1. User-specified parameters ............................................................................... 28 
3.2. Site-specific parameters ................................................................................... 29 
3.3. Parameters with values borrowed from the literature ...................................... 33 
3.4. Calibrated parameters ...................................................................................... 50 

 
In inSTREAM-Gen there are a grand total of 203 global parameters.  In outline, they can be 
grouped in four main categories based on their nature and data source: 1) user-specified, 2) 
site-specific, 3) values borrowed from the literature, and 4) calibrated. 
 

3.1. User-specified parameters 
Sixteen out of the 203 global parameters are related to the observer actions, and represent the 
choices the user has to make to obtain the desired graphical and file outputs from the model. 
Those parameters are therefore only involved in the plot-modelOutputs and write-
modelOutputs procedures. There are 15 Boolean parameters which allow the user to select the 
mortality models for trout agents to be deployed in the move and survive-or-die procedures 
during the simulation. There are five additional parameters that are user-specified too: the 
spatial-scale and timestep-scale parameters define the spatial (the width of a NetLogo patch) 
and temporal (the extent of a time step) resolution of the model during the simulation; initial-
date sets the date when the simulation starts (it is necessary to specify this parameter in order 
to create the LogoTime object that will link the current date of each time step to the native 
time tracking mechanism in NetLogo); with the GeneticTransmission? Boolean parameter, 
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the user indicates whether genetic transmission of heritable traits must be simulated during the 
model’s run, while FixedAdditiveVar? permits the user to choose whether the total additive 
genetic variance of heritable traits fixed at initialization must be considered constant across 
generations or must be otherwise computed each generation as the variance of the breeding 
genotypic values. 
 

3.2. Site-specific parameters 
There are 27 parameters that are inherently site-specific and whose values cannot be borrowed 
from the literature. siteLatitude and reachLength are geographic and physical attributes of the 
simulated reach. There are 20 parameters used to define the abundance, as well as the age- 
and size-structure of the population at initialization. Five parameters involved in the angler 
mortality model are site-specific since they characterize the legal restrictions to recreational 
fishing in the simulated reach: startAnglingSeason, endAnglingSeason, anglePressure, 
mortFishAngleSlotLower and mortFishAngleSlotUpper. 
In addition, there are 20 population parameters which are highly site-specific, but although 
their values are typically obtained from on-site field studies, they can be also borrowed from 
the literature in the case they are not available for the simulated population. Most of them are 
involved in the reproduction process, being either connected to the size maturity threshold 
(fishSpawnMinLengthMeanM, fishSpawnMinLengthMeanF, fishSpawnMinLengthVarM, 
fishSpawnMinLengthVarF) and the other criteria mature trout must meet to spawn 
(habMaxSpawnFlow, fishSpawnMinAge), to define the time window for spawning 
(fishSpawnStartDate, fishSpawnEndDate), or related to the fecundity relationship 
(fishFecundParamA, fishFecundParamB). The parameters describing the central tendency 
and dispersion of phenotypic values of heritable traits (fishNewLengthMean, 
fishNewLengthVar, fishNeutralTraitMean, fishNeutralTraitVar) as well as those defining the 
weight-length relationship (fishWeightParamA, fishWeightParamB) are typically highly 
variable across populations. Prey energy density (habPreyEnergyDensity) depends on the 
kind of prey dominating the system's trophic web, so it is variable across sites. Likewise, the 
size at which trout can predate on smaller trout (fishPiscivoryLength) is site-specific. Finally, 
it is important to notice that the habitat parameters habShearParamA and habShearParamB 
included in the equation to calculate the Shield stress (indicator of the flow scour potential, 
which affects redds survival), are highly reach specific. 
For the case study presented in Ayllón et al. (2015), which simulates brown trout (Salmo 
trutta) population dynamics in the Belagua river (Northern Spain), we used the site-specific 
parameter values shown in Table A2. They were derived from a comprehensive four-year 
research project carried out during 2003-2006 and funded by the Government of Navarra. In 
the study, 58 sampling sites were monitored, sites being selected to cover both environmental 
and human disturbance gradients. Based on long-term time series (12 years) of ecological data 
previously collected by the staff of the Government of Navarra, and new ecological and 
environmental data collected during the study, stream-dwelling brown trout populations were 
fully characterized, including spatio-temporal patterns of: 1) population dynamics 
(abundance, biomass and production, as well as recruitment and mortality rates); 2) life 
history strategies (size-at-age, growth rates, reproductive traits); 3) carrying capacity 
dynamics; 4) habitat selection and territorial behavior; 5) inter- and intra-population genetic 
variability and levels of genetic introgression; 6) incidence of recreational fishing and other 
human drivers and stressors; 7) ecological and genetic conservation status of populations. 
Complete results from this study are reported in Almodóvar et al. (2006), though the main 
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results have been published in peer reviewed journals, providing insights within a wide range 
of topics, including spatial and temporal patterns of population abundance (Ayllón et al. 
2013), carrying capacity dynamics (Ayllón et al. 2012a), individual growth (Parra et al. 2010, 
2011, 2012) and other life history traits (Parra et al. 2014), habitat selection (Ayllón et al. 
2009, 2010a) and territorial behavior (Ayllón et al. 2010b), as well as analyses of the effects 
of global warming (Almodóvar et al. 2012) and other anthropogenic drivers and stressors 
(Ayllón et al. 2012b) on the conservation status of these resident brown trout populations. 
Table A2. Example values for site-specific parameters, indicating the data source (* 
Almodóvar et al. 2006; ** Parra et al. 2014). 

Parameter  Definition (units) Value 

Initial population   
init-N Initial number of fish in the simulation 696* 
prop-Age0 Proportion of age-0 fish within the population 0.73* 

prop-Age1 Proportion of age-1 fish within the population 0.19* 
prop-Age2 Proportion of age-2 fish within the population 0.06* 
prop-Age3 Proportion of age-3 fish within the population 0.008* 
prop-Age4 Proportion of age-4 fish within the population 0.009* 

prop-Age5Plus Proportion of age-5 and older fish within the 
population 

0.003* 

fishLengthMeanAge0 Mean length of age-0 fish (cm)  6.5* 
fishLengthSdAge0 Standard deviation of age-0 fish length (cm) 0.7* 
fishLengthMeanAge1 Mean length of age-1 fish (cm) 13.4* 

fishLengthSdAge1 Standard deviation of age-1 fish length (cm) 1.2* 
fishLengthMeanAge2 Mean length of age-2 fish (cm) 17.1 

fishLengthSdAge2 Standard deviation of age-2 fish length (cm) 1.2* 
fishLengthMeanAge3 Mean length of age-3 fish (cm) 22.5* 
fishLengthSdAge3 Standard deviation of age-3 fish length (cm) 1.4* 

fishLengthMeanAge4 Mean length of age-4 fish (cm) 27.5* 
fishLengthSdAge4 Standard deviation of age-4 fish length (cm) 1.7* 
fishLengthMeanAge5Plus Mean length of age-5 and older fish (cm) 36.5* 
fishLengthSdAge5Plus Standard deviation of age-5 and older fish length 

(cm) 
1.6* 

fishEmergenceDateMean Population mean date of emergence (Julian date) 91* 

Reproduction   
fishSpawnStartDate, Starting date of the spawning window (Julian date) 305* 
fishSpawnEndDate Ending date of the spawning window (Julian date) 366* 
fishSpawnMinAge Minimum age to spawn (days) 366** 
fishFecundParamA Multiplier of the female length-number of eggs 0.038* 
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relationship (eggs per redd) 

fishFecundParamB Exponent of the female length-number of eggs 
relationship (unitless) 

3.01* 

Feeding and growth   
fishWeightParamA Multiplier of the weight-length relationship for 

healthy fish     (g cm-1) 
0.01057* 

fishWeightParamB Exponent of the weight-length relationship for 
healthy fish (unitless) 

3.021* 

Angler mortality   
startAnglingSeason Start of the angling season (Julian date) 94* 
endAnglingSeason End of the angling season (Julian date) 276* 

anglePressure Angling pressure (angler-h km-1 d-1) 0.22* 
mortFishAngleSlotLower Lower end of the length range in which fish are 

legal to keep (cm) 
21* 

mortFishAngleSlotUpper Upper end of the length range in which fish are 
legal to keep (cm) 

100* 

Genetic transmission   

fishSpawnMinLengthMeanM Population mean length maturity threshold for 
males (cm) 

16.7** 

fishSpawnMinLengthVarM Population variance of length maturity threshold 
for males (unitless) 

1.5** 

fishSpawnMinLengthMeanF Population mean length maturity threshold for 
females (cm) 

16.7** 

fishSpawnMinLengthVarF Population variance of length maturity threshold 
for females (unitless) 

1.5** 

fishNewLengthMean Population mean of length at emergence (cm) 2.3* 
fishNewLengthVar Population variance of length at emergence 

(unitless) 
0.023* 

fishNeutralTraitMean Population mean value of neutral trait 0.7* 
fishNeutralTraitVar Population variance of neutral trait 0.05* 

 
Since we did not have an estimate of the value of the flow limit for spawning 
(habMaxSpawnFlow) in our study population, we estimated it by using the scarce available 
data in the literature. Frank and Baret (2013) described a mean centered value of 6.85 m3 s-1 
for a log-normal distribution for a brown trout population in Belgium. However, the rivers 
described in Frank and Baret's study are of a larger size than the model stream used in our 
study. Ayllón et al. (2012a) found a significant negative relationship between extreme flow 
conditions at different times of the hydrologic cycle (including extreme flow events during 
spawning period) and the summer density/carrying capacity ratio of age-0 trout in the rivers 
and streams of our study area. Using the statistical models presented by Ayllón and coauthors, 
we estimated that a weighted maximum flow during seven consecutive days of 16.75 over the 
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spawning season (that is, a flow 16.75 times higher than the historical median flow, 
maintained during 7 consecutive days) would cause zero recruitment next year (when the 
values of the rest of significant covariates are fixed to their average value). Using flow time 
series statistical analyses to correlate different time spans, we estimated that a weighted 
maximum flow during the whole spawning season (60 days) of 5.95 would cause zero 
recruitment next year. That value translates into an absolute flow value of 3.98 m3 s-1. 
However, Gortázar et al. (2007) observed that brown trout spawning activity did not 
completely cease during strong spates (flows ca. 4 m3 s-1) in highly unpredictable Iberian 
mountain streams with conditions similar to ours. Therefore, we decided to set a value of 4.5 
m3 s-1 for habMaxSpawnFlow. 
The value of prey energy density (the habitat parameter habPreyEnergyDensity, j g-1) can be  
derived from the literature too. This parameter is used to convert grams of prey eaten to joules 
of energy intake and it applies to both drift and search food. Values of habPreyEnergyDensity 
are provided for various prey types by Hanson et al. (1997). A value of 2500 j g-1 is 
reasonable for streams where drift prey is dominated by aquatic insect larvae; a value of 4000 
j g-1 is appropriate for streams where drift is dominated by higher-energy prey such as 
amphipods. Values can be higher when diet is only comprised by high-energy prey. Since we 
did not have these data for our study site, we chose to calibrate this parameter.  
There were no available data about the size at which trout can predate on smaller trout 
(fishPiscivoryLength) in our study population. Therefore, the value for the parameter was 
derived from the existing literature. In freshwaters, brown trout may start fish feeding from a 
body length of 15cm (Klemetsen et al. 2003). In general, considering observed predator-prey 
size ratios for salmonids (collected and reviewed by Keeley and Grant 2001), values in the 
range of 15-30 cm are reasonable for fishPiscivoryLength. However, salmonids begin to feed 
on fish at a smaller size in oceans and in lakes than in streams; on average salmonids  in 
streams only begin eating fish when 27 cm long (Keeley and Grant 2001). In fact, piscivorous 
behaviour is most frequent in large stream-dwelling brown trout, and studies show that it 
occurs in older individuals with a size of 20-30 cm, but rarely in smaller size classes (e.g, 
Jensen et al. 2004, Sánchez-Hernández and Cobo 2012). For Little Jones Creek, Railsback et 
al. (2009) set the value of fishPiscivoryLength to 15 cm because cutthroat trout 
(Oncorhynchus clarkii) rarely grow much larger than this size there and appear to eat only 
very small trout. For our study population, we set fishPiscivoryLength to the average length 
age-2 individuals attain during summer, 17 cm. 
The parameters habShearParamA and habShearParamB can be evaluated by means of an 
equation commonly used to estimate Shields stress in rivers: 

( )D
SRsshearStres

s rr
r

−
⋅⋅

=   

where r is the density of water (1.0 g cm-3); R is the reach-average hydraulic radius (cm); S is 
the reach-scale energy slope (dimensionless); rs is the density of sediment, approximated as 
2.7 g cm-3; and D is the mean substrate particle diameter (cm). The hydraulic radius R can be 
approximated as the average depth and S can be approximated as the average water surface 
slope, using data collected for hydraulic model calibration at several different flows. Then 
logarithmic regression of shearStress vs. flow produces the values of habShearParamA and 
habShearParamB. Following this procedure, we estimated for our study reach values for the 
shear stress parameters of habShearParamA = 0.006 and habShearParamB = 0.683 
(p<0.0001, R2=0.9992). 
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3.3. Parameters with values borrowed from the literature 
There are 114 parameters in inSTREAM-Gen whose values are not reach- or population-
specific so that they can be derived from the literature.  They are described below grouped by 
the processes they are involved in. 
- Trout reproduction: 
Railsback et al. (2009) considered a value of 0.04 reasonable for fishSpawnProb (probability 
of spawning on any such day). This value causes an average of 25% of ready fish to spawn in 
the first week of suitable conditions and 68% to spawn within 28 days of suitable conditions. 
It must be taken into account that if the inverse of fishSpawnProb is large compared to the 
number of days in the spawning period, then it is likely that some potential spawners will not 
spawn. We selected however a higher value (0.1) for the present case study. 
Regarding the criteria mature trout must meet to be ready to spawn, Railsback et al. (2009) 
recommended that the value of fishSpawnMinCond (minimum condition factor to spawn) 
should be slightly less than 1.0 (typical applications of inSTREAM use a value of 0.98). Van 
Winkle et al. (1996) and Railsback and Harvey (2001) estimated 0.20 as a reasonable value 
for fishSpawnMaxFlowChange. Finally, Van Winkle et al. (1996) estimated that spawning 
can only occur when water temperature falls within a range of 4 (fishSpawnMinTemp) and 
10ºC (fishSpawnMaxTemp) for brown trout or 8-13ºC for rainbow trout (Oncorhynchus 
mykiss). This agrees with the common belief that spawning activity of brown trout ceases 
when temperature falls below 5 ºC (Jonsson and Jonsson 2011). For the present application of 
inSTREAM-Gen, we chose a value of 12 ºC for fishSpawnMaxTemp because of potential 
thermal adaptations to higher temperatures at Southern latitudes. 
The suitability of the hydraulic conditions of a cell for a female spawner to create a redd is 
evaluated in inSTREAM-Gen by means of spawning suitability functions. Typical 
applications of inSTREAM use the functions developed by PG&E (1994) for brown trout and 
rainbow trout (Table A3). However, there are other spawning suitability functions available in 
the literature for brown trout (e.g., Raleigh et al. 1986, Grost et al. 1990, Louhi et al. 2008, 
Gortázar et al. 2012). 
 
Table A3. Parameter values for spawning depth and velocity suitability for brown trout (from 
PG&E 1994). 

Parameter  Parameter value Parameter  Suitability value 

 Depth (cm)  (unitless) 
fishSpawnDSuitD1 0 fishSpawnDSuitS1 0 
fishSpawnDSuitD2 5 fishSpawnDSuitS2 0 
fishSpawnDSuitD3 50 fishSpawnDSuitS3 1 
fishSpawnDSuitD4 100 fishSpawnDSuitS4 1 

fishSpawnDSuitD5 1000 fishSpawnDSuitS5 0 

 Velocity (cm s-1)   
fishSpawnVSuitV1 0 fishSpawnVSuitS1 0 
fishSpawnVSuitV2 10 fishSpawnVSuitS2 0 
fishSpawnVSuitV3 20 fishSpawnVSuitS3 1 
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fishSpawnVSuitV4 75 fishSpawnVSuitS4 1 

fishSpawnVSuitV5 100 fishSpawnVSuitS5 0 
fishSpawnVSuitV6 1000 fishSpawnVSuitS6 0 

After selecting a spawning cell, female spawners create redds. The number of eggs in the redd 
depends on the spawner’s fecundity (a function of length) and losses during spawning 
(defined through the parameter fishSpawnEggViability). There is little published literature to 
support consistent values of fishSpawnEggViability for stream salmonids. Despite the fact that 
the number of viable eggs in a redd can be considerably less than the female’s fecundity if 
some eggs are washed away by high current velocities, incompletely buried, eaten by other 
fish during redd creation, or if some are not fertilized, some studies evidence that in general 
losses are low (e.g., Healy 1991). Based on these grounds, Railsback et al. (2009) 
recommended a value of 0.2. 
When a female spawns, male spawners are selected to fertilize the eggs in the redd. The 
maximum number of males that can be involved in the mating is set through the parameter 
max-n-males-per-female. While in inSTREAM only one male is selected to mate with a 
female spawner, inSTREAM-Gen allows for both monogamy and polygamy mating 
strategies. This is because both monogamous and polygamous matings have been observed in 
brown trout breeding systems (e.g., Serbezov et al. 2010a). Further, Frank and Baret (2013) 
found that when they included in their DemGenTrout IBM a polygamous mating mode (with 
a max-n-males-per-female equal to 4), it yielded better fit to observed demographic and 
genetic brown trout population patterns than the alternative model implementing monogamy. 
After spawning, both female and male spawners incur on mass loss. In consequence, their 
weight is reduced according to the parameter fishSpawnWtLossFraction. Mean mass losses 
from spawning for brown trout can be up to 22% in females and 15% in males (Lien 1978). It 
suggests a value of 0.2 for fishSpawnWtLossFraction. However, higher values could be 
justified as proportional energy loss substantially exceeds mass loss (Lien 1978). Railsback et 
al. (2009) estimated that a 20% loss of body weight during spawning reduces the probability 
of surviving starvation and disease for 90 days by about 10 to 15%, while a 30% weight loss 
reduces survival by about 40%. The authors found these values similar to the spawning 
survival ranges suggested by Stearley (1992) for resident trout. 
- Trout habitat selection: 
During habitat selection (move procedure), every trout assess each potential destination cell to 
determine the fitness it would provide, using the “Expected Reproductive Maturity” (ERM) 
fitness measure of Railsback et al. (1999). ERM depends on three elements: nonstarvSurvival 
(probability of survival for all mortality sources except poor condition over a specified time 
horizon), starvSurvival (probability of surviving the risk of poor condition over the specified 
fitness time horizon), and fracMature (how close to the size of sexual maturity a trout would 
be at the end of the fitness time horizon). Therefore, it is clear this action includes nearly all 
parameters involved in the feeding and growth, and survival processes (feed-and-grow and 
survive-or-die procedures, respectively). Those will be treated separately, however.  
There are only three parameters that are not involved in either feeding or survival procedures. 
Two of them are the parameters included in the exponential function used to quantify the 
maximum movement distance within which fish evaluate the ERM of cells (this local variable 
is also used in the reproduction process to define the potential cells which female spawners 
can spawn in). This maximum movement distance should be considered the distance over 
which a fish is likely to be aware of habitat conditions over a daily time step, and not the 
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maximum distance a fish could swim or migrate in a day. It is an exponential function of fish 
length. Based on literature data (June 1981, Harvey et al. 1999, Diana et al. 2004), Railsback 
et al. (2009) estimated a value of 20 for fishMoveDistParamA and of 2 for 
fishMoveDistParamB for stream-dwelling trout. However, these parameters can be 
potentially site-specific. 
The other one is the time horizon parameter fishFitnessHorizon, used in the expected 
maturity fitness measure equation, which represents the time horizon over which fish evaluate 
the tradeoffs between food intake and mortality risks to maximize their probability of 
surviving and reproducing. It is an important parameter and, as such, its theoretical 
foundations and implications of its value are discussed in detail in Railsback et al. (2009). As 
a general rule, longer time horizons better reflect how an individual’s fitness depends on how 
well it makes decisions throughout its reproductive life, while smaller values of 
fishFitnessHorizon place less emphasis on feeding and avoiding starvation in habitat 
selection. Railsback et al. (2009) observed that values of fishFitnessHorizon of 5 to 10 days 
cause ERM to vary almost exclusively with nonstarvation survival (mortality risks other than 
starvation), meanwhile values in the range of 100 days cause ERM to depend almost 
exclusively on growth rates when growth is less than the minimum needed to maintain a 
condition factor of 1.0. If according to literature, fish are able to anticipate seasonal changes 
in habitat conditions and their life stage, it makes sense to assume they use a habitat selection 
time horizon of several months. Consequently, most applications of inSTREAM to date have 
used a value of 90 days. 
 
- Trout feeding and growth: 
A fish’s drift intake rate is calculated as the mass of prey passing through the capture area 
times the capture success. Capture area is dependent on the detection distance. In 
InSTREAM-Gen, detection distance depends linearly on the size of the fish (parameter 
values in Table A4). This linear formulation contrasts to the exponential formulation of 
Hughes and Dill (1990), which has been used in different bioenergetics models (for e.g., 
Rosenfeld and Taylor 2009, Jenkins and Keeley 2010). Railsback et al. (2009) developed this 
linear model based on empirical data from the study of Schmidt and O’Brien (1982) for arctic 
grayling (Thymallus arcticus), whose results had been used successfully as the basis of the 
previous drift feeding models of Hughes (1992) and Hughes et al. (2003). The linear model is 
not, however, a regression fit to those data, but rather it was derived from pre-calibration of 
the growth model. In fact, a logarithmic model provided a better fit to the data, but the linear 
model, nevertheless, was able to capture a series of qualitative patterns the logarithmic 
formulation was not. First, it captures the fact that very small trout cannot use as wide a range 
of prey sizes as larger trout can, a process not otherwise represented in the feeding model of 
inSTREAM and inSTREAM-Gen. Second, a logarithmic fit to these data predicts negative 
detection distances for trout lengths less than 2 cm and does not reproduce the observations of 
Hughes et al. (2003) that detection distance continues to increase to over 100 cm for very 
large trout. Finally, the pre-calibration analysis indicated that the growth rates of very small 
trout are very sensitive to the intercept. An intercept of 4.0 was found to provide growth of 
very small trout that was realistic at the same drift food availability values that produce 
realistic growth rates in larger trout. 
Capture success is largely a function of water velocity and the swimming capacity of the 
fish. In consequence, Railsback and colleagues developed a logistic function of the ratio of 
water velocity to maximum sustainable swimming speed of the fish based on observations 
from Hill and Grossman (1993) for rainbow trout to estimate capture success (parameter 



TRACE document: Ayllón et al. 2016, Eco-evolutionary individual-based model for trout populations. 

36 
 

values in Table 4). Maximum sustainable swimming speed (fishMaxSwimSpeed) is a 
function of fish length and water temperature. Because inSTREAM-Gen uses time steps of at 
least one day, the maximum sustainable swimming must be a speed that fish can swim for 
hours, not a burst or short-term maximum speed. Railsback et al. (2009) used literature values 
from “critical swimming speed” laboratory tests for different species of salmonids (Schneider 
and Connors 1982, Butler et al. 1992, Hawkins and Quinn 1996, Taylor et al. 1996, Alsop and 
Wood 1997, Myrick and Cech 2000, 2003, MacNutt et al. 2004) to develop a two-term 
function for modelling fishMaxSwimSpeed. The first term represents how fishMaxSwimSpeed 
varies linearly with fish length, while the second modifies fishMaxSwimSpeed with 
temperature, following a second-order polynomial function (parameter values in Table A4). 
 
Table A4. Parameter values for detection distance, capture success and maximum sustainable 
swimming speed (from Railsback et al. 2009). 

Parameter  Definition (units) Value 

fishDetectDistParamA Intercept in equation for detection distance (cm) 4 
fishDetectDistParamB Slope in equation for detection distance (unitless) 2 
fishCaptureParam9 Ratio of cell velocity to fish’s maximum swim speed at 

which capture success is 0.9 (unitless) 
0.5 

fishCaptureParam1 Ratio of cell velocity to fish’s maximum swim speed at 
which capture success is 0.1 (unitless) 

1.6 

fishMaxSwimParamA Length coefficient in maximum swim speed equation (s-1) 2.8 
fishMaxSwimParamB Constant in maximum swim speed length term (cm s-1) 21.0 

fishMaxSwimParamC Temperature squared coefficient in maximum swim speed 
equation (°C-2) 

-
0.0029 

fishMaxSwimParamD Temperature coefficient in maximum swim speed equation 
(°C-1) 

0.084 

fishMaxSwimParamE Constant in maximum swim speed temperature term 
(unitless) 

0.37 

 
As part of the net energy intake calculations, calculated food intake from drift or search 
feeding is checked to make sure it does not exceed the physiological maximum daily intake 
(cMax). Unfortunately, cMax is poorly defined and difficult to measure, largely because it 
varies with factors such as the fish’s exercise condition, food type, and feeding conditions in 
the laboratory. However, there are a number of published equations for cMax that include an 
allometric function relating cMax to fish size, and a temperature function. InSTREAM-Gen 
follows this formulation, which is widely used with the parameters developed by Rand et al. 
(1993) for rainbow trout (Table A5) for modelling cMax of salmonids in general (e.g., Van 
Winkle et al. 1996, Railsback and Rose 1999, Booker et al. 2004). 
The cMax temperature function used in inSTREAM-Gen (developed by Railsback et al. 2009) 
is based in part on laboratory studies on rainbow trout by Myrick (1998) and Myrick and 
Cech (2000). These studies focused on higher temperatures, measuring cMax at 10, 14, 19, 
22, and 25ºC. Previous models of cMax for salmonids (Rand et al. 1993) used temperature 
functions based on the laboratory studies of From and Rasmussen (1984), who studied 
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rainbow trout at temperatures of 5-22ºC; and of Elliott (1982) who studied brown trout. 
Instead of an equation, the cMax temperature function is a set of seven points used to 
interpolate a value of cmaxTempFunction from the temperature of a fish’s habitat reach 
(Table A6). 
 
Table A5. Parameter values for the allometric function of physiological maximum 
consumption (from Rand et al. 1993). 

Parameter  Definition (units) Value 

fishCmaxParamA Allometric constant in cMax equation 
(unitless) 

0.628 

fishCmaxParamB Allometric exponent in cMax equation 
(unitless) 

-0.30 

 
Table A6. Parameter values for temperature function of physiological maximum consumption 
(from Railsback et al. 2009). 

Parameter  Temperature 
(ºC)  

Parameter  Temperature Function 
value  

(unitless) 

fishCmaxTempT1 0 fishCmaxTempF1 0.05 

fishCmaxTempT2 2 fishCmaxTempF2 0.05 
fishCmaxTempT3 10 fishCmaxTempF3 0.5 
fishCmaxTempT4 22 fishCmaxTempF4 1.0 

fishCmaxTempT5 23 fishCmaxTempF5 0.8 
fishCmaxTempT6 25 fishCmaxTempF6 0 

fishCmaxTempT7 100 fishCmaxTempF7 0 

 
 
InSTREAM-Gen’s bioenergetics modelling approach models respiration as the energetic cost 
of metabolism and swimming. In its formulation, drift-feeding fish are assumed to swim at a 
speed equal to their habitat cell’s water velocity unless they have access to velocity shelter. If 
they do, then its swimming speed is assumed equal to a constant fraction of its habitat cell’s 
mean water velocity. This fraction is defined by the parameter fishShelterSpeedFrac. A 
number of studies have shown that “focal” water velocities (the velocity measured as closely 
as possible to the spot where a fish was drift-feeding) are related to, but less than, the depth-
averaged velocity at the same location (e.g., Baltz and Moyle 1984, Baltz et al. 1987, Moyle 
and Baltz 1985). However, as argued by Railsback et al. (2009), relations between focal and 
depth-averaged velocities observed in these studies are not directly applicable to this 
formulation because fishShelterSpeedFrac approximates the difference between cell average 
water velocity and the swimming speed of a fish using velocity shelter. The best value of this 
parameter will vary with the kind of velocity shelter being used and could easily be estimated 
in the field. For a small, hydraulically complex stream with velocity shelter due to boulders 
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and logs, Railsback and Harvey (2001) used a value of 0.3 for fishShelterSpeedFrac. 
Railsback et al. (2006) used a value of 0.5 for a river where substrates are relatively small and 
embedded. 
For modelling respiration costs, inSTREAM-Gen uses the Wisconsin Model equation 1 for 
respiration (Hanson et al. 1997), as modified by Van Winkle et al. (1996) to apply the activity 
respiration rate only during active feeding hours. The parameters that Rand et al. (1993) 
developed for steelhead trout (Oncorhynchus mykiss; converted from calories to joules; Table 
A7) are widely used and appear to be the best available for stream trout in general. 
 
Table A7. Parameter values for the respiration model (from Rand et al. 1993). 

Parameter  Definition (units) Value 

fishRespParamA Allometric constant in standard respiration equation * 30 
fishRespParamB Allometric exponent in standard respiration equation 

(none) 
0.784 

fishRespParamC Temperature coefficient in standard respiration equation 
(°C-1) 

0.0693 

fishRespParamD Velocity coefficient in activity respiration equation (s 
cm-1) 

0.03 

      *This is an empirical parameter with units that depend on fishRespParamB. 

 
The energy density of fish (fish parameter fishEnergyDensity, j g-1) is used to convert a fish’s 
net energy intake to growth in weight. The energy density of salmonids actually varies 
through their life cycle (typically higher in adults, especially during gonad development prior 
to spawning), but this variation is ignored in inSTREAM-Gen. The literature summarized by 
Hanson et al. (1997) indicates that 5900 j g-1is a reasonable value for all stream trout.  
 
- Trout survival: 
Mortality sources are represented in inSTREAM-Gen as survival probabilities: the daily 
probability of not being killed by one specific mortality source. Death of fish is modelled 
stochastically by comparing pseudo-random numbers to the survival probabilities. The 
survival probabilities are modelled by means of logistic functions, which are useful for 
depicting many functions that vary between 0 and 1 in a nonlinear way. The Y value of a 
logistic function (daily survival probability, in this case) increases from zero to one, or 
decreases from one to zero, as the X value (the habitat variable, in this case) increases over 
any range. In inSTREAM-Gen, logistic functions are defined via parameters that specify two 
points: the X values at which the Y value equals 0.1 and 0.9 (habVarAtS01 and habVarAtS09, 
respectively). The parameters habVarAtS01 and habVarAtS09 are therefore the values of the 
habitat variable at which survival is defined to be 0.1 and 0.9, respectively. The value of these 
two parameters must not be equal. 
As highlighted by Railsback et al. (2009), it is important to understand that seemingly high 
daily survival probabilities can result in low survival over time. For example, a daily survival 
probability of 0.99 results in mortality of 26% of fish within 30 days (0.9930 = 0.74). Survival 
probabilities should be well above 0.99 if they are not to cause substantial mortality over time. 
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It is often helpful to translate daily survival values into the probability of surviving for 30 
days and think about monthly survival. 
There are six different mortality sources, which are represented separately because the 
probability of surviving each varies differently with fish state and habitat conditions: 
Mortality owing to high temperature represents the breakdown of physiological processes at 
high temperatures. It does not represent the effect of high temperatures on bioenergetics 
(reduced growth at high temperature). The high temperature survival function is based on 
laboratory data collected from (presumably) disease-free fish, so it does not represent the 
effect of disease even though fish are probably more susceptible to disease at high 
temperatures. Instead, disease is modelled as part of poor condition mortality; a fish able to 
maintain its weight at sublethal temperatures is assumed to remain healthy. 
High temperature mortality has been addressed by numerous laboratory studies, but models of 
this mortality remain variable and uncertain because mortality varies with laboratory 
conditions and techniques and the endpoints used to define mortality; varies between 
laboratory and field conditions; and undoubtedly varies among individuals. In fact, any 
differences in measured lethal temperatures among trout species are not clearly 
distinguishable from uncertainty and variability in the measurements. Recent laboratory data 
showed approximately 60% survival of golden trout (Oncorhynchus mykiss) juveniles over a 
30-day period at a constant 24°C (Myrick 1998), equivalent to a daily survival of 0.98. 
Dickerson and Vinyard (1999) measured survival of Lahontan cutthroat trout (Oncorhynchus 
clarkii) for 7 days at high temperatures, finding zero survival at 28°C, 40% survival at 26° 
(equivalent to daily survival of 0.88), and 100% survival at 24°C. This literature indicates that 
high temperature mortality can be modelled well as a logistic function. The parameter values 
in Table A8 appear suitable for sites with relatively low diurnal variation in temperature; they 
produce survival of 0.98 at 24°C, 0.88 at 26°C, and < 0.5 at 28°C. 
The high velocity survival function represents the potential for trout to suffer fatigue or lose 
their ability to hold position in a cell with high velocity. This function is included not because 
trout often die due to high velocity, but because it strongly affects habitat selection: mortality 
due to high velocities is not observed in nature because fish avoid it by moving. Velocities 
posing mortality risk can be widespread at high flows, but can also occur (especially for small 
fish) at normal flows.  
The survival probability is based on the ratio of the swimming speed a fish uses in a cell to the 
fish’s maximum sustainable swim speed. The swimming speed used in a cell is determined 
when calculating respiration energy costs: fish are assumed to swim at the cell’s water 
velocity unless they are drift-feeding with access to velocity shelters. Fish using velocity 
shelters are assumed to swim at a speed equal to the cell’s velocity times the parameter 
fishShelterSpeedFrac. A decreasing logistic function relates survival probability to the fish’s 
swimming speed in its habitat cell divided by the fish’s value of fishMaxSwimSpeed. The 
parameters for this function (Table 8) are chosen so that high velocity mortality is negligible 
at swimming speeds less than fishMaxSwimSpeed, reflecting that (a) the laboratory equipment 
for measuring swim speeds does not provide the kinds of turbulence and fine-scale velocity 
breaks that trout can often use to reduce swimming effort in natural conditions, and (b) stream 
fish are likely to be in better condition than laboratory fish.  
Stranding mortality represents the death of fish that are unable to move out of cells that 
become extremely shallow or dry as flow decreases. Survival of stranding is modelled as an 
increasing logistic function of depth divided by fish length (Table A8). Because the terrestrial 
predation function does not represent the greatly increased likelihood of predation when depth 



TRACE document: Ayllón et al. 2016, Eco-evolutionary individual-based model for trout populations. 

40 
 

is extremely low (e.g., when fish are trapped in isolated pools; Harvey and Stewart 1991), this 
risk is included as part of stranding mortality. The stranding survival function does not 
distinguish whether fish in very low or zero depths die from lack of water or from predation. 
The stranding parameters do not cause survival to reach zero when depth is zero, reflecting 
that real habitat (as opposed to the model’s cells) has variation in bottom elevation- some 
water could remain even if a cell’s simulated depth becomes zero. Depth is divided by fish 
length to scale how the risks of low depths vary with fish size: shallow habitat that may be 
very valuable for small fish (protecting them from aquatic predation) may pose a stranding 
risk for large fish. 
Fish in poor condition (low value of the condition factor K, weight in relation to length) are 
at risk of starvation, disease, and excess vulnerability to predators. These risks are combined 
in the poor condition survival probability. Simpkins et al. (2003a, b) studied starvation 
mortality in large juvenile trout, finding that: 1) trout can survive for long periods (over 147 
days, in some cases) with no food intake; 2) survival is lower at higher swimming activity and 
temperature (which both increase metabolism); 3) relative weight (equivalent to K) decreased 
linearly over time during starvation; but 4) mortality was predicted better by an index of lipid 
content than by K (one reason is that lipids are replaced by water as energy stores are 
depleted). 
Unfortunately, modelling how body lipids are depleted and replaced by water and related 
processes would add considerable complexity and uncertainty to inSTREAM-Gen, as they are 
not well understood. Instead, poor condition survival probability is represented as an 
increasing logistic function of K with parameter values estimated to provide reasonable 
survival probabilities over several days and weeks (Table A8). The parameters produce a 
survival probability less than 100% even when K is at its maximum of 1.0, because disease 
can occur (though is less likely) when condition is relatively good. Poor condition is a unique 
mortality source in that fish can never increase their survival probability immediately by 
selecting different habitat. Fish in poor condition have a strong incentive to select habitat that 
provides rapid growth so their condition increases; however, sufficient growth to recover high 
condition takes a number of days. Even apparently high daily survival probabilities for this 
mortality source (e.g., 0.90) result in a low probability of surviving until normal weight can be 
regained. Railsback and coauthors (2009) estimated that the probability of surviving for 
extended periods becomes quite low when K falls below 0.8. 
Railsback et al. (2009) advise that before modifying the parameters for poor condition, one 
should be aware that poor condition mortality can have a strong effect on habitat selection as 
well as mortality. Consequently, changes in parameter values are likely to have widespread, 
complex, and unexpected effects. For example, one might assume that increasing the survival 
probability (e.g., by decreasing mortFishConditionK9 from 0.6 to 0.7) would result in less 
mortality due to poor condition. However, because fish select habitat using a trade-off 
between poor condition and other (primarily, predation) mortality sources, this change in 
parameters could result in fish selecting different habitat that has lower growth and lower 
predation risk, at least partially offsetting the expected reduction in poor condition mortality. 
Predation by terrestrial animals is a dominant source of mortality to trout, especially adults 
(Alexander 1979, Harvey and Marti 1993, Valdimarsson et al. 1997, Metcalfe et al. 1999, 
Quinn and Buck 2001, Harvey and Nakamoto 2013). The terrestrial predation formulation 
represents predation by a mix of such predators that lead to these generalizations about 
terrestrial predation: 1) big trout are vulnerable, often more vulnerable than small trout; 2) 
risks are year-round because warm-blooded predators feed as much or more in winter (except 
those that hibernate or migrate); and 3) trout are more at risk when more visible from the air.  
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The formulation assumes a minimum survival probability (mortFishTerrPredMin) that applies 
when fish are most vulnerable to terrestrial predation, and a number of “survival increase 
functions” that can increase the probability of survival above this minimum. Survival increase 
functions have values between zero and one, with higher values for greater protection from 
predation. The survival increase functions are assumed to act independently. Using this 
approach, the probability of surviving terrestrial predation does not vary with how many 
survival increase functions there are, but instead is only limited by one function at a time. 
Survival increase functions can be added, removed, or revised without re-calibrating the 
overall predation survival rate.  
The value of mortFishTerrPredMin is assumed to be the daily probability of surviving 
terrestrial predation under conditions where the survival increase functions are minimal 
(offering no reduction in risk). Field data for estimating this minimum survival are unlikely to 
be available, so it is best estimated by calibrating the model to observed abundance and 
habitat use patterns (see next section about parameters needing calibration). It is important to 
note that results from inSTREAM-Gen can be quite sensitive to the parameters that define 
how terrestrial predation risk depends on habitat variables, which is not surprising, 
considering that terrestrial predation is normally the only mortality source that adult trout are 
routinely vulnerable to. If those parameters are set in such a way that the survival increase 
function is very close to 1.0 in several or many cells, then trout occupying those cells can be 
almost immune to mortality.  
The following survival increase functions are included (suggested parameter values are 
provided at Table A8):  

• Depth. Fish are more vulnerable to terrestrial predators when in shallow water, where 
they are easier for predators to locate and catch. The depth survival increase function 
is an increasing logistic curve: survival increases as depth increases. Power (1987) 
indicates that predation by birds is low at depths above 20 cm, and Hodgens et al. 
(2004) report that 85% of successful strikes by herons were at depths less than 20 cm 
but some were at depths up to 50 cm. However, predators that are larger or better 
swimmers (mergansers, otters) are effective at greater depths, especially in clear 
water. (Note that the very high risk of terrestrial predation that occurs when fish are in 
near-zero depths is included in stranding mortality.) Railsback et al. (2009) warn 
based on experience that appropriate values for the depth survival increase function 
parameters can differ among sites. Parameters useful in relatively small streams of 
coastal California (Railsback and Harvey 2001) provide high relative survival in 
depths > 1 m. However, these parameters were not useful for the much larger Green 
River in Utah, where depths can be several meters and otters are prevalent; so 
Railback et al. (2005) developed separate parameters for the Green River site. 

• Fish length. Small fish are less vulnerable to terrestrial predation, presumably because 
they are less visible (Power 1987), less desirable, and possibly more difficult to 
capture, than larger fish. Therefore, survival of terrestrial predation is assumed to 
decrease with fish length, but only fish less than 4 cm in length are relatively 
protected. These parameter values should be reconsidered for sites where predation is 
dominated by larger mammals (otters, bears) that strongly prefer large fish. 

• Feeding time. Fish are much more vulnerable to predation when they are actively 
feeding during the day instead of resting and hiding at night (Metcalfe et al. 1999). 
The survival increase function is modeled as a decreasing function of feedTime (h), the 
hours spent feeding per day. Parameters are chosen so survival decreases nearly 
linearly with feedTime. 
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• Water velocity. Water velocity is assumed capable of increasing terrestrial predation 
survival because (1) velocity-caused turbulence makes fish harder to see, and (2) some 
predators are poorer swimmers than trout so they are expected to be less able capture 
fish in faster water. The survival increase function is therefore an increasing logistic 
curve that provides sharply increasing protection from terrestrial predators at 
velocities above 50 cm s-1. As with the depth survival increase function, useful 
parameter values for the velocity function may differ between small and large streams. 
In small streams, high velocities combine with high turbulence and obstacles to make 
swimming difficult. In large rivers, however, there can be run habitat where velocities 
are high while turbulence is low, so good swimmers such as mergansers and otters 
may perform quite well.  

• Distance to hiding cover. Fish can avoid mortality by hiding when predators are 
detected. The success of this tactic depends on the presence of hiding cover and the 
distance the fish must travel to reach it. Hiding cover is represented with a survival 
increase function that increases as distance to hiding cover decreases. Distance to 
cover (cellDistanceToHide, cm) is an input for each habitat cell, estimated as the 
average distance a fish in the cell would need to move to hide from a predator. The 
effect of distance to hiding cover is modelled as a decreasing logistic function of 
cellDistanceToHide because very short distances to hiding cover (< 100 cm) provide 
nearly complete protection from some predators, but do not protect fish from predators 
that strike very quickly (e.g., some birds) or that could be able to extract trout from 
hiding (e.g., otters); while cover several meters away is still valuable for escaping 
from terrestrial predators that have been detected.  

The aquatic predation formulation represents mortality due to predation by fish. In many but 
not all trout populations, the dominant source of aquatic predation is cannibalism by large 
trout. By adjusting parameter values, the formulation can be made to apply both to sites where 
the modelled trout are the only piscivorous fish and sites where non-trout fish, not otherwise 
represented in inSTREAM-Gen, are a significant risk.  
As with terrestrial predation, the formulation uses a minimum survival probability 
(mortFishAqPredMin) that applies when fish are most vulnerable to aquatic predation, and a 
number of survival increase functions. Data for directly estimating aquatic risks are again 
unlikely to be available, so it is recommended that mortFishAqPredMin be estimated by 
calibrating the model to observed patterns of abundance and habitat selection by juvenile fish 
(see next section about parameters needing calibration).  
Especially at sites where trout rarely get larger than 20-30 cm, cannibalism by trout is often 
rare; e.g., at the Little Jones Creek site fewer than 1% of adult fish contained juveniles 
(Railsback and Harvey 2001). However, the risk of predation appears to be an important 
factor driving habitat selection (e.g., Brown and Moyle 1991): avoiding predation is likely a 
key reason why small fish prefer shallow water. If aquatic predation rarely occurs, it is likely 
because small fish avoid it with some success by avoiding risky habitat. Also, there have been 
anecdotal reports of very high cannibalism rates during fry emergence in some salmonids. 
There is no survival increase function for distance to hiding cover in the aquatic predation 
formulation because only small trout are usually vulnerable to aquatic predators, and small 
trout are capable of hiding in many places that do not offer refuge to adult trout (e.g., between 
relatively small cobbles).  
The following survival increase functions are included (suggested parameter values are 
provided at Table A8):  
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• Predator density. This function represents how survival of aquatic predation depends 
on the density of trout predators. It is important to understand that this function 
represents only the effect of trout included in the model; it does not represent non-
trout piscivorous fish. The predator density survival increase function causes the 
survival increase function to increase as predator density decreases. Parameters for 
this logistic function depend on whether the modelled trout are the only piscivorous 
fish. The parameters shown in Table A8 represent a site where there are no non-trout 
fish predators. The parameters reflect (a) near-zero risk when there are no piscivorous 
trout, and (b) a steep decline in survival as predator density exceeds one piscivorous 
trout per 25 m2 (250,000 cm2) of reach area. Post et al. (1998) measured the mortality 
of tethered juvenile trout due to predation by adult trout in lakes. This study showed 
the risk to increase exponentially with adult trout density, rising very sharply between 
8 and 10 predators per 1000 m3. This result supports a logistic-like relation between 
adult trout density and juvenile trout survival probability. However, Railsback et al. 
(2009) reasoned that the exact relation is not directly applicable to inSTREAM, and 
hence to inSTREAM-Gen,  because (a) it was obtained in lakes where cover and other 
habitat complexities may mediate the effect of predator density, and (b) risks were 
evaluated over 1 hour periods, whereas inSTREAM model uses a daily time step. For 
sites where fish other than the trout represented in the model pose a piscivory risk, 
parameter values should be adjusted to reflect the reduced importance of trout to 
survival of aquatic predation. For example, if a site has a dense population of 
piscivorous fish, then trout density may have little effect on survival. In that case, the 
predator density function should be low and relatively flat (e.g., mortFishAqPredP9 = 
-1.0; mortFishAqPredP1 = 0.001). 

• Depth. Aquatic predation survival is assumed to be high in water shallow enough to 
physically exclude large fish, or shallow enough to place large fish at high risk of 
terrestrial predation. The depth survival increase function is therefore a decreasing 
logistic function, with high survival at depths less than 5 cm. 

• Fish length. As fish grow, they become better able to out-swim piscivorous fish and 
fewer piscivorous fish are big enough to swallow them. The length survival increase 
function is therefore an increasing logistic function, the parameters for which depend 
on the size of the piscivorous fish. Keeley and Grant (2001) provide an empirical 
relation between the size of piscivorous stream trout and the size of their fish prey. 
Table A8 illustrates parameters for sites where the only predator fish are trout of 25-30 
cm in length. For sites with larger predator fish, the curve should be shifted to the 
right. For sites such as Little Jones Creek where adult trout are rarely more than 20 
cm, survival is likely quite high when length is greater than 8 cm. 

• Feeding time. This survival increase function is the same for aquatic predation as it is 
for terrestrial predation. The survival increase is a decreasing logistic function of 
feedTime, the number of hours per day spent foraging. Separate parameters control the 
feeding time function for aquatic vs. terrestrial predation, but the values recommended 
above for terrestrial predation are also recommended for aquatic predation. 

• Low temperature. This survival increase function reflects how low temperatures 
reduce the metabolic demands and, therefore, feeding activity of piscivorous fish. The 
function is based on the bioenergetics of the trout predators, using a decreasing 
logistic function that approximates the decline in maximum food consumption (cMax) 
with declining temperature.  

 
Table A8. Parameter values for different mortality sources (from Railsback et al. 2009). 
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Parameter  Definition (units) Value 

mortFishHiTT9 Daily mean temperature at which high 
temperature survival is 90% (°C) 

25.8 

mortFishHiTT1 Daily mean temperature at which high 
temperature survival is 10% (°C) 

30 

mortFishVelocityV9 Ratio of fish swimming speed to maximum 
swim speed at which high velocity survival is 
90% (unitless) 

1.4 

mortFishVelocityV1 Ratio of fish swimming speed to maximum 
swim speed at which high velocity survival is 
10% (unitless) 

1.8 

mortFishStrandD9 Ratio of depth to fish length at which stranding 
survival is 90% (unitless) 

0.3 

mortFishStrandD1 Ratio of depth to fish length at which stranding 
survival is 10% (unitless) 

-0.3 

mortFishConditionK9 Fish condition factor K at which survival is 90% 
(unitless) 

0.6 

mortFishConditionK1 Fish condition factor K at which survival is 10% 
(unitless) 

0.3 

mortFishTerrPredD9 Depth at which survival increase function is 
90% of maximum (cm) 

Small streams: 
150 

Large rivers: 300 
mortFishTerrPredD1 Depth at which survival increase function is 

10% of maximum (cm) 
Small streams: 5 
Large rivers: 50 

mortFishTerrPredL9 Fish length at which survival increase function 
is 90% of maximum (cm) 

3 

mortFishTerrPredL1 Fish length at which survival increase function 
is 10% of maximum (cm) 

6 

mortFishTerrPredF9 Feeding time at which survival increase function 
is 90% of maximum (h) 

0 

mortFishTerrPredF1 Feeding time at which survival increase function 
is 10% of maximum (h) 

18 

mortFishTerrPredV9 Velocity at which survival increase function is 
90% of maximum (cm s-1) 

Small streams: 
100 

Large rivers: 300 
mortFishTerrPredV1 Velocity at which survival increase function is 

10% of maximum (cm s-1) 
Small streams: 20 
Large rivers: 20 

mortFishTerrPredH9 Distance to hiding cover at which survival 
increase function is 90% of maximum (cm) 

-100 

mortFishTerrPredH1 Distance to hiding cover at which survival 500 
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increase function is 10% of maximum (cm) 

mortFishAqPredP9 Predator density at which survival increase 
function is 90 % of maximum (cm-2) 

2×10-6 

mortFishAqPredP1 Predator density at which survival increase 
function is 10 % of maximum (cm-2) 

1×10-5 

mortFishAqPredD9 Depth at which survival increase function is 
90% of maximum (cm) 

5 

mortFishAqPredD1 Depth at which survival increase function is 
10% of maximum (cm) 

20 

mortFishAqPredL1 Fish length at which survival increase function 
is 10% of maximum (cm) 

4 

mortFishAqPredL9 Fish length at which survival increase function 
is 90% of maximum (cm) 

8 

mortFishAqPredF9 Feeding time at which survival increase function 
is 90% of maximum (h) 

0 

mortFishAqPredF1 Feeding time at which survival increase function 
is 10% of maximum (h) 

18 

mortFishAqPredT9 Temperature at which survival increase function 
is 90% of maximum (°C) 

2 

mortFishAqPredT1 Temperature at which survival increase function 
is 10% of maximum (°C) 

6 

 
Angling and hooking mortality resulting from recreational fishing are two additional sources 
of trout mortality, which are not considered in the habitat selection process, but only on the 
survival action. The reason is that we assume that the trout are not aware of angling mortality 
risk and how it varies with habitat. Together with the five parameters that are site-specific, 
there are six additional parameters involved in the angler mortality model (suggested values 
are shown in Table A9). The parameter mortFishAngleSuccess, used to calculate capture rate, 
represents fishing success as the fraction of catchable fish hooked per angler hour. The value 
of this parameter can vary among species (e.g., between species that are and are not stocked) 
to reflect differences in vulnerability to angler harvest. Capture rate is also assumed to be a 
logistic function of trout size. The size dependency reflects the success of anglers in selecting 
for larger trout by (a) using tackle more attractive to larger fish and (b) fishing in habitat 
better for large trout. The logistic function of fish length is defined by the parameters 
mortFishAngleL1 and mortFishAngleL9.  
Survival of angling mortality depends on how many times a trout is hooked (timesHooked) 
and whether it is kept vs. released each time hooked. Separate probabilities of keeping hooked 
fish are applied to fish that are and are not within the legal length ranges. The probability of 
keeping trout that are of legal length is defined by the parameter 
mortFishAngleFracKeptLegal, and the probability of keeping trout of illegal length is the 
parameter mortFishAngleFracKeptIllegal. The values for these parameters should be selected 
considering that the fraction kept is the fraction of all fish hooked that are landed and kept, 
not the fraction of landed fish that are kept: trout that shake the hook before being netted are 
considered as captured but released. 
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The survival probability for hooking is evaluated separately, using timesHooked as its basis. If 
timesHooked is zero, this survival probability is 1.0. If timesHooked is greater than zero (and 
the fish did not die of angling mortality), the hooking survival probability is equal to the 
parameter mortFishAngleHookSurvRate raised to the power timesHooked. 
 
 
 
Table A9. Parameter values for angling and hooking mortality (from Railsback et al. 2006). 

Parameter  Definition (units) Value 

mortFishAngleSuccess Multiplier to determine capture probability from 
fishing pressure (angler-h)-1  

0.003 

mortFishAngleL9 Length at which hooking risk is 90% of maximum 
(cm) 

20 

mortFishAngleL1 Length at which hooking risk is 10% of maximum 
(cm) 

10 

mortFishAngleFracKeptLegal Probability of fish of legal length being kept by 
anglers (unitless) 

0.2 

mortFishAngleFracKeptIllegal   Probability of fish not of legal length being kept by 
anglers (unitless) 

0.05 

mortFishAngleHook-SurvRate  Survival probability for released trout (or trout that 
shake the hook) (unitless) 

0.8 

 
- Redds survival and development: 
There are 10 parameters concerned with redds survival and development processes. In 
InSTREAM-Gen, eggs incubating in a redd are subject to five mortality sources: low and high 
temperatures, scouring by high flows, dewatering, and superimposition (having another redd 
laid on top of an existing one). Redd survival is modelled using redd “survival functions”, 
which determine, for each redd on each day, the probability of each egg surviving one 
particular kind of mortality. 
The daily fraction of eggs surviving low temperatures is modelled as an increasing logistic 
function of temperature. Parameter values appear to differ among trout species, with 
differences especially likely between species that spawn in the fall v. spring. In developing 
parameter values from published data on egg survival, it is important to remember that eggs 
incubate slowly at low temperatures, so even apparently high daily survival rates can result in 
low egg survival over the entire incubation period.  
Parameter values for spring-spawning rainbow trout and fall-spawning brown trout (Table 
A10) have been determined from data compiled by Brown (1974); Railsback and Harvey 
(2001) also used the rainbow trout parameters for cutthroat trout. The data compiled by 
Brown (1974) indicate that rainbow trout spawn at temperatures as low as 3 - 5°C and eggs 
have a 90% survival rate over a 100-d incubation period at 3°C (daily egg survival = 0.999). 
Railsback et al. (2009) assumed a daily survival rate of 0.9 (very low long-term survival) for 
0°C, and logistics parameters that reproduce these two points were determined. Similarly, 
Brown (1974) cited data indicating that brown trout egg incubation can take over 150 days at 
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very low temperatures. Parameter values for brown trout were estimated by Railsback and 
coauthors by assuming 90% egg survival over 150 days at 1ºC (daily survival of 0.9993) and 
daily survival of 0.9 at 0°C. 
High temperatures can induce direct mortality in trout eggs, and also promote fungus and 
disease. The fraction of eggs surviving high temperatures is modelled as a decreasing logistic 
function of temperature. Parameter values for rainbow trout (also used for cutthroat trout by 
Railsback and Harvey 2001) are based on interim results of laboratory studies conducted by 
the University of California at Davis (Myrick 1998). These data showed daily survival rates 
declining from about 0.9998 at 11°C to about 0.985 at 19°. The resulting parameter values 
(Table A10) appear to indicate high survival at high temperatures, but in fact cause low 
survival if temperatures are elevated for long periods. Fall spawning trout are likely to be less-
well adapted to high incubation temperatures. Parameter values for brown trout in Table A10 
were arbitrarily set by Railsback et al. (2009) to 5º less than the rainbow trout values and 
should not be considered reliable. 
 
Table A10. Parameter values for low and high temperature mortality (from Railsback et al. 
2009). 

Parameter  Definition (units) Value 

mortReddLoTT9 Temperature at which low temperature survival 
is 90% (°C) 

Rainbow trout: 0 
Brown trout: 0 

mortReddLoTT1 Temperature at which low temperature survival 
is 10% (°C) 

Rainbow trout: -3 
Brown trout: -0.8 

mortReddHiTT9  Temperature at which high temperature survival 
is 90% (°C) 

Rainbow trout: 21 
Brown trout: 16 

mortReddHiTT1 Temperature at which high temperature survival 
is 10% (°C) 

Rainbow trout: 30 
Brown trout: 25 

 
Scouring and deposition mortality results from high flows disturbing the gravel containing a 
redd. InSTREAM-Gen assumes that the probability of a redd being destroyed is equal to the 
proportion of the stream reach scouring or filling to depths greater than the value of the fish 
parameter mortReddScourDepth (cm). Consequently, the probability of a redd not being 
destroyed is equal to the proportion of the stream scouring or filling to a depth less than the 
value of mortReddScourDepth. This parameter can be evaluated as the egg burial depth, the 
distance down from the gravel surface to the top of a redd’s egg pocket. Scour to this depth is 
almost certain to flush eggs out of the redd. Deposition of new material to this distance would 
double the egg pocket’s depth, likely to severely reduce the survival and emergence of its 
eggs. DeVries (1997) reviews egg burial depths for stream trout. Values of 5-10 cm are 
reasonable for small trout using relatively small gravel; field observations at the Little Jones 
Creek site found eggs buried as little as 5 cm. The average depths at which salmonid eggs are 
buried appear to vary from 0.4 body lengths for a 20 cm female, to 0.3 body lengths for a 70 
cm fish, and 15.2 cm deep seems to be a reasonable average value for brown trout (see 
references in review by Armstrong et al. 2003). Due to the formulation of scouring survival, 
users can effectively turn scouring and deposition mortality off by using a very large value of 
mortReddScourDepth, e.g., 10,000 cm. 



TRACE document: Ayllón et al. 2016, Eco-evolutionary individual-based model for trout populations. 

48 
 

Dewatering mortality occurs when flow decreases until a redd is no longer submerged; eggs 
can be killed by dessication or the buildup of waste products that are no longer flushed away. 
Reiser and White (1983) did not observe significant mortality of eggs when water levels were 
reduced to 10 cm below the egg pocket for several weeks. However, they also cited literature 
indicating high mortality when eggs and alevins are only slightly submerged (which may 
yield poorer chemical conditions than being dewatered), and high mortality for dewatered 
alevins. Because inSTREAM-Gen does not distinguish between eggs and alevins, these 
processes are not modelled mechanistically or in detail. The dewatering survival function is 
simply that if depth is zero then the daily fraction of eggs surviving is equal to the fish 
parameter mortReddDewaterSurv. Railsback et al. (2009) indicated a suggested value of 0.9, 
which reflects the variability in dewatering effects. Egg survival may be high when a redd is 
first dewatered, so mortReddDewaterSurv should not be too low. 
Superimposition redd mortality can occur when a new redd is laid over an existing one; 
females digging new redds can disturb existing redds and cause egg mortality through 
mechanical damage or by displacing eggs from the redd environment. If one or more redds 
are created in the same cell, the probability of each new redd causing superimposition is equal 
to the area of a redd (reddSize, cm2, a global parameter that can be species-specific) divided 
by the area of spawning gravel in the redd. Because of how the parameter reddSize is used in 
this formulation, it is defined as the area a spawner disturbs in creating a new redd. Railsback 
et al. (2009) reports that field observations at the Little Jones Creek site suggest a reddSize 
value of 1200 cm2 (the area of a circle with a diameter of 35 cm) for relatively small trout.  
To predict the timing of emergence, the developmental status of a redd’s eggs is updated 
daily. The fractional development approach of Van Winkle et al. (1996) is used; this approach 
is based on accumulated degree-days, a common technique for modelling incubation. Model 
redds accumulate the fractional development that occurs each day, a non-linear function of 
temperature. The parameters for this equation should be considered likely to vary among 
species, and among populations that spawn at different times of year. Hatchery management 
data or literature can sometimes be used to develop or test parameter values. Parameter values 
for spring-spawning rainbow trout and fall-spawning brown trout were developed by Van 
Winkle et al. (1996) (Table A11). Railsback and Harvey (2001) found the rainbow trout 
parameter values reasonable for a cutthroat trout population in coastal California.  
 
Table A11. Parameter values for egg development rates (from Van Winkle et al. 1996). 

Parameter  Definition (units) Rainbow, 
cutthroat trout                

(spring 
spawning) 

Brown trout        
(fall 

spawning) 

reddDevelParamA Constant in daily redd development 
equation (unitless) 

-0.000253 0.00313 

reddDevelParamB Temperature coefficient in daily 
redd development equation (°C-1) 

0.00134 0.0000307 

reddDevelParamC Temperature squared coefficient in 
daily redd development equation 
(°C-2) 

0.0000321 0.0000934 

 



TRACE document: Ayllón et al. 2016, Eco-evolutionary individual-based model for trout populations. 

49 
 

- Trout emergence and transmission of heritable traits: 
Quantitative genetic parameters are difficult to estimate, especially for wild populations. 
These parameters are most often measured on populations that are reared in experimental 
settings, like hatcheries, where the environment can be controlled and/or measured on 
captive-bred broodstock (derived from farmed or hatchery populations), which are often the 
subject of intentional artificial selection on important fitness-related traits. However, Carlson 
and Seamons (2008) showed in their extensive review that estimates of genetic parameters are 
influenced by the environment in which parents and offspring are reared, yet estimates 
generated on wild-reared populations are exceedingly rare. Indeed, estimates of the narrow-
sense heritability h2 from wild fish that were reared in the wild comprised only 2% of the total 
number of h2 estimates Carlson and Seamons collected from the literature. Importantly, the 
authors found that h2 estimates for a given trait differed among species, life history stages, and 
life history types. This fact suggests that parameter estimates for one group may not be 
representative of those from another, so caution must be paid when borrowing values from 
previous studies and across trait types. 
Serbezov et al. (2010b) estimated a value of length heritability (fishNewLengthHeritability) 
of 0.18 for age-0 stream-living brown trout of a Norwegian brook. Frank and Baret (2013) 
successfully used this value for predicting the genetic structure of a stream-dwelling brown 
trout population in Belgium. This value is also within the ranges reported by Blanc (2005) for 
hatchery-reared age-0 brown trout. Hence this value of 0.18 seems reasonable for stream-
dwelling brown trout populations. Values reported in the literature (Aulstad et al. 1972, 
McKay et al. 1986, Fishback et al. 2002, Henryon et al. 2002) for farmed rainbow trout are 
pretty much more variable, ranging from 0.09 to 0.66, but heritability of length at the first 
weeks of life seems to be low.  
The length of new recruits can never be lower than a minimum value set by the parameter 
fishMinNewLength. When they first start to feed, the fry of many marine and freshwater fish 
species are less than 1 cm long (Miller et al. 1988). However, this is not the case for the larger 
anadromous salmonids like Atlantic salmon and sea trout, whose newly-emerged fry are 
rarely less than 2.5 cm (Elliott 1994). Besides, Elliott (1994) found trout emerging from a 
redd to vary in size only slightly; the author observed a coefficient of variation of 0.07 in 
length at emergence for brown trout at several sites. Converting this value to the standard 
deviation in length (with a coefficient of variation of 0.07 and a mean length of 2.5 cm) and 
truncating potential length of new recruits to 4 SD of such mean length, it rarely would be 
lower than 1.8 cm. However, accounting for potential variations in mean and variability of 
length at emergence across species and populations [for e.g., alevins of stream-dwelling 
brown trout typically swim up from the gravel with a length ca. 2 cm (Klemetsen et al. 
2003)], we set a conservative value of 1 cm for this parameter. 
We are not aware of any study reporting heritability values of length-at-maturity 
(fishSpawnMinLengthHeritability) for stream-dwelling trout species.  Regarding iteroparous 
anadromous salmonids, Gjerde and Gjedrem (1984) estimated a h2 value of 0.16 for farmed 
steelhead trout and of 0.35 for farmed Atlantic salmon (Salmo salar). Piou and Prévost (2012, 
2013) used an initial value of 0.4 (based on Gjerde et al. 1994) when initializing simulations 
of their IBASAM individual-based model meant to predict the evolutionary consequences of 
climate change on French Atlantic salmon populations. Regarding semelparous anadromous 
salmonids, h2 values found in the literature for pink salmon (Oncorhynchus gorbuscha) 
ranged from non-significance in wild populations (Dickerson et al. 2005) up to 0.45 in sea-
ranched conditions (Smoker et al. 1994, Funk et al. 2005). Taken into account the uncertainty 
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in this parameter, we selected a conservative value of 0.2, in the order of magnitude of what 
commonly observed for life-history traits (Lynch and Walsh 1998). 
The heritability of the neutral trait (fishNeutralTraitHeritability) depends obviously on the 
trait selected by the user. Studies available in the literature can be checked in the thorough 
review of Carlson and Seamons (2008). 
In the model for genetic transmission of heritable traits, we modified the inheritance model of 
the infinitesimal model of quantitative genetics theory to account for new input of variation 
from mutation. This is accomplished by adding to the additive genetic variance the mutational 
variance σ𝑚𝑚2  multiplied by a factor M defining the amplitude of mutation. The mutational 
variance (variance introduced by mutation per generation) at the population level is computed 
as (mutationalVarParam × σ𝐸𝐸2 ), where mutationalVarParam is in the order of 10-3 to 10-2, as 
suggested by reviews of empirical data (Lynch and Walsh 1998, Johnson and Barton 2005). 
Following Vincenzi et al. (2012), we used a value of 10-3 in our simulations. Using a similar 
quantitative genetic model, Vincenzi et al. (2012) explored the evolution of a fitness-related 
trait in a population and its effects on population dynamics with a gradual increase in mean 
and variance of a climate variable determining the optimum for the trait under selection. To 
do this, the authors used simulations with variations in trend (i.e., directional change) and 
stochasticity (i.e., increase in variance) of a climate variable defining a phenotypic optimum, 
and various hypotheses on mutational variance and strength of selection on a phenotypic 
fitness-related trait. Specifically, the authors varied the mutation factor (M) over a range of 1 
to 100. According to their results, the probability of population persistence does not increase 
with increasing mutation, in particular when variability of the optimum is too high, although 
higher mutation generally increases the probability of tracking a moving optimum. 
Accordingly, in our simulations we used a value of 1. 

3.4. Calibrated parameters 
The parameters most suitable for calibration are those to which model results are highly 
sensitive and for which there is little basis, other than calibration, for selecting values. There 
are only six parameters that are especially suited for calibration in inSTREAM-Gen. Four of 
them are involved in the bioenergetics model and are easily calibrated using observed 
individual growth and survival rates. The other two parameters, mortFishAqPredMin and 
mortFishTerrPredMin, define the daily probability of surviving aquatic and terrestrial 
predation under the most vulnerable conditions. 
 
- Food production parameters: 
As discussed by Railsback et al. (2009), the processes influencing food availability for stream 
salmonids are complex and not well understood, and there is little information available on 
how food availability varies over time and space at scales relevant to individual-based 
models. Modelling food production is also complicated by the multiple sources of food 
available to trout. Therefore, the parameters describing production of both kinds of food 
(habDriftConc and habSearchProd) in inSTREAM-Gen are highly uncertain. While 
habDriftConc strongly affects growth rates of all age-classes, habSearchProd mainly affects 
growth of juveniles because they are the only trout that consistently use search feeding. This 
search food parameter is therefore useful for calibrating differences in growth between 
juveniles and larger trout. Notwithstanding the fact that the key food parameter, 
habDriftConc, can indeed be measured in the field instead of calibrated, Railsback and 
colleagues discouraged attempting to use measured drift concentrations. This is mainly 
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because this parameter captures many of the uncertainties resulting from model 
simplifications (such as ignoring variation in prey size and spatial and seasonal variation in 
drift production or assuming fish feed only during daytime), and therefore, accurately 
measured drift concentrations may not produce accurate model results. Thus, it is 
recommended the calibration of growth rates by adjusting the parameters for food production, 
since they not only affect the amount of food in a cell but also the food capture rates of 
feeding fish. 
The parameter habDriftRegenDist should theoretically have a value approximating the 
distance over which drift depleted by foraging fish is regenerated. This parameter affects the 
total availability of drift food per cell, which can limit how many trout can occupy each high-
quality cell. Smaller values of habDriftRegenDist provide then higher production of food in a 
cell. As highlighted by Railsback et al. (2009), this parameter can be used to calibrate habitat 
selection and starvation survival because varying it changes drift food availability without 
changing the amount that a drift-feeding fish captures. It could be calibrated by attempting to 
match observed densities of trout in high-quality habitat. 
Finally, the parameter fishSearchArea, which can be interpreted as the area over which the 
production of stationary food is consumed by one fish, is a highly uncertain one. However, 
because habSearchProd and fishSearchArea have the same effect on search intake and both 
would be very difficult to measure, either would be suited to use for calibration, but it is not 
necessary calibrating both.  
Railsback et al. (2009) performed several thorough calibration analyses to identify ranges of 
values for food production that produce reasonable feeding and growth rates under simplified 
conditions in inSTREAM. Those ranges are a good starting point for the calibration process. 
According to their study, reasonable values for the drift-food parameter habDriftConc were 
identified as the range producing food intake (g d-1) of 20 to 50% of cMax in the adult trout 
for 15-cm trout using near optimal velocities and velocity shelter. This range is 5 ∙ 10-10 to 12 ∙ 
10-10 g cm-3. Within this range of habDriftConc, modelled adult trout growth ranged 0.5 to 
2.5% body weight per day. For 5-cm juvenile trout, this range of habDriftConc produced food 
intake between 50 and 100% of cMax and growth in the range of 5 to 15% per day; the lower 
ends of these ranges are consistent with rates observed in field studies and laboratory growth 
data (see references in Railsback et al. 2009).  
Railsback and colleagues estimated that for 15-cm adult trout feeding in optimal feeding 
positions, where all drift food production is consumed by the trout so that each individual 
achieves a drift intake equal to 30% of cMax, then with habDriftConc in the range of 5 ∙ 10-10 
to 7 ∙ 10-10 g cm-3, the value of habDriftRegenDist must be approximately 300 to 500 cm. 
Assuming that a search feeding fish consumes the production of 2 m2 (i.e., the value of 
fishSearchArea is 20,000 cm2), Railsback et al. (2009) calculated that the range of 
habSearchProd values providing a 5-cm juvenile trout feeding at optimal search feeding 
conditions with a daily growth rate ranging between 0 and 2% body weight is 2 ∙ 10-7 to 5 ∙ 
10-7 g cm-2 h-1. This estimate appeared reasonable compared to the values of trout-food 
production rates reported by the scarce number of available field studies (see references in 
Railsback et al. 2009). 
- Survival probability parameters: 
The values of mortFishTerrPredMin and mortFishAqPredMin represent the daily probability 
of surviving terrestrial and aquatic predation, respectively, under conditions where the 
survival increase functions offer no reduction in risk. However, field data for estimating 
actual predation rates are unlikely to be available. On one hand, terrestrial predation is 
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typically a dominant source of mortality for all but the smallest trout, hence it is best 
estimated by calibrating the model to observed abundance and habitat use patterns of age 1+ 
and older trout. Railsback et al. (2009) recommend starting with a value of 0.99 until fit via 
calibration. On the other hand, small juvenile trout are highly vulnerable to predation by other 
fish, so this parameter is particularly appropriate for calibrating the abundance of juveniles. It 
is advisable to begin with a value of 0.90. At any rate, as warned by Railsback et al. (2009), 
survival probabilities are not the only processes affecting mortality rates in the modelled trout 
populations since the number of fish that die is also a function of food production and density 
of fish competing for food. As a consequence, mortality parameter values cannot be estimated 
well except by calibrating the full model. 
- Parameters not typically calibrated but suited for calibration if necessary: 
Although initial population parameters are highly site-specific, the initial number of fish in 
the simulation (init-N) as well as the proportion of individuals of each age-class (prop-AgeX) 
can be calibrated if a short “warm-up” time is set. 
It is worth noting that although some studies (e.g., Hanson et al. 1997) provide values of prey 
energy density (habPreyEnergyDensity) for various prey types, this parameter may be a good 
parameter to use for calibrating growth when there is no available information regarding the 
composition of trout-prey in the simulated reach. Varying this parameter changes the net 
energy gain of fish without altering either the food production rates of the cell or the food 
intake of individuals. 
Parameters defining the criteria mature trout must meet to spawn (fishSpawnMinCond, 
fishSpawnMaxFlowChange, fishSpawnMinTemp, fishSpawnMaxTemp, habMaxSpawnFlow), 
as well as the stochastic probability of spawning when they are met (fishSpawnProb), can be 
used to calibrate population fecundity (total production of eggs), and thus recruitment, pattern. 
However, the user must take into account that regulating the number and features of breeders 
may have potential effects on the evolution of heritable traits, since these model outputs are 
highly sensitive to spawning parameters. 
 

4 Conceptual model evaluation 
This TRACE element provides supporting information on: The simplifying assumptions underlying a 
model’s design, both with regard to empirical knowledge and general, basic principles. This critical evaluation 
allows model users to understand that model design was not ad hoc but based on carefully scrutinized 
considerations.  

Summary: 
InSTREAM-Gen’s demographic structure builds on an existing rather complex 
model, inSTREAM, whose model concepts make however quite some simplifying 
assumptions. We discuss all the simplifying assumptions of the different 
demographic sub-models in detail. We further added a genetic dimension to the 
demographic and spatial dimensions of inSTREAM by including a quantitative 
genetic model of inheritance. Reasons for selecting a quantitative genetics 
approach instead of an allelic model are discussed. 

As remarked by Railsback et al. (2009), the first question a potential user of any model must 
address is whether the model is an appropriate tool for the research problem to be faced. 
Clearly, inSTREAM-Gen is not appropriate for study sites or problems where the model’s 
fundamental assumptions are not met or where trout population dynamics are strongly 
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dependent on processes that are not represented, or represented only coarsely, in the model. 
Some examples of sites or problems where inSTREAM-Gen may not be appropriate (without 
modification) are: 1) sites where non-salmonid species are significant competitors for food or 
habitat; 2) sites where water quality elements other than temperature have strong effects or are 
the management issues of interest. Dissolved oxygen, for example, is not considered, nor the 
effects of fine sediment on egg incubation; 3) sites where the effects of ice are important. Ice 
can cause direct mortality, alter or exclude habitat, reduce invertebrate food production via 
scouring, and provide protection from predation. None of these processes are now included in 
inSTREAM-Gen, in part because they are difficult to model; even the presence of ice is 
difficult to predict, and how it will change under global warming is even more uncertain. 
In addition to those limitations inherited from inSTREAM, inSTREAM-Gen was simplified 
in relation to inSTREAM by restricting simulations to only one modelled reach and one trout 
species. Therefore, the effects of river fragmentation or interspecific competition in sympatric 
salmonid populations cannot be simulated with the current version of inSTREAM-Gen. 
Furthermore, one environmental variable, water turbidity, is not taken into account in 
inSTREAM-Gen. Turbidity can have both positive and negative effects: increasing turbidity 
reduces the risk of predation on trout but reduces their ability to feed. Unfortunately, time 
series of water turbidity are not typically available in most river systems. 
We describe below the main simplifying assumptions underlying the design of the different 
processes represented in the model:  
- Reproduction: 
Spawning is included in inSTREAM-Gen because the model’s objectives require simulation 
of the full life cycle and multiple trout generations, and of the effects of flow and temperature 
on reproduction. Salmonids are clearly capable of adapting some of their reproductive 
behaviours to environmental conditions and their own state, especially by deciding whether or 
when to spawn each year considering their current size and condition and habitat conditions 
(e.g., Nelson et al. 1987). However, inSTREAM-Gen’s objectives do not entirely justify a 
detailed representation of such processes as the bioenergetics of spawning or the adaptive 
decision of whether to spawn each year considering the fish’s current state and expected 
growth and mortality risks. Instead, inSTREAM-Gen’s spawning methods simply force model 
trout to reproduce general spawning behaviours observed in real trout. Behaviours are 
included only if they appear important for simulating flow and temperature effects on 
reproduction or for representing the consequences of spawning on the adult spawners.  
In inSTREAM-Gen, each day, each female trout decides whether to spawn or not. To do this, 
each female trout determines whether it meets all of the fish- and habitat-based spawning 
criteria. The criteria for readiness to spawn, however, do not include a requirement that good 
spawning habitat be available; it is assumed that trout will spawn whether or not ideal gravel 
spawning habitat is present. This assumption is supported by observations reported by Magee 
et al. (1996). 
While selection of habitat for foraging is modelled very mechanistically, selection of 
spawning habitat is modelled in a simple, empirical way, with spawning cells chosen using 
preferences for depth, velocity, and substrate observed in real trout. This decision was made 
because a detailed, mechanistic representation of spawning habitat selection would require 
considerable additional complexity: modelling processes such as intergravel flow and water 
quality, which are extremely data-intensive and uncertain. This additional complexity is not 
necessary to meet inSTREAM-Gen’s objectives, but we do need a simple representation of 
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how flow affects where redds are placed because a redd’s location affects its survival of 
dewatering.  
When a female spawns, it attempts to select a (user-specified) number of males to fertilize the 
eggs. However, if no male meets the criteria as a spawner, there is no effect on the female or 
redd. The female still produces a fertile redd and incurs weight loss due to spawning. This 
assumption is made because spawning failure due to absence of males is considered too rare 
and unpredictable to include in the model. 
 
- Habitat selection: 
One element of competition for food or space is not included in inSTREAM-Gen. Some 
literature indicates that individuals have an inherent tendency to stay in one location (“site 
fidelity”) and that prior residence of a site increases the ability of a trout to defend the site 
from larger competitors (Cutts et al. 1999, Johnsson et al. 1999, Johnsson and Forser 2002). 
However, prior residence effects on dominance are not clearly universal; and it is possible for 
them to be reproduced in an IBM without being hardwired in. For example, large trout may 
appear to exhibit site fidelity simply because their habitat offers very high fitness under a 
wide range of flows and temperatures, so they rarely have incentive to move. This element of 
competition is not explicitly included in inSTREAM-Gen because it is not clearly important 
and because doing so would require assumptions and parameters for which there is little basis.  
 
- Feeding and growth: 
Food production is modelled using the simple assumption that both the concentration of food 
items in the drift and the production of search food items are constant over time and space. 
Therefore, these two variables are input as habitat parameters. How food is produced in 
specific habitats such as riffles, and depleted by fish as it travels downstream, has been 
simulated in other models (e.g., Hughes 1992b). However, the model of Hughes (1992b) 
shows that simulating drift production and depletion over space would require a major 
increase in the complexity, while the simpler approach used in inSTREAM-Gen appears to 
generally capture the important dynamics of food competition. 
Fish in inSTREAM-Gen are assumed to always feed during daylight hours and never at night, 
a major simplifying assumption. While trout have long been thought of as feeding visually 
and therefore during day, recent literature shows that night feeding is not unusual and under 
some conditions is more common than daytime feeding (e.g., Fraser and Metcalfe 1997, 
Metcalfe et al. 1999, Bradford and Higgens 2001). Whether an individual trout feeds during 
day or night (or neither) appears to emerge from how mortality risk and food intake vary 
between day and night, which can in turn vary with fish size, competition, and many habitat 
variables (Railsback et al. 2005). Modelling this requires a major increase in the model’s 
complexity, which does not appear justified by the objectives of inSTREAM-Gen. While the 
assumption that trout feed during daytime only is clearly not always realistic, it is useful for 
the purposes that inSTREAM-Gen is intended for. 
InSTREAM-Gen does not specify the exact kinds of food consumed by fish, but its feeding 
formulation and parameters generally represent invertebrate food. Even though the model 
assumes small fish are vulnerable to predation by adult trout, fish generally do not make up a 
large part of the diet of stream trout. Therefore, piscivory is not represented in the feeding 
methods, but only in the mortality submodel. 
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In inSTREAM-Gen, a fish updates its length and condition factor based on its daily weight 
growth. How an organism allocates its energy intake to growth (increase in length), storage 
(increase in weight or fat reserves but not length), or gonads is in reality a complex, adaptive 
decision. For example, a juvenile fish may reduce its risk of predation most by increasing in 
length as rapidly as possible, but allocating all energy intake to growth instead of storage 
increases the risk of starvation during periods of reduced intake. However, inSTREAM-Gen 
does not model energy allocation as an adaptive trait. Instead it uses the approach of Van 
Winkle et al. (1996) that simply forces fish to maintain a standard relation between length and 
weight during periods of positive growth.  
The method for calculating daily change in length adopted from Van Winkle et al. (1996) uses 
their nonstandard definition of a condition factor. The condition factor variable used in 
inSTREAM-Gen (fishCondition) can be considered the fraction of “healthy” weight a fish is, 
given its length, according to a length-weight relation input to the model. Consequently, the 
value of fishCondition is 1.0 when a fish has a “healthy” weight for its length. Fish grow in 
length whenever they gain weight while their value of fishCondition is 1.0. Condition factors 
less than 1.0 indicate that the fish has lost weight, but in this formulation, values of 
fishCondition cannot be greater than 1.0 (contrarily to the standard condition factor used in 
fisheries science, which is a unitless index of a fish’s weight relative to its length). This 
formulation is simple and succeeds in producing reasonably realistic patterns of trout growth 
under many conditions. However, as noted by Railsback et al. (2009), the formulation has 
several noteworthy limitations as well: 1) fish cannot store a high-energy-reserve condition. 
Fish will have a condition of 1.0 only on those days when daily growth is positive. Even if a 
fish has eaten well for many days in succession, its fishCondition can only be as high as 1.0 
and one day of negative net energy intake causes condition to fall below 1.0. This could be 
important under conditions of highly variable food intake because survival is assumed to 
decrease with condition; 2) this weight-based condition factor is not the best predictor of 
starvation mortality. Simpkins et al. (2003a,b) found that mortality was predicted better by an 
index of lipid content than by the condition factor; 3) this formulation locks in a length-weight 
relationship for growing fish. Calibration of growth to situations where this relationship is 
valid will be automatic, but calibration to situations where the relationship is not valid will be 
impossible. For example, the model cannot predict the existence of unusually fat fish; 4) as 
previously highlighted, the energetics of reproduction are not considered. While inSTREAM-
Gen does simulate weight loss due to spawning, it does not model storage of energy for gonad 
development and how gonad production affects length and weight.  
These limitations could be eliminated only by making inSTREAM-Gen considerably more 
complex. In their individual-based Atlantic salmon model (IBASAM), Piou and Prévost 
(2012) represented energy allocation more realistically by diverting a portion of weight 
growth to fat reserves. Then, they successfully implemented the approach of Thorpe et al. 
(1998) in which maturation is modelled based on a time window evaluation of the rate of 
change in lipid content and a comparison of a projected lipid content at a given time horizon 
with a set threshold. The authors additionally considered genetic variability of maturation 
thresholds. In inSTREAM-Gen the maturation threshold is also variable across individuals 
and sexes and heritable, but size-based (defined by a minimum length to spawn). We 
considered that Piou and Prévost’s approach, although more realistic, would exponentially 
increase not only the complexity of inSTREAM-Gen but also the uncertainty in its growth 
and reproduction processes due to the lack of available data for stream-dwelling trout 
regarding the high number of parameters involved in such representation. The current 
formulation appears adequate and appropriate for inSTREAM-Gen’s objectives. 
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Unlike some previous models of drift feeding, inSTREAM-Gen neglects prey size as a 
variable. Prey size is naturally variable and unpredictable, and its effects could not be easily 
be distinguished from those of other factors. Actively searching for benthic or drop-in food is 
an alternative to the drift-feeding strategy. Unlike drift feeding, there are no established 
models for search feeding by trout. An optimal foraging approach would be to assume fish 
search for food at a rate that maximizes the difference between energy intake from feeding 
and energy cost of swimming. To avoid the complexity of such an approach, inSTREAM-Gen 
simply assumes that the rate of search food intake is proportional to the rate at which search 
food becomes available: every fish searches for food at about the same rate, so intake 
increases linearly with food production. 
A major simplification on inSTREAM-Gen’s bioenergetics formulation is that it does not 
include terms for energy losses due to egestion, excretion, and specific dynamic action. These 
terms are not included in inSTREAM-Gen because their effects are small compared to the 
uncertainties and variability in food availability and in the feeding and growth formulation 
(Bartell et al. 1986). These terms may be important at extremely low or high temperatures 
when the ability to digest food can limit growth; instead, inSTREAM-Gen uses the cMax 
function to limit food consumption at extreme temperatures.  
The energy density of fish (fishEnergyDensity) is used to convert a fish’s net energy intake to 
growth in weight. The energy density of salmonids actually varies through their life cycle 
(typically higher in adults, especially during gonad development prior to spawning), but this 
variation is ignored in inSTREAM-Gen. 
 
- Fish survival: 
Fish in poor condition are at risk of starvation, disease, and excess vulnerability to predators. 
These risks are combined in the poor condition survival probability, which is a function of the 
trout’s condition factor. But as commented before, previous studies indicate that mortality is 
predicted better by an index of lipid content than by the condition factor, partly because water 
replaces lipids as energy stores are depleted. Unfortunately, modelling how body lipids are 
depleted and replaced by water and related processes would add considerable complexity and 
uncertainty to inSTREAM-Gen, as they are not well understood. Representing poor condition 
survival probability as an increasing logistic function of the condition factor instead, provides 
a reasonable and successful alternative. 
Regarding terrestrial predation, it is necessary to clarify that no temperature-based survival 
increase function is included in inSTREAM-Gen because there are no clear mechanisms that 
would cause terrestrial predation pressure (unlike fish predation) to change with temperature. 
As discussed by Railsback et al. (2009), there is not a good basis for assuming predator 
activity is lower in winter; most important terrestrial predators are warm-blooded and many 
do not hibernate. In fact, such predators need additional food to maintain their metabolic 
needs in winter. The reduced swimming ability of trout at low temperatures can also offset 
any decreased activity by predators by reducing the ability of trout to escape (Metcalfe et al. 
1999). Terrestrial predation can be greatly reduced when rivers freeze over, but ice is not 
represented in the model. 
There is no survival increase function for distance to hiding cover in the aquatic predation 
formulation. This decision was made because only small trout are usually vulnerable to 
aquatic predators, and small trout are capable of hiding in many places that do not offer refuge 
to adult trout (e.g., between relatively small cobbles). 
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Two assumptions are needed to implement the predator density survival increase function 
within the aquatic predation survival formulation. First, a definition of piscivorous trout must 
be assumed. Any trout with length greater than the parameter fishPiscivoryLength is assumed 
to be a potential predator on smaller trout. This is a simplification, because in reality the larger 
a fish becomes, the larger prey fish it potentially can consume. The second assumption is 
choosing the spatial scale over which trout predation is represented. Predator density could be 
represented in inSTREAM-Gen at the cell or reach scales. The reach scale was chosen 
because large, piscivorous trout are likely to foray and attack fish in other cells. 
 
- Redd survival and development: 
Because of its objectives as a management-oriented model, inSTREAM-Gen models redds 
with relatively little biological detail but with substantial detail in how stream flow and 
temperature affect egg incubation and survival. The following are among the processes that 
can affect salmonid spawning success (see, e.g., Groot and Margolis 1991) that are not 
considered explicitly in inSTREAM-Gen: 1) some eggs may be diseased, unspawned, 
unfertilized, or washed out of the redd during its construction; 2) eggs can be killed by a 
variety of predators and parasites; 3) gravel size, fine sediment, and water quality can affect 
egg survival and development rates. In particular, low flow of water through the redd can 
allow metabolic wastes to accumulate and kill eggs. Deposition of fine sediment can prevent 
newly hatched fish from emerging; 3) salmonids go through several life stage transformations 
while in their redds. The most important of these is the transformation from eggs into alevins, 
which have respiratory and movement capabilities. 
Importantly, inSTREAM-Gen adopts an approach for predicting the probability of redd 
scouring or deposition from the empirical, reach-scale work of Haschenburger (1999). This 
approach was developed for gravel-bed channels and may not be appropriate for sites where 
spawning gravels occur mainly in pockets behind obstructions (where scouring is likely even 
less predictable). InSTREAM-Gen should be considered more uncertain for sites where 
populations are strongly limited by redd scouring, especially if spawning is limited to pocket 
gravels (but all models of trout populations or habitat are likely less useful at such sites). 
With regard to mortality due to superimposition, for simplicity, inSTREAM-Gen currently 
assumes that superimposition is accidental with no bias for or against spawning over existing 
redds. The study by Essington et al. (1998) indicates that stream trout may indeed 
intentionally superimpose their redds over existing ones. The submodel’s formulation could 
be modified to represent intentional superimposition and the complex effects that it might 
have, but there is currently little known about what factors (e.g., sediment quality, spawner 
density) might encourage intentional superimposition. 
 
- Emergence and genetic transmission of traits: 
In trout, egg size is strongly correlated with size of the offspring (Elliott 1984, Einum and 
Fleming 1999, Olsen and Vøllestad 2001). Larger offspring have improved competitive 
ability and higher survival relative to offspring from smaller eggs (Elliott 1984, Hutchings 
1991, Wootton 1998). Variation among individuals in length at emergence was hence 
represented in inSTREAM because habitat selection (and, consequently, growth and survival) 
is modelled using a length-based hierarchy. In inSTREAM-Gen, length at emergence, aside 
from varying across individuals as in inSTREAM, is a heritable trait (as shown by genetic 
studies; see Carlson and Seamons 2008). Therefore, females with higher genotypic values of 
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length at emergence produce offspring with higher values too (though its phenotypic 
expression depends also on environmental variance). There is a trade-off, however, between 
egg size and fecundity as females have limited energy resources available for egg production 
and limited body cavity for accommodation of the eggs (reviewed by Klemetsen et al. 2003 
and Jonsson and Jonsson 2011). In inSTREAM-Gen, this trade-off is simplistically modelled 
through the variable eggsize-fecund-tradeoff, defined as the relationship between the number 
of eggs that would be created by the trout if the offspring had the population mean length at 
emergence and such number if the offspring had the mother's genetic length at emergence. 
Egg size, and thus size at emergence, increases also with the size of the mother at spawning 
and water temperature (Klemetsen et al. 2003, Jonsson and Jonsson 2011), but those 
mechanisms are not represented in inSTREAM-Gen as there is no easy way to model them in 
a mechanistic way. 
In inSTREAM-Gen, the inheritance rules for the transmission of heritable traits are based on a 
modified version of the infinitesimal model of quantitative genetics (Lynch and Walsh 1998). 
When mutation is not taken into account, each offspring's genotypic value for the two traits 
under selection in our model is drawn from a normal distribution centered on the arithmetic 
mean of the two parental values, while the variance of this distribution is equal to half the 
total additive genetic variance for the trait at the population level (i.e., the within-family 
additive variance remains constant). That is, the genetic model used here is not really 
following the genetic map of individuals since at some points the model draws certain values 
from population probabilistic distributions. The most commonly considered alternative model 
of inheritance is the allelic model, in which individual alleles are modelled as being passed on 
directly from parents to offspring. The advantages of this kind of model are that no 
assumptions are made about the offspring trait distribution, and it also permits specification of 
haploid vs. diploid inheritance of loci and the inclusion of nonadditive effects such as 
dominance and epistasis (see Dunlop et al. 2009). There are examples of effective 
implementation of a bi-allelic multilocus system for modelling the genetic coding of heritable 
traits in fish IBMs (e.g., Piou and Prévost 2012, Vincenzi 2014). As argued by Piou and 
Prévost (2012), this type of genetic coding has been shown to be a good trade-off between a 
purely quantitative approach and the detailed multi-allelic multilocus reality (Kopp and 
Gavrilets 2006). However, a quantitative genetics approach is typically used in eco-genetic 
models because most life-history traits are regarded as polygenic quantitative characters, 
which are assumed to be affected by a large number of genetic loci, each with small effects 
(see Dunlop et al. 2009 and references therein). The infinitesimal model of quantitative 
genetics, which accurately predicts evolutionary responses of polygenic traits to selection 
over timescales of tens of generations (Falconer and Mackay 1996), has been successfully 
used within an individual-based framework to model the evolutionary dynamics of life history 
traits of salmonid populations under environmental change (e.g., Reed et al. 2011). 
 

5 Implementation verification 
This TRACE element provides supporting information on: (1) whether the computer code for implementing 
the model has been thoroughly tested for programming errors and (2) whether the implemented model performs 
as indicated by the model description. 

Summary: 
We followed a wise risk-management strategy, by which testing occurred 
continually as the code was being developed so that all parts of the software were 
tested before the model was put to use. These tests included syntax checking of 
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the code, visual testing through NetLogo interface, print statements, spot tests 
with agent monitors, stress tests with extreme parameters values, test procedures 
and test programs, and code reviews. The most important verification technique 
was, however, testing all submodels against independent versions re-implemented 
in a different platform. Finally, the ecological structure of the model was tested 
against inSTREAM IBM under the same simulation conditions. 

Since we considered software verification (i.e., verifying that the software accurately 
implements the model formulation) as a pervasive part of model programming, we followed a 
wise risk-management strategy, by which testing occurred continually as the code was being 
developed so that all parts of the software were tested before the model was put to use. We 
started building the most basic submodel (creation of cells, uploading of environmental and 
hydraulic time series, and update of cell and global variables dependent on these time series). 
After checking that it performed correctly, the next submodel was implemented, building on 
the already tested first submodel. We proceeded along the process of code development in the 
same way, sequentially implementing new submodels on the already tested assembled model. 
This practice made mistakes easier to identify and isolate. There were, of course, some logic 
and formulation errors that became apparent in a subsequent stage after a submodel had been 
already tested, since some procedures required the fully formulation of a later submodel to be 
accurately tested, but those errors were still easy to isolate. 
We used all the techniques recommended by Railsback and Grimm (2012) for code 
debugging and testing. The tests executed to verify the implementation of the model ranged 
from very simple checks using the tools provided by the software platform NetLogo, to 
complex analyses. Tests included: 
- Syntax checking: 
The syntax of the code was frequently checked through the NetLogo syntax checker. Aside 
from checking for syntax errors, immediately after writing a full procedure or a complex 
statement, the program would be run to check for run-time errors. 
- Visual testing through NetLogo interface: 
Visual testing was continuously used to look for errors that may be readily visible from the 
display while being unlikely to be detected soon, if ever, via other methods. That ranged from 
simple procedures, as checking that cells correctly defined their adjacent cells, to more 
complex ones, like observing that trout agents performed some actions (e.g., movement) on a 
daily basis irrespective of the simulation being run with longer time steps. 
- Print statements: 
We programmed the model to print the value of some variables at different times to check that 
the model was behaving in the expected way. Basic examples are: asking the cells to write the 
value of the environmental and hydraulic variables to check that they match the expected 
value of that time step; asking the observer to output population and global parameter values 
after the setup to check that they are correctly initialized; or simply writing the number of 
trout agents at every time step to check that they are actually dying and leaving the model. 
The model was also programmed to print error statements when impossible results were 
yielded, such as a trout agent having either a negative length, weight or body condition after 
performing the feeding and growing action. Finally, the NetLogo extension “Time profiler” 
was used to monitor the time every procedure and reporter took to execute, as well as the 
number of times they were called at each time step, in order to isolate excessively time-
consuming ones for streamlining purposes. 
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- Spot tests with Agent Monitors: 
The agent monitors were used for quickly seeing agent state variable values and testing key 
calculations for obvious errors (e.g, drift-feeding trout failing to reduce their swimming speed 
when using velocity shelters, or trout failing to update their age-class at due time). 
- Stress tests: 
Tests using extreme parameter values were performed to expose errors that would have been 
hidden under normal conditions. Again, this technique ranged from soft to extreme tests. Soft 
tests included, for instance, using parameter values that would effectively turn off (or directly 
turning them off) some functions in order to check that model outputs actually give expected 
logical results (e.g., after turning off the genetic transmission model, genotypic values of 
heritable traits must be constant across generations), or using parameter values that should 
either let the population live forever or, on the contrary, make it quickly go to extinction (e.g., 
setting very low values of minimum survival probability from terrestrial and aquatic 
predation, which should lead the population to quickly become extinct). Under this stress 
testing, we verified, for instance, that without a correct defensive programming, survival 
functions may yield a run-time error under certain conditions. The most extreme tests were 
carried out during the global sensitivity analyses, when the model was tested against the 
simultaneous combination of extreme values from several key parameters. We observed that 
despite the fact that certain parameter combinations (simultaneous negligible terrestrial and 
aquatic mortality, over-availability of both kinds of food, extremely high fecundity) caused 
the model to have a number of trout agents over 250,000 (the maximum numbers recorded 
under normal conditions was around 6,000 agents), simulations were extremely slow (5 days 
against 30 minutes under normal conditions) but never caused the model to crash.  
- Test procedures: 
This technique consisted of the addition of new procedures to the code just to produce 
intermediate output, used only for testing. It was rarely used during model development. 
- Test programs: 
At some cases, it was convenient to write a separate short program under simplified 
conditions that served only to test a particular algorithm or procedure. For instance, the 
bioenergetics model underlying the feeding and growth submodel was first developed and 
implemented into the habitat selection procedure under simplified movement rules and no 
mortality. Only when it was already tested, the feeding and growth submodel was integrated 
with a fully developed version of the mortality submodel into a realistic habitat selection 
framework. 
- Simulation experiments: 
Several controlled simulation experiments were performed, in which the model or its parts 
were simplified so that the outcome of each experiment could be predicted and verified. 
- Code reviews: 
The code was peer-reviewed, i.e., it was thoroughly compared with the written formulation of 
the model by four other scientists (Drs V. Grimm, S. Railsback, J. Groeneveld, S. Vincenzi). 
- Independent reimplementation of submodels: 
This was the most important testing technique used during implementation verification. It was 
the way by which almost all critical implementation errors were detected. Along model 
development, all submodels were independently tested against a version re-implemented in 
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excel. To test each submodel, we added statements to the NetLogo code that write to a file the 
input to, and results from, the submodel. Then we imported that output file to an Excel 
spreadsheet, and reprogramed the submodel in the same spreadsheet. We finally compared the 
results produced by the Excel spreadsheet code to the results produced by the NetLogo code. 
Tests were performed under different testing conditions, varying the resolution (duration) of 
the time steps, initial numbers or conditions at initialization. The span of the simulation test 
depended on the submodel being tested. Table A12 summarizes all tests performed during 
model development. Likewise, all submodels were tested again after being assembled in the 
final version of the model (see Table A13). That helped finding some minor errors, which 
could only be noticed when all submodels were working altogether with their fully developed 
formulation. Final tests cover at least a cycle comprising the key processes (spawning, redd 
development, and emergence and transmission of traits). All Excel files containing the re-
implemented codes and tests can be downloaded from here. 
 
- InSTREAM-Gen vs inSTREAM - the final test: 
InSTREAM-Gen is an IBM developed with an eco-genetic structure, whose ecological 
structure is a replicate of a previous IBM, inSTREAM (Railsback et al. 2009). Apart from the 
addition of a genetic architecture (a quantitative model of genetic transmission of two fitness-
related heritable traits), the ecological structure of inSTREAM-Gen presents some 
simplifications and minor modifications in relation to inSTREAM. InSTREAM-Gen was 
simplified by restricting simulations to only one modelled reach and one trout species. In 
addition, one environmental variable, water turbidity, and thus all its derived effects on trout 
feeding and survival, are not taken into account in inSTREAM-Gen. On the other side of the 
track, we added to inSTREAM-Gen the angler mortality model, which was replicated from a 
recent version of inSTREAM (inSTREAM-SD V6.0) but it’s not included in its regular 
version. There are also minor modifications, mainly concerning the reproduction process: 1) 
inSTREAM-Gen allows for both monogamous and polygamous mating systems, 2) male 
spawners can mate several times during the same spawning season and 3) they move to the 
cell where the female spawner creates the redd to fertilize it; besides, 4) the algorithm used by 
female spawners to select the spawning cell differs between both models. Another difference 
is that the cell state variable defining the distance from hiding cover (cellDistanceToHide) is 
dynamically updated every time step as a function of hydraulic conditions in inSTREAM-Gen 
while fixed in inSTREAM. The addition of the inheritance model allows for the genetic 
transmission of genotypic values of length at emergence and minimum length to spawn. 
Therefore, these two variables are no longer global parameters but state variables of trout. 
Since trout length at emergence is a heritable trait in the model and it is typically correlated to 
egg size, inSTREAM-Gen introduces the term eggsize-fecund-tradeoff to model the fact that 
in salmonids the number of eggs in a redd is traded-off with egg size. Contrarily to 
inSTREAM, minimum length to spawn can be variable across individuals (even if the genetic 
model is turned off) and sexes. 
In short, since the ecological structure inSTREAM-Gen is a replicate of inSTREAM, both 
models should yield not significantly different results when the genetic transmission model of 
inSTREAM-Gen is turned off and both models are parameterized with the same parameter 
values. InSTREAM has been thoroughly tested and used in ecological research for more than 
15 years. Therefore, we considered that the robustness of the ecological structure of 
inSTREAM-Gen would be proved if it behaved the same way as inSTREAM under the same 
simulation conditions and scenarios. 

https://www.dropbox.com/s/cjmzdscdcerw8pt/Whole-model%20Test.rar?dl=0
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To test it, we ran in both models a 40 year-long simulation scenario using the parameter 
values described in the section "Data evaluation" of the present document. Values for 
calibrated parameters are described in the section "Model output verification". To make both 
models comparable, we tuned inSTREAM-Gen in the following way: the models for genetic 
transmission and  angler mortality were turned off; the maximum number of males that can 
mate with a female spawner (max-n-males-per-female) was set to 1, and thus the largest 
available male spawner was always selected; the length maturity threshold 
(fishSpawnMinLengthMean) had the same value for males and females and their variance 
(fishSpawnMinLengthVar) was set to 0, so that all individuals in the system had the same 
length maturity threshold. On the other hand, we set a value of 0 for turbidity at every 
simulated day, so that this environmental variable did not have any influence on inSTREAM's 
simulations. Both models were initialized in the same way, but we did not force them to have 
the same values for stochastic elements, so the initial position as well as size and sex 
distribution of individuals differed across models at initialization. 
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Table A12. Re-implementation tests performed for independent submodel verification. 
Excel output file NetLogo file date Test name Conditions Purpose 

Testing Environment Testcells_nopatches_array_head
ings_Outputtest_Time 

14/8/2013 TestInicellsTime 573 ticks *          Check that habitat and identity features are assigned correctly from the 
input files to the cells (using Time extension) 

   TestSimcellsTime  Check that habitat features are correctly updated during the simulation 
(using Time extension) 

   TestEnvironTime  Check that environmental features are correctly updated during the 
simulation (using Time extension) 

Testing feeding 
hierarchy 

Cells_feeding_growth 19/8/2013 cellEnergetics/Trout 10 trout      
60 ticks * 

Check that feeding hierarchy is correctly implemented 

Testing growth  22/8/2013 Size before-after 10 trout       
573 ticks *          

Check that trout's body size variables are correctly updated 

  23/8/2013 EnergeticsBeforeSelection 1 trout        
573 ticks *          

Check that bioenergetics local variables are correctly calculated and 
updated for trout of different size 

   bestEnergyIntake/TestOutput
TroutBefore 

 Check that trout actually select the cell with the highest best energy intake 

   TestOutputTroutBefore  Check that trout's body size variables are correctly updated and Trout 
actually select the cell with the highest best energy intake 

   TestOutputTrout/Pivot table 5000 trout     
573 ticks *             

Check that model doesn´t crash and feeding hierarchy correctly 
implemented (CV size variables must increase with time) 

Testing mortality 
functions 

Cells_mortality 19/11/2013 Mortality functions 100 trout  
100 ticks * 

Check that survival probability is correctly calculated and that trout die 
when random number is higher than mortality probability 

 cells-
mortality_fishing_Testoutput 

25/11/2013 Angling 100 trout  
150 ticks * 

Check that angling and hooking mortality is correctly calculated and trout 
die when they must 

Testing habitat 
selection 

Cells_growth_mortality_habsel
ection_switches 

3/12/2013 HabitatSelection 50 trout      
30 ticks * 

Check that starvSurvival, nonstarvSurvival and expected maturity are 
correctly calculated 

Testing Spawning Cells_growth_mortality_habsel
ection_spawning_OUTPUT 

28/1/2014 BecomeSpawner 250 trout  
573 ticks * 

Check that trout only get the status of spawner if, and only if, they meet 
the required criteria 

   CellsSpawningQuality  Check that the spawning quality of cells is correctly calculated 
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   MaleSpawnersSelection  Check that candidate spawners are correctly discriminated from non-
candidate ones based on their probability of selection 

   MaleSpawnerSelection2  Check that the number of selected male spawners is never higher than the 
maximum number of male spawners per female to be selected 

   MaleSpawnerSelection2  Check that spawners from the non-candidate spawners agentset are 
correctly selected when needed 

   MaleSpawnersAfterSelection  Check that all trout which have spawned update their body condition and 
effectively change their "spawned this season?" status to "True" 

   Redds  Check that the number of eggs calculated is correct 

  2/3/2014 Redds2  Check that genetic length at emergence and minimum length for 
spawning are correctly transmitted from "fathers"to the redd 

Testing Redd 
Survival 

Cells_growth_mortality_habsel
ection_spawning_redddev_OU
TPUT 

12/2/2014 Bernoulli 250 trout    
35 redds     
65 ticks * 

Calculate the number of lost eggs due to different mortality sources when 
it cannot be aproximated by the product of number of inicial eggs times 
the probability of survival of an egg 

   Superimposition  Calculate the number of lost eggs due to superimposition  

   Redd Surv  Check that the number of eggs lost by different mortality sources and so 
the final number of eggs surviving in the redd are correctly calculated 

Testing Emergence 
& Transmission Sex 

Cells_growth_mortality_habsel
ection_spawning_redddev_emer
gence_sexmaturity_OUTPUT 

20/3/2014 HatchingEggs 350 trout    
124 redds     
573 ticks * 

Check that the number of eggs hatching every time step and the eggs 
remaining in the redd are calculated correctly 

   Breeders  Check that the variance of the trait's genotypic values from breeders are 
calculated correctly by the hatching procedure 

   redds  Check that the genetic info is transmitted correctly from the redds to new 
trout 

   Transmission  Check that genetic state and local variables are calculated correctly 

Testing habitat 
selection 
UPSCALING 

Cells_growth_mortality_habsel
ection_spawning_redddev_emer
gence_sexmaturity_upscaling4b
_OUTPUT 

24/3/2014 HabitatSelection 350 trout      
2 ticks * 

Check that expected maturity is correctly calculated after upscaling and 
optimizing the code 

Testing Cells_growth_mortality_habsel 3/4/2014 Transmission 250 trout  Check that genetic state and local variables are calculated correctly after 
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TransmissionSex 
UPSCALING 

ection_spawning_redddev_emer
gence_sexmaturity_upscaling_g
enetics2_OUTPUT 

573 ticks * upscaling and optimizing the code 

   Breeders  Check that the variance of the trait's genotypic values from breeders are 
calculated correctly by the hatching procedure after upscaling and 
optimizing the code 

* Each tick corresponded to a weekly time step 
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Table A13. Re-implementation tests performed for submodel verification in the final model version. 
Excel output file NetLogo file date Test name Conditions Purpose 

0.Testing cellsFood 
whole time series 

12_Whole model Test 3/6/2014 FoodTest 150 trout *  
4070 ticks **          

Check that available drift and search food are correctly updated 
after being consumed 

1.Testing habitat 
selection 

12_Whole model Test 19/6/2014 HabitatSelection 150 trout   *   
365 ticks ** 

Check that starvSurvival, nonstarvSurvival and expected maturity 
are correctly calculated 

1.Testing habitat 
selection debugged 

12_Whole model Test 
Debugged 

21/7/2014 HabitatSelection 150 trout   *   
365 ticks ** 

Check that starvSurvival, nonstarvSurvival and expected maturity 
are correctly calculated 

2.TestAdjacentCells   Pivot/TestAdjacentCells 140 cells     
4070 ticks * 

Check that the number of adjacent cells and their identity are the 
same each tick for each cell 

3.TestDestinationCells    100 trout *  
4070 ticks **          

Check that all potential destination cells are really within the max 
distance or are adjacent cells 

2.Testing growth 12_Whole model Test 19/6/2014 Size before-after 150 trout   *   
365 ticks ** 

Check that trout's body size variables are correctly updated after 
feeding and growing 

   Comp  Trout actually select the cell with the highest expected maturity 

3.Testing mortality 12_Whole model Test 19/6/2014 Mortality functions 150 trout   *   
474 ticks *** 

Check that survival probability is correctly calculated and that trout 
die when random number is higher than mortality probability 

3. Testing Angling 
mortality 

 20/6/2014 Angling 150 trout   *   
2195 ticks *** 

Check that angling and hooking mortality is correctly calculated 
and trout die when they must 

4.Testing Become 
Spawner (spawning 
season over 2 nat yr) 

12_Whole model Reproduction 
Test 

20/6/2014 BecomeSpawner 350 trout  *  
1948 ticks ** 

Check that trout only get the status of spawner if, and only if, they 
meet the required criteria, when the spawning season covers two 
natural years (from December year x to January year x+1) 

4.Testing Spawning 12_Whole model Reproduction 
Test WO Redd outputs 

20/6/2014 CellsSpawningQuality 350 trout  *  
2190 ticks ** 

Check that the spawning quality of cells is correctly calculated 

   MaleSpawnersSelection  Check that candidate spawners are correctly discriminated from 
non-candidate ones based on their probability of selection 

   MaleSpawnerSelection2  Check that the number of selected male spawners is never higher 
than the maximum number of male spawners per female to be 
selected 
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   MaleSpawnerSelection2  Check that spawners from the non-candidate spawners agentset are 
correctly selected when needed 

 12_Whole model Reproduction 
Test WO Redd 
outputs_NewMaleSelAlgorithm 

18/08/2014 MaleSpawnerSelection3 350 trout  *  
2190 ticks ** 

Check that 1) the largest male spawner is always selected to 
fertilize the eggs, 2) the number of selected male spawners is never 
higher than the maximum number of male spawners per female to 
be selected, and 3) spawners from the non-candidate spawners 
agentset are correctly selected when needed 

    

MaleSpawnerSelection3(2) 

 

350 trout  *  
4070 ticks ** 

 

Check that 1) the largest male spawner is always selected to 
fertilize the eggs, 2) the number of selected male spawners is never 
higher than the maximum number of male spawners per female to 
be selected, and 3) spawners from the non-candidate spawners 
agentset are correctly selected when needed 

5.Testing Redd Survival 12_Whole model Reproduction 
Test 

19/6/2014 Bernoulli 350 trout  *  
1948 ticks ** 

Calculate the number of lost eggs due to different mortality sources 
when it cannot be aproximated by the product of number of inicial 
eggs times the probability of survival of an egg 

   Superimposition  Calculate the number of lost eggs due to superimposition  

    

Redd Surv 

  

Check that the number of eggs lost by different mortality sources 
and so the final number of eggs surviving in the redd are correctly 
calculated 

6.Testing Transmission  12_Whole model Reproduction 
Test WO Redd outputs 

20/6/2014 Breeders 350 trout  *  
2032 ticks ** 

Check that the variance of the trait's genotypic values from 
breeders are calculated correctly by the hatching procedure 

   Transmission Fixed Var  Check that genetic state and local variables are calculated correctly 
when additive variance is fixed across generations 

   Transmission Not Fixed Var  Check that genetic state and local variables are calculated correctly 
when additive variance is NOT fixed across generations 

* Number of trout agents at initialization; ** Each tick corresponded to a daily time step. 
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We generated time series for water temperature, flow and cells' hydraulic conditions (water 
depth and velocity) for the 1993-2033 time period. We used the real data collected by the 
closest meteorological (Urzainqui, AEMET) and gauging (Isaba, Navarra Government) 
stations to generate the water temperature and flow time series for the 1993-2011 period. 
Time series for the 2012-2033 period were thus projected. Water temperatures were projected 
using the air temperature projections developed by the AEMET (Spanish National 
Meteorological Agency) for the Urzainqui meteorological station under the B2 SRES 
emission scenario (Brunet et al. 2009). We used the regional air temperature projections 
derived through statistical downscaling techniques based on the ECHAM4 Global Climate 
Model data (see Brunet et al. 2009). Since there is too much uncertainty about whether and 
how flow patterns may change in our study area due to future climate change, we used 
historical flow data to develop the projected flow time series. That is, we did not simulate 
changes in flow regime induced by climate change. We analyzed the available historical flow 
time series (1992-2011) by means of the IHA v7.1 software (The Nature Conservancy) to 
estimate the probability that a hydrological year presented extreme low flows (0.158), small 
floods (0.368), large floods (0.053), and extreme low flows together with large floods (0.053). 
Thus the probability of a hydrological year having only low flows was 0.368. Each year of the 
1992-2011 time series was assigned to one of these five categories. We then randomly 
selected the flow regime from one of those initial years every year for the 2012-2033 time 
period, the probability of selection depending on the probability of occurrence of the 
environmental flow event (extreme low flows, low flows, small floods, large floods, and 
extreme low flows together with large floods). That is, the 2012-2033 flow time series is a 
probabilistic randomized version of the 1992-2011 series. Hydraulics time series were 
calculated using the projected flow time series by means of the depth-flow and velocity-flow 
relationships generated by the PHABSIM v.1.5.1 software (Milhous and Waddle 2012). 
We compared across models 17 model outputs: time series of 12 demographic patterns 
(abundance, length-at-age and biomass of four age-classes), and 5 reproduction patterns 
(mean length of female spawners, number of redds created, initial number of viable eggs, 
number of hatched eggs and proportion of hatched eggs). 
This test was fundamental for the development of the model as it allowed for the detection of 
a few minor but also one serious bug in the code. First simulations showed significant 
discrepancies in the numbers and biomass of age-0 trout because of differences in the 
mortality rates owing to starvation. After thorough review of the code and exhaustive new 
testing, which resulted in a long delay in model development, we detected a critical bug in the 
procedure defining potential destination cells during the habitat selection action. This error in 
the code led to reduced dispersal of new emerged trout and thus increased competion and 
higher mortality owing to low body condition.  
After all bugs were fixed, we repeated the simulations to compare both models. The simulated 
time series of the 12 demographic patterns were pretty similar, almost identical, across models 
(Table A13; Figs. A1-3).  
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Table A13. Mean values and 95% confidence intervals for the mean of 12 demographic model outputs 
(abundance, length-at-age and biomass time series, broken out by 4 age-classes) over 40-year 
simulations (1993-2033) and 10 replicates from inSTREAM and inSTREAM-Gen IBMs. 

 Abundance (trout) Length (cm) Biomass (g) 

 inSTREAM inSTREAM-
Gen 

inSTREAM inSTREAM-
Gen 

inSTREAM inSTREAM-
Gen 

Age-0 223.1 

(218.7-227.5) 

222.5 

(218.1-226.8) 

7.48 

(7.45-7.52) 

7.62 

(7.59-7.66) 

1131.8 

(1107.6-1156.0) 

1195.1 

(1171.5-1218.8) 

Age-1 60.0 

(58.8-61.2) 

58.8 

(57.7-60.0) 

12.13 

(12.09-12.17) 

12.14 

(12.10-12.18) 

1134.2 

(1108.0-1160.4) 

1111.8 

(1086.1-1137.6) 

Age-2 19.2 

(18.7-19.8) 

18.6 

(18.1-19.1) 

17.36 

(17.29-17.43) 

17.41 

(17.34-17.48) 

1078.5 

(1046.0-1111.0) 

1047.0 

(1015.4-1078.6) 

Age-3Plus 12.8 

(12.4-13.2) 

12.6 

(12.2-13.0) 

23.97 

(23.86-24.08) 

24.10 

(23.98-24.21) 

2081.5 

(2007.4-2155.7) 

2102.6 

(2026.5-218.8) 

 

 
Figure A1. Mean values and 95% confidence intervals for the mean of simulated abundances of 4 age-
classes over 40-year simulations (1993-2033) and 10 replicates from inSTREAM (blue line) and 
inSTREAM-Gen (red line) IBMs. 
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Figure A2. Mean values and 95% confidence intervals for the mean of simulated length-at-age of 4 
age-classes over 40-year simulations (1993-2033) and 10 replicates from inSTREAM (blue line) and 
inSTREAM-Gen (red line) IBMs. 
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Figure A3. Mean values and 95% confidence intervals for the mean of simulated biomasses of 4 age-
classes over 40-year simulations (1993-2033) and 10 replicates from inSTREAM (blue line) and 
inSTREAM-Gen (red line) IBMs. 

 
The interannual variations in all 12 demographic outputs predicted by both models were 
highly and significantly correlated (Table A14). We only detected significant differences 
between models in the means of simulated length-at-age of age-0 trout, and consequently in 
age-0 biomass too (Table A15). InSTREAM-Gen predicted slightly (but significantly) higher 
fork lengths for age-0 trout. Nevertheless, the discrepancy in the mean predicted value of 
length-at-age of age-0 trout over time between both models was only 1.5% (Table A13). This 
small discrepancy is probably due to a slight difference in the number of emerged fry. 
 
Table A14. Correlation coefficients and their probabilities (*** P<0.001) from time series cross-
correlation analyses of 12 demographic model outputs (abundance, length-at-age and biomass time 
series, broken out by 4 age-classes) averaged over 10 replicates between inSTREAM  and 
inSTREAM-Gen models. 

Pattern\Age-class Age-0 Age-1 Age-2 Age-3Plus 

Abundance 0.88 *** 0.87 *** 0.89 *** 0.92 *** 
Length 0.58 *** 0.65 *** 0.75 *** 0.86 *** 
Biomass 0.96 *** 0.90 *** 0.90 *** 0.95 *** 
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Table A15. Summary of comparison of 12 demographic model outputs (abundance, length-at-age and 
biomass time series, broken out by 4 age-classes) across models (inSTREAM vs inSTREAM-Gen), 
replicates (10 replicates) and its interaction (model x replicate), using factorial analysis of variance 
(ANOVA). 

Pattern Model  Replicate  Model x Replicate 

 F P  F P  F P 

Age-0         
Abundance 0.04 0.84  0.15 1.0  0.25 0.99 

Length 33.0 <0.001  0.30 0.96  0.20 0.99 
Biomass 13.3 <0.001  0.06 1.0  0.11 1.0 

Age-1         
Abundance 1.91 0.17  0.27 0.98  0.25 0.99 

Length 0.10 0.72  0.80 0.62  0.60 0.76 
Biomass 1.41 0.24  0.19 1.0  0.18 1.0 

Age-2         
Abundance 2.92 0.10  0.13 1.0  0.34 0.96 

Length 0.90 0.35  0.60 0.82  0.50 0.90 
Biomass 1.85 0.17  0.28 0.98  0.50 0.88 

Age-3Plus         
Abundance 0.74 0.39  0.45 0.91  0.50 0.87 

Length 2.50 0.11  0.70 0.70  1.00 0.40 
Biomass 0.16 0.69  0.43 0.92  0.30 0.98 

 
The simulated time series of the five reproduction patterns were again nearly identical across 
models (Tables 16-18). The interannual variations in the five reproduction outputs predicted 
by both models were highly and significantly correlated (Table A17).  
 
Table A16. Mean values and 95% confidence intervals for the mean of 5 reproduction model outputs 
over 40-year simulations (1993-2033) and 10 replicates from inSTREAM and inSTREAM-Gen IBMs. 

 inSTREAM inSTREAM-Gen 
Mean length female spawners (cm) 21.1 

(21.0-21.2) 
21.1 

(20.9-21.2) 
Number of redds 9.8 

(9.5-10.2) 
9.6 

(9.2-9.9) 
Initial number of viable eggs 3273.8 

(3121.3-3424.4) 
3179.2 

(3030.0-3328.4) 
Number of hatched eggs 2563.7 

(2442.9-2684.5) 
2618.0 

(2493.3-2742.8) 
Ratio hatched eggs/number eggs (%) 78.3 

(77.8-78.8) 
82.5 

(82.0-83.1) 
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Table A17. Correlation coefficients and their probabilities (*** P<0.001) from time series cross-
correlation analyses of 5 reproduction model outputs  averaged over 10 replicates between 
inSTREAM  and inSTREAM-Gen models. 

Pattern Correlation 

Mean length female spawners (cm) 0.93 *** 

Number of redds 0.78 *** 

Initial number of viable eggs 0.95 *** 

Number of hatched eggs 0.95 *** 

Ratio hatched eggs/number eggs (%) 0.90 *** 

 
We detected, however, significant differences in the mean ratio of hatched eggs to initial 
number of viable eggs (Table A18),  because the algorithm used to model the selection of the 
spawning cell by female spawners differs between inSTREAM and inSTREAM-Gen. The 
algorithm used by inSTREAM results in a higher density of redds laid in fewer spawning 
cells, so that the number of dead eggs owing to superimposition is higher, and consequently 
the number of surviving eggs is lower than in inSTREAM-Gen. Therefore, the number of fry 
emerged is slightly, but not significantly, higher in inSTREAM-Gen. As a result, mortality 
owing to starvation during the critical period (see Elliott 1994) is higher in inSTREAM-Gen, 
simulated numbers of age-0 trout after this period being hence lower (below the cohort's 
thinning-line). Due to the operation of emergent density dependence, age-0 trout simulated by 
inSTREAM-Gen would have higher growth rates during the time lag between the end of the 
critical period and the moment when the cohort reaches again the thinning-line. We suggest 
that could be the reason why simulated length-at-age of age-0 trout differs across models.  
 
Table A18. Summary of comparison of 5 reproduction model outputs  (mean length of female 
spawners, number of redds created, initial number of viable eggs, number of hatched eggs and ratio of 
hatched eggs) across models (inSTREAM vs inSTREAM-Gen), replicates (10 replicates) and its 
interaction (model x replicate), using factorial analysis of variance (ANOVA). 

Pattern Model  Replicate  Model x Replicate 

 F P  F P  F P 

Spawner length 0.40 0.54  0.80 0.64  1.40 0.17 
N redds 1.10 0.30  0.92 0.51  1.19 0.30 
N eggs 0.77 0.38  0.93 0.50  1.27 0.25 
N hatched eggs 0.38 0.54  0.88 0.54  1.20 0.29 
Ratio hatched eggs 132.3 <0.001  0.90 0.51  0.30 0.98 

 
On the grounds of all these results, we believe that inSTREAM-Gen and inSTREAM show 
the same modelling behaviour when run under the same initials conditions and simulation 
scenarios. All the tests carried out during the model development and testing phases indicate 
that the model performs as indicated by the model description. 
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6 Model output verification 
This TRACE element provides supporting information on: (1) how well model output matches observations 
and (2) how much calibration and effects of environmental drivers were involved in obtaining good fits of model 
output and data.  

Summary: 
Based on previous sensitivity analyses, a set of six parameters were selected for 
inclusion in the pattern-oriented parameterization described in this section. We 
used six time series demographic patterns of field observations to determine those 
six parameters following an inverse modelling approach. After its calibration, the 
model was additionally tested against two extra time series demographic field 
patterns. Results of the 10 replicates run with the final parameterization indicate 
that inSTREAM-Gen was able to reproduce relatively well both the range of 
values and the interannual variations of the eight time series taken as validation 
patterns. 

We performed a global sensitivity analysis to identify those parameters having the strongest 
effect on both demographic and genetic model outputs (described in the next section of the 
present TRACE document). Based on that analysis, we selected a set of six parameters for 
inclusion in the pattern-oriented parameterization described in this section. Such parameters 
(habDriftRegenDist, habDriftConc, habSearchProd, habPreyEnergyDensity, 
mortFishAqPredMin, and mortFishTerrPredMin) were selected because (1) all tested model 
outputs were highly sensitive to their variations, (2) they are typically unknown and highly 
uncertain, and (3) they are usually site-specific.  
InSTREAM-Gen was parameterized within the pattern-oriented framework (Grimm et al. 
2005). We used different patterns of field observations to determine the aforementioned 
unknown parameters using an inverse modelling approach. The central idea of pattern-
oriented parameterization is to make the model reproduce multiple observed patterns 
simultaneously, so that the structural realism of the model is increased and thus its sensitivity 
to parameter uncertainty is decreased. To validate the model, we used 12 years (1993-2004) 
of data from the Belagua River (Spain; Almodóvar et al. 2006). We focused on the 
reproduction of six time series patterns: length-at-age of age-1 trout (L1), age-2 trout (L2), 
and age-3 and older trout (age-3Plus; L3), as well as abundances of the same age-classes (age-
1, -2 and -3Plus; A1-3). After its calibration, the model was tested against two extra time 
series field patterns: biomass of age-1 trout (B1) and age-2 and older trout (age-2Plus; B2). 
We did not focus on numbers or biomass of age-0 trout since they are more variable and 
difficult to quantify in the field, so that these figures are not usually taken into account for 
population management. 
For the simulations aiming at reproducing those eight patterns, parameters were set to the 
values described in the "Data evaluation" section of the present document. The starting date of 
simulations was the 1st of October of 1993. The population was initialized using the real data 
observed in the field that year (see "Data evaluation" section). We used real site-specific time 
series of water temperature, flow and hydraulic conditions as model inputs.  We subsequently 
used a Latin hyper-cube sampling design (Iványi et al. 1979), optimizing the sample with a 
genetic type algorithm, by means of the lhs package V0.10 (Carnell 2012) to draw 2000 
parameter sets from the entire parameter space defined by the six parameters selected for 
calibration. Following Frank and Baret (2013), we used the sum of standardized squared 
errors (SSSE) to evaluate the agreement between the observed and predicted patterns. This 
quantitative measure is computed as the sum of standardized squared errors between the 
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observed and simulated values: ∑ (sim𝑖𝑖− obs𝑖𝑖)2

obs𝑖𝑖𝑠𝑠 . We next followed a Monte Carlo Filtering 
approach, by which tested patterns are applied as filters to separate good from bad sets of 
parameter values (Wiegand et al. 2003, Grimm and Railsback 2005). To do this, quantitative 
criteria for the agreement between observed and simulated patterns were developed. The first 
patterns used as filters were length-at-age's: first, we only retained the parameter sets 
reproducing patterns of length-at-age of age-3Plus trout; second, from this reduced set, we 
separated those parameter combinations reproducing patterns of length-at-age of age-2 trout; 
finally, we repeated the same procedure, retaining those parameter sets mimicking patterns of 
length-at-age of age-1 trout. We considered an observed field length-at-age pattern to be 
accurately reproduced by a model simulation when SSSE was equal to or less than the sum of 
yearly deviations corresponding to a maximum of 10% of the observed annual value. The 
remaining parameter sets were then filtered by means of the abundance patterns, following the 
same order (first, abundance of age-3Plus trout, then age-2, and finally age-1 trout). We only 
retained parameter sets producing a median SSSE lower than a value equal to a yearly 
deviation of 30% of the observed value. We selected the parameter set having the overall 
lowest SSSE values for tested abundance patterns. 
Using again a Latin-hypercube sampling design, we drew 2000 additional parameter sets 
around the final parameterization to verify possible parameterizations that would reproduce 
the six field patterns better than the “final parameter set” found according to the previous 
description. Therefore, we repeated the procedure explained above, using as well trial and 
error by-hand adjustment on all six parameters to find the final parameter set. We considered 
we had the final parameter set when concurrently the goodness-of-fit measure (SSSE) of the 
six patterns could not be improved by small changes of any of the parameters, and all analysis 
of variance tests of the comparison between observed and 10 replicates of simulated trout 
length-at-age and abundance distributions for the three age-classes were non-significant. 
The final parameter set, after using the six length-at-age and abundance patterns as filters, 
was: habDriftRegenDist = 600 cm, habDriftConc = 2.1E-10 g cm-3, habSearchProd = 4.8E-7 
g cm-2 h-1, habPreyEnergyDensity = 5200 j g-1, mortFishAqPredMin = 0.984, and 
mortFishTerrPredMin = 0.996. While the calibrated value of habSearchProd falls well within 
the range reported by Railsback et al. (2009) for typical inSTREAM applications, the 
combined values of habDriftConc and habDriftRegenDist would produce a lower food 
productivity than previously reported. Nevertheless, the value of habPreyEnergyDensity is 
twice as much as the one reported by Railsback et al. (2009) for Little Jones Creek (2500       j 
g-1), which indicates a great difference in trout diet composition. Studies of diet composition 
in rivers within our study area showed that brown trout mainly consumed high-energy prey, 
age-0 fish consuming mainly ephemenoptera larvae while adult preying on amphipods (Oscoz 
et al. 2000, 2005). Therefore, the obtained parameter value seems to be in agreement with 
previous field observations. 
Results of the 10 replicates with the selected parameterization indicate that the model was 
able to reproduce relatively well both the range of values and the interannual variations of the 
eight time series taken as validation patterns (Figs. A4 and A5). Although some points of field 
observations lay outside the ranges of the replicates, the mean values and interannual 
variations observed in the Belagua population were reasonably well reproduced by 
inSTREAM-Gen for the sizes and numbers of individuals.  
Regarding pattern A1, we observed small discrepancies for years 1997 (16% of the SSSE for 
this pattern) and 2004 (13%), and a significantly higher one in 2001 (49%). As a 
consequence, the highest discrepancies for pattern A2 were found on years 1998 (30%) and 
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2002 (26%). This latter year was also problematic for A3 along with year 2000, since they 
contributed to the SSSE computed for this pattern in an amount of 32 and 22%, respectively. 
For L1, the fit between observed and simulated values was pretty good over almost all years 
but for years 2001 (due to the extremely high discrepancy in numbers of age-1 trout that year) 
and 1994, whose contribution to the SSSE was as high as a 51 and 22%, respectively. 
Considering L2, most of the SSSE was attributed to years 2001 (44%) and 2003 (27%). 
Regarding L3, the bulk of SSSE fell on years 1995 (14%), 1996 (24%) and 2003 (35%).  
 

 
Figure A4. Simulation results of 10 replicates with the final parameterization (red) compared to field 
observations from the Belagua River (black). Graphs on the left column show the number of 
individuals of three age-classes. Graphs on the right column show the time series of mean length-at-
age of individuals at three age-classes. Box-plots are the corresponding distribution of simulation 
replicates.   
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Biomass time series, which were not used as filters for parameterization, were used as extra 
validation patterns. There were no significant differences in the mean values between 
observed and simulated patterns (ANOVA, P> 0.35). The observed temporal distribution of 
discrepancies between observed and simulated values regarding abundance and length-at-age 
patterns, resulted in years 2004 and 2001 having the highest contribution to SSSE of pattern 
B1 (40 and 20%, respectively), while almost all SSSE of pattern B2 came from years 2002 
(60%), 1999 and 2000 (both 12%). 
 

 
Figure A5. Simulation results of 10 replicates with the final parameterization (red) compared to field 
observations from the Belagua River (black). Graphs show the biomass of two age-classes, which 
were used as additional validation patterns.  
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7 Model analysis 
This TRACE element provides supporting information on: (1) how sensitive model output is to changes in 
model parameters (sensitivity analysis), and (2) how well the emergence of model output has been understood.  

Summary: 
A global sensitivity analysis was performed to explore the behavior of the model 
in response to variations in the values of the 72 parameters regarded as 
potentially most relevant. Four demographic (abundance and biomass of both 
young-of-the-year and older individuals), as well as three genetic (genotypic 
values of length at emergence and length maturity threshold of male and female 
breeders) model outputs were deployed in this sensitivity analysis. We first used 
the Morris method to screen the most influential parameters in the model. Based 
on obtained results, we subsequently used the Sobol method to decompose the 
model outputs’ variance into variances attributable to each of the most influential 
parameters. We repeated the same analyses but using a different input 
temperature profile (daily temperatures increased by 3 °C), because parameters 
controlling effects of high temperature on reproduction, survival or metabolism 
may have little effect under conditions where temperatures are never extreme but 
the same parameters could be very important when temperatures are limiting. 

Section content 
7.1. Screening of influential parameters under observed-temperature scenario ..... 79 
7.2. Prioritization of parameters under observed-temperature scenario ................. 92 
7.3. Screening of influential parameters under increased-temperature scenario .... 94 
7.4. Prioritization of parameters under increased-temperature scenario .............. 100 

 
We conducted a global sensitivity analysis in order to (1) screen non-influential and 
influential parameters in the model, and (2) among the most influential parameters, identify 
those that would lead to the greatest reduction in the output variance when fixed to their 
reference values. In both cases, we used the sensitivity R package (Pujol et al. 2013) to both 
generate the design of experiments and estimate the sensitivity measures. We analysed 
parameter sensitivity under two temperature scenarios because parameters controlling effects 
of high temperature on reproduction, survival or metabolism may have little effect under 
current conditions when temperatures are never extreme but could have strong effects at 
projected higher temperatures. The sensitivity analysis examined seven model outputs: mean 
total abundance and biomass of both young-of-the-year (YOY; age 0) and older (age 1 and 
older) trout, as well as the mean genotypic values of length at emergence and length maturity 
threshold (for both males and females) of breeders over a 12-year period. One measure of 
each model output was obtained for each year (near September 1) and used to compute a 
mean for the entire model run.  
As detailed in the section 3 of this TRACE document, there are a total of 203 parameters in 
inSTREAM-Gen. There are 36 user-specified and 22 site-specific parameters not suited for 
this kind of analysis. As a result, we had a grand total of 145 parameters to explore. We then 
proceeded to identify a subset of this total parameter set in order to make the task affordable. 
The parameters omitted from the sensitivity analysis were the following: 
- The entire Cmax temperature function, encompassing 14 parameters, was eliminated due to 
concerns over redefining its shape. These parameters define a piecewise function that cannot 
easily be varied using global sensitivity analysis techniques. Likewise, the set of parameters 
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used to define the spawning suitability functions regarding depth and velocity was also 
removed from further study. Those parameters are: fishSpawnDSuitD1 through D5, 
fishSpawnDSuitS1-S5, fishSpawnVSuitS1-S5, and fishSpawnVSuitV1-V5. 
- The ending date of the spawning time window (fishSpawnEndDate) is impossible to model 
for brown trout since the parameter’s units is Julian date. It would have not been possible to 
simulate a range of variation of a spawning season spanning over two natural years (for e.g., 
from 15th November to 15th January). In consequence, it made no sense to include 
fishSpawnStartDate. 
- Simulating realistic slot size limits for angling would not have been possible either, as both 
parameters (mortFishAngleSlotLower and mortFishAngleSlotUpper) are interconnected. 
- We regarded the parameters defining the beginning and the end of the angling season 
(startAnglingSeason and endAnglingSeason) as irrelevant. 
- We took into consideration the results from the local sensitivity analyses performed by 
Cunningham (2007) on inSTREAM (see Railsback et al. 2009 for further details). 
Cunningham (2007) ranked 90 parameters of inSTREAM based on the sensitivity of adult 
biomass to their values. Since sensitivity values and ranking are expected to differ 
substantially among sites, we only eliminated from the analysis the parameters whose 
sensitivity index (as a percentage of the maximum sensitivity index value) was less than 3%. 
Those parameters are: fishCmaxParamA, fishCmaxParamB, habMaxSpawnFlow, 
fishSpawnMaxFlowChange, fishSpawnEggViability, and all redd global parameters but redd 
size (mortReddDewaterSurv, habShearParamA, habShearParamB, mortReddScourDepth, 
mortReddLoTT1, mortReddLoTT9, mortReddHiTT1¸ mortReddHiTT9, reddDevelParamA, 
reddDevelParamB, and reddDevelParamC). 
- We additionally performed a pre-sensitivity analysis by which we tested the effects of all the 
trout survival and increasing survival probability functions on both YOY and older trout 
biomass. We compared results from a normal run against a run with a survival function turned 
off (one function at a time, 5 replicates). The parameters governing a survival probability 
function were not used in the global sensitivity analysis if (1) results of the comparison did 
not significantly differ, and (2) their sensitivity index (as a percentage of the maximum 
sensitivity index value) in Cunningham’s study was less than 5%. Those parameters are: 
mortFishHiTT1, mortFishHiTT9, mortFishStrandD1, mortFishStrandD9, 
mortFishTerrPredF1, mortFishTerrPredF9, mortFishAqPredD1, mortFishAqPredD9, 
mortFishAqPredF1, mortFishAqPredF9, mortFishAqPredT1, and mortFishAqPredT9. 

7.1. Screening of influential parameters under observed-temperature scenario 
After performing this parameter selection, we retained a total of 72 parameters to conduct the 
global sensitivity analysis. First, we used an improved version of the Morris’s elementary 
effects screening method (Morris 1991; Campolongo et al. 2007) to identify the parameters to 
which inSTREAM-Gen was particularly insensitive or sensitive. This method appears to be 
the most suited screening method for IBMs (Thiele et al. 2014). Based on individually 
randomised one-factor-at-a-time designs, it estimates the effects of changes in the input factor 
levels, i.e., the parameter values, which are called elementary effects (EEs). The EEs are then 
statistically analysed to measure their relative importance. We used the estimate of the mean 
of the distribution of the absolute values of the elementary effects, μ*, as a sensitivity measure 
to establish the relative influence of each parameter. It can be considered as a proxy of the 
total sensitivity index, which itself is a measure of the overall effect of a parameter on the 
output, including interactions with the rest of the model (Saltelli et al. 2008). All 72 selected 
parameters (K) were varied over five levels according to predefined ranges, the central value 
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being the value used to calibrate the model (Table A19). We used several methods to 
determine the range of parameter values analyzed, but the maximal range of variation hardly 
ever exceeded the 50% of the central value. The number of tested settings is given by r × (k + 
1), where r is the number of EEs computed per parameter. As we chose 50 EEs, this led to 50 
× (72 + 1) = 3650 model runs. 
 
Table A19. Range of parameter values used to conduct the global sensitivity analysis. Parameters are 
displayed by alphabetical order. 

Parameter  Lower 
extreme 

Lower 
median 

Central Upper 
median 

Upper 
extreme 

anglePressure 0 0.5 2 5 15 

fishCaptureParam1 1.2 1.4 1.6 1.8 2 

fishCaptureParam9 0.375 0.437 0.5 0.563 0.625 

fishDetectDistParamA 3.2 3.6 4.0 4.4 4.8 

fishDetectDistParamB 1.6 1.8 2.0 2.2 2.4 

fishEnergyDensity 3900 4900 5900 6900 7900 

fishFecundParamA 0.038 0.1 0.2 0.5 1 

fishFecundParamB 1.7 2 2.6 3 3.3 

fishFitnessHorizon 22 55 90 125 158 

fishMaxSwimParamA 0.95 1.47 1.90 2.35 2.85 

fishMaxSwimParamB 15.0 22.5 30.0 37.5 45.0 

fishMaxSwimParamC -0.00375 -0.00310 -0.00250 -0.0019 -0.00125 

fishMaxSwimParamD 0.036 0.054 0.072 0.09 0.108 

fishMaxSwimParamE 0.250 0.375 0.500 0.625 0.750 

fishMoveDistParamA 5 12.5 20 27.5 35 

fishMoveDistParamB 1.5 1.75 2 2.25 2.5 

fishNewLengthHeritability  0 0.1 0.18 0.3 0.4 

fishNewLengthMean 2 2.25 2.5 2.75 3 

fishNewLengthVar 0.005 0.02 0.04 0.06 0.08 

fishPiscivoryLength 13 15 17 19 22 

fishRespParamA  18 24 30 36 42 

fishRespParamB  0.627 0.710 0.784 0.86 0.940 
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fishRespParamC 0.0415 0.0550 0.0693 0.0830 0.0970 

fishRespParamD 0.018 0.024 0.03 0.036 0.042 

fishSearchArea 10000 15000 20000 25000 30000 

fishShelterSpeedFrac 0.15 0.225 0.3 0.375 0.45 

fishSpawnMaxTemp 7 8.5 10 11.5 13 

fishSpawnMinAge 365 547 730 912 1095 

fishSpawnMinCond 0.9 0.925 0.95 0.975 1 

fishSpawnMinLengthHeritability  0 0.1 0.18 0.3 0.4 

fishSpawnMinLengthMeanF 14.5 15.5 16.5 17.5 18.5 

fishSpawnMinLengthMeanM 16.5 17.5 18.5 19.5 20.5 

fishSpawnMinLengthVarF 0.5 1 1.5 2 2.5 

fishSpawnMinLengthVarM 0.75 1.5 2 2.5 3 

fishSpawnMinTemp 2 3 4 5 6 

fishSpawnProb 0.01 0.04 0.1 0.15 0.2 

fishSpawnWtLossFraction 0.1 0.15 0.2 0.3 0.4 

fishWeightParamA 0.00668 0.00770 0.00879 0.01135 0.01390 

fishWeightParamB 2.949 3.022 3.098 3.155 3.212 

habDriftConc 2.00E-10 4.00E-10 6.00E-10 8.00E-10 1.00E-09 

habDriftRegenDist 100 300 500 700 900 

habPreyEnergyDensity 1600 2000 2500 3500 5000 

habSearchProd 1.3E-07 3.00E-07 5.00E-07 7.00E-07 8.8E-07 

max-n-males-per-female 1 2 3 4 5 

mortFishAngleFracKeptIllegal                                      0 0.025 0.05 0.1 0.2 

mortFishAngleFracKeptLegal 0 0.1 0.2 0.3 0.4 

mortFishAngleHookSurvRate  0.6 0.7 0.8 0.9 1 

mortFishAngleL1 7 8.5 10 11.5 13 

mortFishAngleL9 14 17 20 23 26 

mortFishAngleSlotLower 17 19 21 23 25 

mortFishAngleSuccess 0.0001 0.0015 0.003 0.006 0.03 
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mortFishAqPredL1 2.5 3.25 4 4.5 5 

mortFishAqPredL9 5.1 6.5 8 9.5 11 

mortFishAqPredMin 0.91 0.93 0.95 0.97 0.99 

mortFishAqPredP1 0.000005 0.0000075 0.00001 0.0000125 0.000015 

mortFishAqPredP9 0.000001 0.0000015 0.000002 0.0000025 0.000003 

mortFishConditionK1 0.21 0.24 0.3 0.36 0.4 

mortFishConditionK9 0.42 0.48 0.6 0.72 0.8 

mortFishTerrPredD1 2.5 3.75 5 6.25 7.5 

mortFishTerrPredD9 50 85 125 165 200 

mortFishTerrPredH1 250 375 500 625 750 

mortFishTerrPredH9 -150 -125 -100 -75 -50 

mortFishTerrPredL1 4.1 5 6 7.5 9 

mortFishTerrPredL9 1.5 2.25 3 3.5 4 

mortFishTerrPredMin 0.98 0.984 0.988 0.992 0.996 

mortFishTerrPredV1 10 15 20 25 30 

mortFishTerrPredV9 50 75 100 125 150 

mortFishVelocityV1 1.6 1.7 1.8 2 2.2 

mortFishVelocityV9 1 1.2 1.4 1.49 1.58 

mutationalVarParam 0.0005 0.001 0.005 0.01 0.02 

mutationFactor 0 1 5 50 100 

reddSize 600 900 1200 1500 1800 

 
The complete results from the screening analysis (Table A20) show that the vast majority of 
parameters had little effect under the simulated conditions - but any of these parameters could 
have strong effects under other conditions. The parameters to which inSTREAM-Gen’s 
demographic and genetic outputs were determined to be most sensitive are shown in Tables 21 
and 22. Comments in Tables 23 and 24 explain why the model is sensitive to the parameters, 
how uncertain the parameters are, and therefore how the parameter should be treated in 
parameterizing and calibrating inSTREAM-Gen. A parameter may not be of special concern if 
its value is well known, even if the model is highly sensitive to it. On the other hand, the 
parameters in Tables 23 and 24 that also do not have well-known values or that represent 
inherently variable and uncertain processes deserve special attention. 
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Table A20. Complete sensitivity results conducted on inSTREAM-Gen for Belagua River (Morris 
method), as a percentage of the maximum sensitivity (computed as the μ* index). Parameters are 
displayed by alphabetical order. The sensitivity index was computed for seven model outputs: number 
and biomass of trout of age 0 and older (Count Age0, Count Age1Plus, Biomass Age0, Biomass 
Age1Plus), mean genotypic value of length maturity threshold for male (Males GMSL) and females 
(Females GMSL) breeders, and mean genotypic value of length at emergence of breeders (Emergence 
Length). Sensitivity values over 50% of the maximum are highlighted in bold. 

Parameter  Count 
Age0 

Count 
Age1Plus 

Biomass 
Age0 

Biomass 
Age1Plus 

Males 
GMSL 

Females 
GMSL 

Emergence 
Length 

anglePressure 16.2 19.8 20.3 19.1 20.9 23.7 24.7 

fishCaptureParam1 19.8 15.8 18.6 8.7 30.0 28.2 29.2 

fishCaptureParam9 20.7 14.5 21.9 9.2 24.0 33.8 36.2 

fishDetectDistParamA 20.2 17.0 7.3 3.7 25.5 24.5 24.8 

fishDetectDistParamB 31.0 13.0 10.8 4.9 31.2 33.1 33.2 

fishEnergyDensity 35.6 24.4 13.9 6.8 29.4 26.7 26.9 

fishFecundParamA 72.3 28.7 20.7 14.4 34.1 28.6 28.6 

fishFecundParamB 98.3 33.4 55.4 21.6 38.3 27.6 30.6 

fishFitnessHorizon 33.4 25.8 33.5 14.7 35.1 35.9 35.0 

fishMaxSwimParamA 19.2 12.1 22.8 8.7 30.0 29.0 28.5 

fishMaxSwimParamB 28.5 20.2 35.1 18.3 38.0 32.2 33.8 

fishMaxSwimParamC 25.5 29.2 29.1 15.3 28.9 24.1 23.1 

fishMaxSwimParamD 33.5 15.3 21.4 14.3 41.8 36.5 35.3 

fishMaxSwimParamE 20.9 18.1 19.6 9.9 23.5 34.4 34.8 

fishMoveDistParamA 27.6 34.9 27.2 29.7 34.0 33.4 36.7 

fishMoveDistParamB 11.4 8.8 8.2 6.1 18.0 18.9 18.0 

fishNewLengthHeritability  24.2 17.2 10.9 5.8 22.0 24.2 24.1 

fishNewLengthMean 26.2 9.4 9.9 4.4 16.4 22.9 29.5 

fishNewLengthVar 26.3 8.8 17.7 5.3 22.9 26.3 27.9 

fishPiscivoryLength 23.0 13.7 8.3 4.8 22.3 26.2 28.6 

fishRespParamA  35.5 22.9 15.0 11.5 46.6 33.3 34.4 

fishRespParamB  50.2 66.2 56.2 57.3 83.1 70.0 69.5 
fishRespParamC 35.5 29.4 42.6 24.5 44.1 31.6 32.9 

fishRespParamD 14.8 7.6 11.3 7.2 20.5 19.0 17.7 

fishSearchArea 23.1 10.9 14.8 6.0 15.7 25.3 26.4 

fishShelterSpeedFrac 13.3 12.3 9.5 5.7 25.5 18.6 19.4 

fishSpawnMaxTemp 26.9 17.5 20.4 8.7 31.9 29.1 31.8 

fishSpawnMinAge 39.4 20.1 12.9 7.2 49.8 38.3 37.0 

fishSpawnMinCond 22.6 14.7 16.4 15.0 33.7 33.9 35.4 

fishSpawnMinLengthHeritability  14.9 10.2 13.6 10.2 17.3 22.5 23.5 

fishSpawnMinLengthMeanF 25.6 20.9 23.5 14.1 22.7 26.9 21.3 

fishSpawnMinLengthMeanM 18.7 9.2 11.1 4.0 21.3 25.6 25.4 

fishSpawnMinLengthVarF 20.7 15.1 19.0 8.0 20.9 20.6 20.6 

fishSpawnMinLengthVarM 9.9 11.2 7.8 6.4 18.5 17.6 18.1 
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fishSpawnMinTemp 24.3 14.0 17.7 7.4 29.8 33.5 33.6 

fishSpawnProb 33.2 24.8 23.6 9.6 49.7 46.3 46.8 

fishSpawnWtLossFraction 14.3 9.6 13.8 9.4 19.5 17.6 17.6 

fishWeightParamA 22.2 18.2 21.2 8.6 50.6 40.9 40.3 

fishWeightParamB 27.4 22.8 20.8 8.2 35.3 31.8 35.2 

habDriftConc 36.2 23.9 53.2 28.6 63.6 59.9 57.5 
habDriftRegenDist 100.0 100.0 100.0 64.6 38.7 34.0 35.9 

habPreyEnergyDensity 30.2 49.1 56.9 69.8 36.6 33.1 38.3 

habSearchProd 37.5 33.0 21.2 11.8 29.2 30.3 31.0 

max-n-males-per-female 23.6 9.9 16.5 4.4 22.7 25.6 26.2 

mortFishAngleFracKeptIllegal                                      20.4 7.8 13.4 5.8 20.6 23.4 26.0 

mortFishAngleFracKeptLegal 17.9 12.1 11.4 7.3 26.3 19.8 21.7 

mortFishAngleHookSurvRate  22.8 16.5 21.1 21.0 22.6 21.6 23.6 

mortFishAngleL1 19.4 14.9 14.6 7.1 20.8 19.4 20.0 

mortFishAngleL9 26.0 11.8 23.5 8.1 18.2 19.6 20.6 

mortFishAngleSlotLower 18.4 11.5 20.1 9.8 31.4 33.6 35.2 

mortFishAngleSuccess 32.5 16.7 34.8 21.4 33.2 28.6 27.3 

mortFishAqPredL1 29.4 19.9 26.0 8.2 36.8 38.2 37.4 

mortFishAqPredL9 22.2 17.6 9.1 6.8 16.0 21.3 23.6 

mortFishAqPredMin 32.4 29.2 18.2 9.3 17.8 23.1 23.2 

mortFishAqPredP1 15.0 7.8 12.8 4.1 23.7 20.3 19.9 

mortFishAqPredP9 23.8 14.8 10.4 5.1 19.8 17.7 17.8 

mortFishConditionK1 23.0 31.7 11.6 12.2 32.0 26.4 25.6 

mortFishConditionK9 89.1 90.4 52.1 100.0 100.0 100.0 100.0 
mortFishTerrPredD1 17.4 11.8 8.9 5.8 32.5 26.4 27.0 

mortFishTerrPredD9 19.8 10.2 21.9 14.9 19.5 31.1 31.1 

mortFishTerrPredH1 29.5 29.1 23.6 24.2 26.0 21.0 24.3 

mortFishTerrPredH9 23.9 14.0 12.6 7.0 33.4 30.8 30.2 

mortFishTerrPredL1 23.4 7.9 17.7 5.9 32.4 22.3 24.4 

mortFishTerrPredL9 20.1 9.2 13.4 4.3 27.9 33.5 35.4 

mortFishTerrPredMin 41.8 72.1 36.5 46.6 48.9 33.5 34.0 

mortFishTerrPredV1 13.3 9.8 12.2 5.7 25.2 20.6 20.4 

mortFishTerrPredV9 27.7 17.5 34.1 28.4 41.1 35.4 38.1 

mortFishVelocityV1 8.2 11.7 10.2 7.3 20.0 23.0 23.6 

mortFishVelocityV9 25.2 17.7 11.6 6.1 30.6 27.0 26.5 

mutationalVarParam 15.9 11.0 11.1 4.8 20.2 26.0 28.3 

mutationFactor 22.5 13.2 22.5 6.9 29.8 21.8 24.5 

reddSize 22.3 12.1 12.1 6.2 25.8 19.0 19.8 
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The parameter mortFishConditionK9 appeared to be extremely important. This parameter 
controls the probability of surviving poor condition but it is highly interconnected to many 
different processes, so that it can have a strong effect not only on mortality (controlling 
population numbers) but also on habitat selection and thus on growth (affecting biomass). As 
a consequence, changes in parameter values are likely to have widespread, complex, and 
unexpected effects, as revealed by the fact, that this parameter has a pervasive influence on 
genetic traits. It drives the number of potential spawners: lowering its value diminishes 
mortality, increasing then the number of adults while diminishing their body condition factor 
through increased competition, so that the potential number of spawners decreases as mature 
trout do not meet the minimum body condition to reproduce. Therefore, mortFishConditionK9 
affects genotypic values of genetic traits by filtering the number and quality of spawners. 
The three habitat parameters, habDriftRegenDist, habDriftConc and habPreyEnergyDensity 
all had strong effects on model outputs, especially on demographic ones. They control the 
energy flux through the population, affecting both numbers and growth, and hence biomass. 
The parameter habSearchProd was only relatively important for setting numbers of recruits, 
and consequently of older trout (through downstream cohort effects). There was also a high 
degree of uncertainty in these parameters, as each one reflects a constant function intended to 
represent a variable one, which introduces many simplifications. Besides, their values are 
quite site-specific and rarely well-known, so they are best estimated via calibration. 
All model outputs were very sensitive to the three respiration parameters but especially to 
fishRespParamB. They strongly affect energy costs and growth, and thus survival. 
Fecundity parameters, fishFecundParamA and B, were very important to control young-of-
the-year trout numbers and biomass, and thus, relatively important for older trout dynamics, 
though their effects are somehow diluted along ontogeny. 
All model outputs were very sensitive to the parameter mortFishTerrPredMin, its strongest 
effects being on numbers and biomass of adult trout. Terrestrial predation is normally the 
most important mortality source for older trout. Therefore, abundance of old trout is highly 
dependent on this parameter, affecting the number of spawners, and consequently having 
strong effects on heritable traits and number of new recruits. Its values are highly uncertain 
and variable, so they are best estimated via calibration to observed survival and abundance. 
On the contrary, mortFishAqPredMin was only relatively important to control population 
abundance, not having a strong effect on other model outputs. Among all parameters 
controlling the survival probability functions and the increasing survival functions for 
terrestrial and aquatic predation, the ones the model showed more sensitivity to were (ranked 
by global importance): mortFishTerrPredV9, mortFishAqPredL1¸ mortFishTerrPredH1 and 
mortFishConditionK1. Cunningham (2007) found mortFishTerrPredD9 to be highly 
influential on inSTREAM’s adult biomass output, while the effect of mortFishTerrPredV9 
was negligible. We found quite the contrary, probably because the physical habitat of the 
Belagua River has more high-velocity area than deep area, the opposite occurring in Little 
Jones Creek. 
The fishFitnessHorizon ranked among the 24 most influential parameters to all assessed 
outputs. The biological meaning of this parameter is the time horizon over which fish evaluate 
the tradeoffs between food intake and mortality risks to maximize their probability of 
surviving and reproducing. Therefore, it is understandable that it exerts a great influence on 
both demographic and genetic outputs. However, Cunningham (2007) found very little 
response from insSTREAM to this parameter, perhaps because the response was nonlinear 
and peaked right at 90 days (value used for calibration).  
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Parameters defining the maximum swimming speed for fish, above all fishMaxSwimParamB, 
had a relative influence on demographic outputs, since maximum swimming speed affects 
both growth and survival. Likewise, the parameter fishMoveDistParamA showed great effect 
on demographic outputs since it affects the potential destination cells during habitat selection, 
and therefore, growth and survival. 
Three parameters involved in the angler model (anglePressure, mortFishAngleSuccess and 
mortFishAngleHookSurvRate) affected biomass of older trout, due to their effects on 
mortality, those effects being both quantitative (number of trout removed from the system) 
and qualitative (size of trout removed from the system). 
There were a few parameters that had strong influence on genetic traits but not on 
demographic outputs. They were the parameters defining the criteria trout must meet to 
become spawners (fishSpawnMinAge and fishSpawnMinCond), and also the probability of 
spawning once all spawning criteria are met, fishSpawnProb. The parameters governing the 
length-weight relationship for healthy fish, predominantly fishWeightParamA, were revealed 
as particularly influential on heritable traits. These two parameters strongly define how much 
energy a trout needs to grow in length (via growth in weight), so variations in their values 
modify the strength for selection towards higher length at emergence (favoring 
monopolization of resources due to the length-based dominance hierarchy ruling habitat 
selection and feeding) and lower length maturity thresholds (by increasing probability of 
reproducing at least once). 
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Table A21. Ranking and sensitivity values (as a percentage of the maximum sensitivity) of the 24 parameters to which demographic outputs are most sensitive. 

Parameter  Count 
Age0 

Parameter  Count 
Age1Plus 

Parameter Biomass 
Age0 

Parameter Biomass 
Age1Plus 

habDriftRegenDist 100.0 habDriftRegenDist 100.0 habDriftRegenDist 100.0 mortFishConditionK9 100.0 

fishFecundParamB 98.3 mortFishConditionK9 90.4 habPreyEnergyDensity 56.9 habPreyEnergyDensity 69.8 

mortFishConditionK9 89.1 mortFishTerrPredMin 72.1 fishRespParamB  56.2 habDriftRegenDist 64.6 

fishFecundParamA 72.3 fishRespParamB  66.2 fishFecundParamB 55.4 fishRespParamB  57.3 

fishRespParamB  50.2 habPreyEnergyDensity 49.1 habDriftConc 53.2 mortFishTerrPredMin 46.6 

mortFishTerrPredMin 41.8 fishMoveDistParamA 34.9 mortFishConditionK9 52.1 fishMoveDistParamA 29.7 

fishSpawnMinAge 39.4 fishFecundParamB 33.4 fishRespParamC 42.6 habDriftConc 28.6 

habSearchProd 37.5 habSearchProd 33.0 mortFishTerrPredMin 36.5 mortFishTerrPredV9 28.4 

habDriftConc 36.2 mortFishConditionK1 31.7 fishMaxSwimParamB 35.1 fishRespParamC 24.5 

fishEnergyDensity 35.6 fishRespParamC 29.4 mortFishAngleSuccess 34.8 mortFishTerrPredH1 24.2 

fishRespParamC 35.5 fishMaxSwimParamC 29.2 mortFishTerrPredV9 34.1 fishFecundParamB 21.6 

fishRespParamA  35.5 mortFishAqPredMin 29.2 fishFitnessHorizon 33.5 mortFishAngleSuccess 21.4 

fishMaxSwimParamD 33.5 mortFishTerrPredH1 29.1 fishMaxSwimParamC 29.1 mortFishAngleHookSurvRate 21.0 

fishFitnessHorizon 33.4 fishFecundParamA 28.7 fishMoveDistParamA 27.2 anglePressure 19.1 

fishSpawnProb 33.2 fishFitnessHorizon 25.8 mortFishAqPredL1 26.0 fishMaxSwimParamB 18.3 

mortFishAngleSuccess 32.5 fishSpawnProb 24.8 mortFishTerrPredH1 23.6 fishMaxSwimParamC 15.3 

mortFishAqPredMin 32.4 fishEnergyDensity 24.4 fishSpawnProb 23.6 fishSpawnMinCond 15.0 

fishDetectDistParamB 31.0 habDriftConc 23.9 mortFishAngleL9 23.5 mortFishTerrPredD9 14.9 

habPreyEnergyDensity 30.2 fishRespParamA  22.9 fishSpawnMinLengthMeanF 23.5 fishFitnessHorizon 14.7 

mortFishTerrPredH1 29.5 fishWeightParamB 22.8 fishMaxSwimParamA 22.8 fishFecundParamA 14.4 

mortFishAqPredL1 29.4 fishSpawnMinLengthMeanF 20.9 mutationFactor 22.5 fishMaxSwimParamD 14.3 

fishMaxSwimParamB 28.5 fishMaxSwimParamB 20.2 fishCaptureParam9 21.9 fishSpawnMinLengthMeanF 14.1 

mortFishTerrPredV9 27.7 fishSpawnMinAge 20.1 mortFishTerrPredD9 21.9 mortFishConditionK1 12.2 

fishMoveDistParamA 27.6 mortFishAqPredL1 19.9 fishMaxSwimParamD 21.4 habSearchProd 11.8 
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Table A22. Ranking and sensitivity values (as a percentage of the maximum sensitivity) of the 24 parameters to which genotypic outputs are most sensitive. 

Parameter  Males 
GMSL 

Parameter  Females 
GMSL 

Parameter Emergence 
Length 

mortFishConditionK9 100.0 mortFishConditionK9 100.0 mortFishConditionK9 100.0 

fishRespParamB  83.1 fishRespParamB  70.0 fishRespParamB  69.5 

habDriftConc 63.6 habDriftConc 59.9 habDriftConc 57.5 

fishWeightParamA 50.6 fishSpawnProb 46.3 fishSpawnProb 46.8 

fishSpawnMinAge 49.8 fishWeightParamA 40.9 fishWeightParamA 40.3 

fishSpawnProb 49.7 fishSpawnMinAge 38.3 habPreyEnergyDensity 38.3 

mortFishTerrPredMin 48.9 mortFishAqPredL1 38.2 mortFishTerrPredV9 38.1 

fishRespParamA  46.6 fishMaxSwimParamD 36.5 mortFishAqPredL1 37.4 

fishRespParamC 44.1 fishFitnessHorizon 35.9 fishSpawnMinAge 37.0 

fishMaxSwimParamD 41.8 mortFishTerrPredV9 35.4 fishMoveDistParamA 36.7 

mortFishTerrPredV9 41.1 fishMaxSwimParamE 34.4 fishCaptureParam9 36.2 

habDriftRegenDist 38.7 habDriftRegenDist 34.0 habDriftRegenDist 35.9 

fishFecundParamB 38.3 fishSpawnMinCond 33.9 mortFishTerrPredL9 35.4 

fishMaxSwimParamB 38.0 fishCaptureParam9 33.8 fishSpawnMinCond 35.4 

mortFishAqPredL1 36.8 mortFishAngleSlotLower 33.6 fishMaxSwimParamD 35.3 

habPreyEnergyDensity 36.6 fishSpawnMinTemp 33.5 fishWeightParamB 35.2 

fishWeightParamB 35.3 mortFishTerrPredMin 33.5 mortFishAngleSlotLower 35.2 

fishFitnessHorizon 35.1 mortFishTerrPredL9 33.5 fishFitnessHorizon 35.0 

fishFecundParamA 34.1 fishMoveDistParamA 33.4 fishMaxSwimParamE 34.8 

fishMoveDistParamA 34.0 fishRespParamA  33.3 fishRespParamA  34.4 

fishSpawnMinCond 33.7 fishDetectDistParamB 33.1 mortFishTerrPredMin 34.0 

mortFishTerrPredH9 33.4 habPreyEnergyDensity 33.1 fishMaxSwimParamB 33.8 

mortFishAngleSuccess 33.2 fishMaxSwimParamB 32.2 fishSpawnMinTemp 33.6 

mortFishTerrPredD1 32.5 fishWeightParamB 31.8 fishDetectDistParamB 33.2 
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Table A23. Parameters to which inSTREAM-Gen’s assessed demographic outputs were found most 
sensitive in the global sensitivity analysis, in order of decreasing sensitivity. 

Parameter  Sensitivity considerations 

habDriftRegenDist This parameter controls total food availability in a cell. 

Values are highly uncertain, as this single parameter represents 
a highly variable process that is difficult to measure. Values are 
best obtained via calibration of fish density in high-quality 
cells. 

mortFishConditionK9 This parameter controls the probability of surviving poor 
condition but it is highly interconnected to many different 
processes, so that it can have a strong effect not only on 
mortality but also on habitat selection and thus on growth. 

Values are not well known and changes in them are likely to 
have widespread, complex, and unexpected effects. 

fishRespParamB 

fishRespParamC 

fishRespParamA 

Respiration parameters strongly affect energy costs and growth.  

Values are relatively well-known from laboratory studies, and 
typically should not be changed. 

fishFecundParamB 

fishFecundParamA 

Fecundity parameters control the number of eggs laid by the 
spawner in the redd as a function of its length. 

It is a highly site-specific population parameter. Values should 
be known for the study population before calibration. 

habPreyEnergyDensity Trout energy intake increases linearly with this parameter, and 
is not limited by the maximum daily intake (Cmax).  

Energy density of invertebrate prey can vary seasonally as prey 
types change, but the range of reasonable values is well-known. 
Values should be selected for a study site before calibration. 

mortFishTerrPredMin Terrestrial predation is normally the most important mortality 
source for trout more than a few cm in length.  

Values are highly uncertain and variable, so are best estimated 
via calibration to observed survival and abundance. 

habDriftConc Energy intake increases linearly with this parameter, until 
intake is limited by Cmax. 

Values are site-specific, rarely well-known, and this parameter 
also represents a variety of simplifications and uncertainties in 
food availability, so there is no guarantee that measured values 
will produce useful model results. This parameter is best 
evaluated via calibration to observed growth or size. 

fishMoveDistParamA Multiplier for the maximum movement distance. It limits 
potential destinations during habitat selection. It affects small 
trout above all, influencing the intensity of competition by 
limiting dispersal. 

Parameter values are based on literature observations. There are 
some uncertainties in its values because observed movement 
distances generally show how far fish actually move, not the 
distance over which they evaluate habitat. 
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fishFitnessHorizon This parameter represents the number of days over which the 
terms of the expected maturity fitness measure equation are 
evaluated. 

Values are not completely well-known as only a few studies 
have addressed the issue of fitness time horizons. Assuming 
that fish anticipate seasonal changes in habitat conditions and 
their life stage, it makes sense to assume they use a habitat 
selection time horizon of several months. 

mortFishTerrPredV9 If this parameter is set to a low velocity (or close to 
mortFishTerrPredV1), velocity offers very high protection and 
terrestrial predation becomes negligible in many cells. The 
parameter is expected to have much less effect when set to 
higher values. 

Values are not well known and can vary with predator types 
and the size of the stream. Normally, the value should be set so 
no habitat is routinely immune to terrestrial predation. Values 
should be selected for each study site, before calibration. 

habSearchProd Search-feeding energy intake increases linearly with this 
parameter, until intake is limited by Cmax. It mainly affects 
young-of-the-year trout growth and survival. 

Values are site-specific and rarely well-known. This parameter 
is best evaluated via calibration to observed growth rates. 

fishMaxSwimParamB 

fishMaxSwimParamC 

These affect both food intake (how capture success varies with 
velocity) and velocity mortality. Consequently, they strongly 
affect how many cells offer positive growth and high survival.  

Values are from laboratory studies, but are moderately 
uncertain due to variability among individuals and 
measurement difficulties. Values should typically not be 
changed. 
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Table A24. Parameters to which inSTREAM-Gen’s assessed genetic outputs were found most 
sensitive in the global sensitivity analysis, in order of decreasing sensitivity. 

Parameter  Sensitivity considerations 

mortFishConditionK9 See Table A23 

fishRespParamB 

fishRespParamC 

fishRespParamA 

See Table A23 

habDriftConc See Table A23 

fishSpawnProb It defines the probability of spawning on the days when all the 
spawning criteria are met for a female. It gives the model user 
some control over what percent of spawning-sized fish actually 
spawn. 

Values are uncertain and really not well-known. 

fishWeightParamA 

fishWeightParamB 

Seemingly small changes can greatly affect the growth in 
length that results from growth in weight. 

Values can vary among sites; using values from field data or 
literature will prevent significant error. 

fishSpawnMinAge It defines the minimum age a fish must have to be able to 
spawn. 

Values can vary considerably among sites and can often be 
estimated from site-specific census data. Values should be 
selected for each study site, before calibration. 

mortFishTerrPredMin See Table A23 

mortFishTerrPredV9 See Table A23 

fishMaxSwimParamD 

fishMaxSwimParamB 

See Table A23 

habPreyEnergyDensity See Table A23 

habDriftRegenDist See Table A23 

fishFitnessHorizon See Table A23 

fishSpawnMinCond It defines the minimum condition factor a fish must have to be 
able to spawn. 

Values are uncertain, but considering the non-standard 
definition of condition factor, that the growth formulation 
makes it impossible that condition is equal to 1.0 on any days 
when fish did not obtain at least as much energy as expended 
for respiration, and that the bioenergetics of reproduction are 
not explicitly represented and fish have no incentive to put on 
weight in anticipation of spawning, its value is recommended 
to be slightly less than 1.0. 
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7.2. Prioritization of parameters under observed-temperature scenario 
As a second step, after determining the most influential parameters using the Morris method, 
we applied the variance decomposition technique of Sobol (1993) on the same seven model 
outputs. The rationale of performing such analysis was to decompose the model outputs’ 
variance into variances attributable to each parameter. In practice, for a first order analysis 
each parameter was fixed one at a time across a selected matrix of parameter sets. Sobol first 
order sensitivity indices measure the effect of varying a focus parameter alone, but averaged 
over variations in other input parameters, providing thus information on the average reduction 
of output variance when the parameter is fixed. The sensitivity R package (Pujol et al. 2013) 
implements the Monte Carlo estimation of the Sobol's indices using the improved formulas of 
Sobol et al. (2007) and Saltelli et al. (2010).  The number of tested settings was given by m × 
(p + 2), where m is the size of the Monte Carlo sample matrix and p is the number of 
parameters to analyze. We selected the eight parameters identified as most influential on both 
demographic and genetic outputs by the Morris method. Each parameter was varied over the 
following ranges: habDriftConc (2E-09-1E-09), habDriftRegenDist (100-900), 
habPreyEnergyDensity (1600-5500), fishSpawnProb (0.01-0.2), fishFecundParamB (1.7-3.3), 
fishRespParamB (0.627-0.94), mortFishConditionK9 (0.42-0.8), and mortFishTerrPredMin 
(0.98-0.998). We chose a sample matrix of size 400, and Sobol first-order indices were 
computed for each parameter from a total number of runs of 400 × (8 + 2) = 4000. 
For trout abundance, results indicated that fishFecundParamB and mortFishConditionK9 had the 
greatest contribution to the variance of numbers of age-0 trout, while mortFishConditionK9 and 
mortFishTerrPredMin had the highest mean Sobol indices for numbers of older trout. In 
consequence, mortFishConditionK9 was the most important parameter for biomass of both age-0 
and older trout. The parameter mortFishConditionK9 explained the bulk (more than 40%) of all 
three genetic outputs variance (Table A25).  

 

Table A25. Sobol first-order indices of sensitivity for the eight parameters of inSTREAM-Gen 
identified as the most influential by the Morris method influencing seven demographic and genetic 
outputs. Mean estimates and standard errors from 1000 bootstrap iterations are shown.  

Parameter  Count 

Age0 

Count 

Age1Plus 

Biomass 

Age0 

Biomass 

Age1Plus 

Males 

GMSL 

Females 

GMSL 

Emergence 

Length 

habDriftConc 0.056 

(0.034) 

0.001 

(0.016) 

0.074 

(0.070) 

0.135 

(0.091) 

0.142 

(0.061) 

0.163 

(0.065) 

0.157 

(0.065) 

habDriftRegenDist  0.037 

(0.039) 

0.028 

(0.065) 

0.013 

(0.057) 

0.042 

(0.084) 

0.004 

(0.041) 

0.001 

(0.041) 

-0.004 

(0.040) 

habPreyEnergyDensity 0.034 

(0.030) 

0.015 

(0.026) 

0.090 

(0.063) 

0.059 

(0.075) 

0.063 

(0.017) 

0.119 

(0.058) 

0.116 

(0.057) 

fishSpawnProb 0.005 

(0.012) 

-0.007 

(0.009) 

-0.018 

(0.026) 

-0.008 

(0.007) 

0.017 

(0.030) 

0.036 

(0.034) 

0.030 

(0.034) 

fishFecundParamB 0.232 

(0.100) 

0.021 

(0.034) 

0.010 

(0.071) 

-0.004 

(0.025) 

0.026 

(0.040) 

0.041 

(0.044) 

0.035 

(0.044) 

fishRespParamB 0.019 

(0.025) 

-0.011 

(0.018) 

0.034 

(0.034) 

0.045 

(0.058) 

0.047 

(0.046) 

0.089 

(0.051) 

0.088 

(0.049) 

mortFishConditionK9 0.205 0.231 0.142 0.368 0.417 0.467 0.466 
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(0.094) (0.286) (0.116) (0.243) (0.092) (0.099) (0.103) 

mortFishTerrPredMin 0.065 

(0.043) 

0.124 

(0.149) 

0.053 

(0.084) 

0.165 

(0.154) 

0.048 

(0.045) 

0.041 

(0.049) 

0.039 

(0.047) 

 
However, ranking the analyzed parameters based on their first order sensitivity indices may be 
not enough in this case as their sum is well below 1. This is an indication that interactions 
among parameters are playing an important role, their combined effects being strongly non-
additive. In this case, it is more informative to assess the total-effect indices, which measure 
the contribution to the output variance of the focus parameter, including all variance caused 
by its interactions, of any order, with any other input parameters. 
Results showed that fishFecundParamB and mortFishConditionK9 were the most important 
parameters in the estimation of abundance and biomass of age-0 trout (Table A26). The 
parameter habDriftRegenDist had also a relatively high contribution to the variance of 
biomass of age-0 trout through interactions with other parameters. Numbers and biomass of 
trout older than one year were highly sensitive to mortFishConditionK9 and 
mortFishTerrPredMin. The analysis showed that the interaction of parameters 
fishFecundParamB and fishRespParamB with the rest of parameters highly driven variations 
in numbers of trout older than one year. For the three genetic outputs, mortFishConditionK9 
was clearly the parameter that could reduce most of the variance when fixed to its true value. 
 
Table A26. Sobol total-effect indices of sensitivity for the eight parameters of inSTREAM-Gen 
identified as the most influential by the Morris method influencing seven demographic and genetic 
outputs. Mean estimates and standard errors from 1000 bootstrap iterations are shown.  

Parameter  Count 

Age0 

Count 

Age1Plus 

Biomass 

Age0 

Biomass 

Age1Plus 

Males 

GMSL 

Females 

GMSL 

Emergence 

Length 

habDriftConc 0.222 

(0.080) 

0.266 

(0.132) 

0.307 

(0.117) 

0.272 

(0.173) 

0.314 

(0.067) 

0.310 

(0.069) 

0.316 

(0.069) 

habDriftRegenDist  0.288 

(0.119) 

0.337 

(0.194) 

0.438 

(0.181) 

0.301 

(0.202) 

0.124 

(0.040) 

0.118 

(0.041) 

0.121 

(0.041) 

habPreyEnergyDensity 0.157 

(0.046) 

0.086 

(0.059) 

0.126 

(0.114) 

0.153 

(0.078) 

0.277 

(0.054) 

0.255 

(0.054) 

0.257 

(0.052) 

fishSpawnProb 0.069 

(0.028) 

0.056 

(0.009) 

0.056 

(0.019) 

0.018 

(0.011) 

0.073 

(0.030) 

0.076 

(0.035) 

0.082 

(0.035) 

fishFecundParamB 0.634 

(0.138) 

0.535 

(0.290) 

0.612 

(0.186) 

0.287 

(0.131) 

0.149 

(0.047) 

0.129 

(0.048) 

0.136 

(0.047) 

fishRespParamB 0.306 

(0.145) 

0.610 

(0.243) 

0.363 

(0.124) 

0.295 

(0.108) 

0.117 

(0.039) 

0.079 

(0.044) 

0.077 

(0.041) 

mortFishConditionK9 0.618 

(0.160) 

0.832 

(0.196) 

0.525 

(0.198) 

0.464 

(0.374) 

0.661 

(0.087) 

0.656 

(0.092) 

0.657 

(0.091) 

mortFishTerrPredMin 0.099 

(0.062) 

0.557 

(0.237) 

0.162 

(0.088) 

0.445 

(0.223) 

0.192 

(0.052) 

0.173 

(0.053) 

0.175 

(0.051) 
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7.3. Screening of influential parameters under increased-temperature scenario 
We repeated the same analyses but using a different input temperature profile, because 
parameters controlling effects of high temperature on reproduction, survival or metabolism 
may have little effect under conditions where temperatures are never extreme but the same 
parameters could be very important when temperatures are limiting. We created the new 
temperature profile by adding 3 °C to daily temperatures all year round. According to regional 
climate change projections, this water temperature increase is expected to occur by 2100 
under the ecologically-friendly SRES scenario B2. The new sensitivity analysis was 
performed over the same seven demographic and genetic outputs. We selected the 36 
parameters (half the number of the parameters selected for the first sensitivity analyses) 
identified as most influential by the Morris method using the original temperature profile. All 
parameters related to temperature were included in this selection. We then added an additional 
number of 13 parameters related to temperature that were not selected for the first sensitivity 
analyses. Those parameters are: fishCmaxParamA, fishCmaxParamB, mortFishHiTT1, 
mortFishHiTT9, mortFishAqPredT1, mortFishAqPredT9, mortReddLoTT1, mortReddLoTT9, 
mortReddHiTT1¸ mortReddHiTT9, reddDevelParamA, reddDevelParamB, and 
reddDevelParamC. The 49 selected parameters were varied over five levels according to 
ranges shown in Table A27. We chose again a value of 50 elementary effects, which led to 50 
× (49 + 1) = 2500 new model runs. 
  
Table A27. Range of parameter values used to conduct the global sensitivity analysis under a new 
temperature profile with increased daily temperatures. Parameters are displayed by alphabetical order. 

Parameter  Lower 
extreme 

Lower 
median 

Central Upper 
median 

Upper 
extreme 

fishCaptureParam9 0.375 0.437 0.5 0.563 0.625 

fishCmaxParamA 0.314 0.470 0.628 0.78 0.942 

fishCmaxParamB -0.24 -0.27 -0.3 -0.33 -0.36 

fishDetectDistParamB 1.6 1.8 2.0 2.2 2.4 

fishEnergyDensity 3900 4900 5900 6900 7900 

fishFecundParamA 0.038 0.1 0.2 0.5 1 

fishFecundParamB 1.7 2 2.6 3 3.3 

fishFitnessHorizon 22 55 90 125 158 

fishMaxSwimParamB 15.0 22.5 30.0 37.5 45.0 

fishMaxSwimParamC -0.00375 -0.00310 -0.00250 -0.0019 -0.00125 

fishMaxSwimParamD 0.036 0.054 0.072 0.09 0.108 

fishMaxSwimParamE 0.250 0.375 0.500 0.625 0.750 

fishMoveDistParamA 5 12.5 20 27.5 35 

fishRespParamA  18 24 30 36 42 
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fishRespParamB  0.627 0.710 0.784 0.86 0.940 

fishRespParamC 0.0415 0.0550 0.0693 0.0830 0.0970 

fishSpawnMaxTemp 7 8.5 10 11.5 13 

fishSpawnMinAge 365 547 730 912 1095 

fishSpawnMinCond 0.9 0.925 0.95 0.975 1 

fishSpawnMinLengthMeanF 14.5 15.5 16.5 17.5 18.5 

fishSpawnMinTemp 2 3 4 5 6 

fishSpawnProb 0.01 0.04 0.1 0.15 0.2 

fishWeightParamA 0.00668 0.00770 0.00879 0.01135 0.01390 

fishWeightParamB 2.949 3.022 3.098 3.155 3.212 

habDriftConc 2.00E-10 4.00E-10 6.00E-10 8.00E-10 1.00E-09 

habDriftRegenDist 100 300 500 700 900 

habPreyEnergyDensity 1600 2000 2500 3500 5000 

habSearchProd 1.3E-07 3.00E-07 5.00E-07 7.00E-07 8.8E-07 

mortFishAngleSuccess 0.0001 0.0015 0.003 0.006 0.03 

mortFishAqPredL1 2.5 3.25 4 4.5 5 

mortFishAqPredMin 0.91 0.93 0.95 0.97 0.99 

mortFishAqPredT1 3.1 4.5 6 7.5 9 

mortFishAqPredT9 1 1.5 2 2.5 2.9 

mortFishConditionK1 0.21 0.24 0.3 0.36 0.4 

mortFishConditionK9 0.42 0.48 0.6 0.72 0.8 

mortFishHiTT1 28.0 29.0 30.0 31.5 33.0 

mortFishHiTT9 22.8 24.3 25.8 26.8 27.8 

mortFishTerrPredH1 250 375 500 625 750 

mortFishTerrPredMin 0.98 0.984 0.988 0.992 0.996 

mortFishTerrPredV9 50 75 100 125 150 

mortReddHiTT1 23 24 25 26 27 

mortReddHiTT9 14 15 16 17 18 

mortReddLoTT1 -1.6 -1.2 -0.8 -0.6 -0.41 
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mortReddLoTT9 -0.39 -0.2 0 0.4 0.8 

reddDevelParamA 0.0030674 0.0030987 0.0031300 0.0031613 0.0031926 

reddDevelParamB 0.0000301 0.0000304 0.0000307 0.0000310 0.0000313 

reddDevelParamC 0.0000915 0.0000925 0.0000934 0.0000943 0.0000953 

 
As expected, temperature-related parameters played a pervasive role on controlling both 
demographic and genetic analyzed outputs under limiting water temperatures (Tables 28 and 
29). This was especially true for YOY trout; eight and seven temperature-related parameters 
ranked amongst the 13 most influential parameters for abundance and biomass of YOYs, 
respectively. This was predictable as small fish are more sensitive to both extreme 
temperatures and temperature fluctuations than larger fish (see Elliott 1994 for details of 
underlying mechanisms). While mortFishConditionK9, fishFecundParamB and 
fishRespParamB were still the parameters exerting the strongest effects on demographic 
outputs of both YOY and older trout, these model outputs were also highly sensitive to 
parameters controlling trout and redd mortality due to high temperatures (mortFishHiTT9 and 
mortReddHiTT9) as well as to parameters controlling temperature effects on fish swimming 
performance (fishMaxSwimParamC and fishMaxSwimParamD). Parameters driving 
temperature effects on the probability of surviving aquatic predation (mortFishAqPredT9) and 
on respiration costs (fishRespParamC) were additionally important for YOY's demographics. 
This aquatic predation survival increase function reflects how low temperatures reduce the 
metabolic demands and, therefore, feeding activity of piscivorous fish. Under increased 
temperatures, this function may no longer offer protection to small trout. 
The parameters mortFishConditionK9 and fishRespParamB were also the most influential for 
genetic outputs. However, five temperature-related parameters ranked amongst the ten most 
influential. Aside from the temperature-related parameters previously identified as important 
for demographic outputs, the parameter defining the maximum temperature at which trout are 
able to spawn (fishSpawnMaxTemp) had strong effects on all genetic outputs. By contrast, 
none of demographic and genetic model outputs were sensitive to any of the parameters 
controlling the development of eggs within the redd, despite this process being totally 
dependent on temperature conditions. 
Despite being somewhat less influential under limiting temperatures, the habitat parameters 
habDriftRegenDist, habDriftConc, habSearchProd and habPreyEnergyDensity, as well as the 
fish parameter mortFishTerrPredMin, still had strong effects on model outputs, ranking 
amongst the twenty more determinant parameters across all model outputs. Interesting 
enough, the relevance of the parameter fishFitnessHorizon increased under increasing 
temperature conditions. Increased respiration costs (in both standard and activity components) 
and decreased probability of surviving extreme temperatures significantly affected the time 
horizon over which fish evaluate the tradeoffs between food intake and mortality risks to 
maximize their probability of surviving and reproducing under limiting temperatures. 
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Table A28. Ranking and sensitivity values (as a percentage of the maximum sensitivity) of the 24 parameters to which demographic outputs are most sensitive 
under a new temperature profile with increased daily temperatures. 

Parameter  Count 

Age0 

Parameter  Count 

Age1Plus 

Parameter Biomass 

Age0 

Parameter Biomass 

Age1Plus 

fishFecundParamB 100.0 fishFecundParamB 100.0 fishRespParamB  100.0 mortFishConditionK9 100.0 

fishRespParamB  82.1 mortFishConditionK9 92.4 fishFecundParamB 84.2 fishRespParamB  98.1 

mortFishHiTT9 61.1 fishFitnessHorizon 90.2 mortFishHiTT9 83.7 mortFishTerrPredV9 95.5 

mortFishConditionK9 59.9 fishRespParamB  84.2 fishFitnessHorizon 76.1 mortFishHiTT9 95.4 

fishFitnessHorizon 50.7 mortFishHiTT9 75.1 habPreyEnergyDensity 72.3 habPreyEnergyDensity 82.4 

mortReddHiTT9 43.9 fishMaxSwimParamC 68.4 fishMaxSwimParamD 47.5 fishMaxSwimParamC 79.2 

fishCmaxParamB 41.2 mortFishTerrPredV9 67.2 mortReddHiTT1 46.1 habDriftRegenDist 76.7 

fishMaxSwimParamD 40.0 habSearchProd 51.6 fishMaxSwimParamC 44.2 fishFecundParamB 75.1 

fishMaxSwimParamC 39.4 mortFishTerrPredH1 49.4 fishFecundParamA 43.6 mortFishConditionK1 68.5 

mortReddHiTT1 39.2 mortFishAngleSuccess 48.8 mortFishAqPredT9 43.5 habSearchProd 63.6 

habSearchProd 36.4 habDriftRegenDist 48.2 mortFishConditionK9 43.1 mortFishTerrPredMin 54.6 

fishRespParamC 36.3 mortFishConditionK1 47.5 fishRespParamC 42.0 fishFecundParamA 51.9 

fishSpawnMaxTemp 33.3 fishMaxSwimParamD 44.7 mortReddHiTT9 39.0 fishRespParamA  51.7 

fishMoveDistParamA 33.2 mortFishTerrPredMin 43.2 mortFishTerrPredV9 35.9 mortFishAngleSuccess 49.8 

fishWeightParamB 31.8 mortReddHiTT9 41.1 fishMoveDistParamA 35.3 fishEnergyDensity 49.6 

fishFecundParamA 31.7 fishEnergyDensity 38.8 fishSpawnProb 35.2 fishMaxSwimParamD 48.8 

mortFishAngleSuccess 31.7 habPreyEnergyDensity 36.6 fishEnergyDensity 35.1 fishMaxSwimParamB 44.1 

mortFishTerrPredV9 31.3 fishWeightParamB 36.0 habDriftConc 32.6 mortFishAqPredT9 40.6 

habDriftRegenDist 30.5 fishSpawnMaxTemp 33.3 fishSpawnMinLengthMeanF 32.4 fishFitnessHorizon 38.1 

fishSpawnProb 30.1 fishRespParamC 32.5 mortFishConditionK1 32.2 fishWeightParamB 37.9 

mortReddLoTT1 28.7 fishMoveDistParamA 32.0 reddDevelParamB 32.1 habDriftConc 37.5 

mortFishAqPredT9 28.7 mortFishAqPredT9 31.3 mortFishTerrPredMin 31.4 fishMoveDistParamA 34.1 

habDriftConc 28.3 fishFecundParamA 30.9 habSearchProd 30.8 fishCaptureParam9 33.1 
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Table A29. Ranking and sensitivity values (as a percentage of the maximum sensitivity) of the 24 parameters to which genotypic outputs are most sensitive under 
a new temperature profile with increased daily temperatures. 

Parameter  Males 

GMSL 

Parameter  Females 

GMSL 

Parameter Emergence 

Length 

mortFishConditionK9 100.0 mortFishConditionK9 100.0 mortFishConditionK9 100.0 

fishRespParamB  67.9 fishRespParamB  68.4 fishRespParamB  72.2 

fishSpawnMaxTemp 55.7 fishRespParamC 61.3 mortFishHiTT9 66.9 

mortFishHiTT9 46.7 mortFishHiTT9 61.2 fishRespParamC 65.9 

mortFishAqPredT9 45.7 fishSpawnMaxTemp 57.2 fishSpawnMaxTemp 62.1 

habPreyEnergyDensity 45.1 fishMaxSwimParamE 54.6 fishMaxSwimParamE 60.1 

fishCaptureParam9 45.0 mortFishAqPredT9 54.5 mortFishAqPredT9 56.3 

fishFecundParamB 44.9 mortFishConditionK1 49.7 mortFishAqPredL1 51.6 

fishRespParamC 43.3 mortFishAqPredL1 47.7 mortFishConditionK1 50.6 

fishMaxSwimParamE 43.3 fishFecundParamB 47.4 fishFecundParamB 48.4 

mortFishConditionK1 42.2 mortFishAqPredMin 45.3 mortFishAqPredMin 45.1 

fishFecundParamA 41.5 habSearchProd 44.0 habSearchProd 44.7 

fishFitnessHorizon 40.6 fishCaptureParam9 42.2 fishCaptureParam9 44.5 

fishWeightParamB 39.8 fishMoveDistParamA 42.1 fishMoveDistParamA 42.9 

mortFishAngleSuccess 39.5 habPreyEnergyDensity 41.2 habPreyEnergyDensity 41.0 

mortFishAqPredL1 39.2 fishWeightParamB 40.8 fishWeightParamB 40.5 

fishMaxSwimParamC 37.9 fishFitnessHorizon 39.4 habDriftConc 40.1 

habSearchProd 36.8 mortFishTerrPredMin 38.3 mortFishTerrPredMin 39.4 

fishWeightParamA 34.8 habDriftConc 37.3 fishFitnessHorizon 38.8 

mortFishTerrPredH1 34.6 fishFecundParamA 35.9 mortReddLoTT1 37.7 

mortFishTerrPredMin 33.8 fishSpawnProb 35.5 fishWeightParamA 37.7 

fishDetectDistParamB 33.7 fishWeightParamA 35.2 fishSpawnProb 37.4 

fishEnergyDensity 33.2 mortReddLoTT1 35.1 fishMaxSwimParamD 37.3 



TRACE document: Ayllón et al. 2016, Eco-evolutionary individual-based model for trout populations. 

99 
 

Parameters controlling respiration costs are derived from laboratory studies and are generally 
well-known. Parameters controlling the swimming capacity of fish are also based on 
laboratory studies, but their values are moderately uncertain due to variability among 
individuals and measurement difficulties so they should typically not be changed. Values for 
the parameter defining the maximum temperature at which spawning occurs are typically 
well-established and can be borrowed from the existing literature. However, temperature-
related parameters controlling survival functions are typically quite uncertain (Table A30), so 
caution must be paid when selecting their values. 
 
Table A30. Temperature-related parameters to which inSTREAM-Gen’s assessed demographic and 
genetic outputs were found most sensitive in the global sensitivity analysis, in order of decreasing 
sensitivity. 

Parameter  Sensitivity considerations 

mortFishHiTT9 This parameter controls fish mortality owing to the breakdown 
of physiological processes at high temperatures. 

Models of this mortality source remain variable and uncertain 
because mortality varies (a) with laboratory conditions and 
techniques and the endpoints used to define mortality, (b) 
between laboratory and field conditions, and (c) among 
individuals. Interspecific differences in lethal temperatures are 
not clearly distinguishable from uncertainty and variability in 
the measurements. 

fishMaxSwimParamC 

fishMaxSwimParamD 

fishMaxSwimParamE 

See Table A23 

fishRespParamC See Table A23 

mortFishAqPredT9 This parameter controls the aquatic predation survival increase 
function that describes how low temperatures reduce the 
metabolic demands and, therefore, feeding activity of 
piscivorous fish.  

The function is based on the bioenergetics of the trout 
predators, using a decreasing logistic function that 
approximates the decline in maximum food consumption 
(cMax) with declining temperature. Values are from laboratory 
studies, but in general, cMax  is poorly defined and difficult to 
measure, which adds an inherent uncertainty to this parameter. 

fishSpawnMaxTemp This parameter defines the maximum temperature at which 
spawning occurs.  

Reliable values can be borrowed from the literature. 

mortReddHiTT9 This parameter controls the fraction of eggs surviving mortality 
due to high temperatures.  

Values for rainbow trout are from laboratory studies, but 
parameter values for brown trout were guestimated and 
arbitrarily set, so they should not be considered reliable. 
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7.4. Prioritization of parameters under increased-temperature scenario 
We selected again the eight parameters identified as most influential on both demographic and 
genetic outputs by the Morris method to perform a new sensitivity analysis using the Sobol 
method. Each parameter was varied over the following ranges: habPreyEnergyDensity (1600-
5500), fishFecundParamB (1.7-3.3), fishRespParamB (0.627-0.94), fishRespParamC (0.0415-
0.097), fishMaxSwimParamC (-0.00375 - -0.00125), mortFishConditionK9 (0.42-0.8), 
mortFishHiTT9 (22.8-27.8), and fishFitnessHorizon (22 - 158). We chose a sample matrix of 
size 400, and Sobol first-order and total-effect indices were computed for each parameter 
from a total number of runs of 400 × (8 + 2) = 4000. 
The analysis of the first-order indices showed that fishFecundParamB and 
mortFishConditionK9 had the highest contribution to the variance of abundance and biomass 
of both age-0 trout and trout older than one year. As it happened with the unmodified 
temperature scenario, mortFishConditionK9 was the most important parameter for the three 
genetic outputs (Table A31). However, the sum of the first order sensitivity indices was again 
well below 1 for all model outputs, so the assessment of the total-effect indices was necessary. 
 
Table A31. Sobol first-order indices of sensitivity for the eight parameters of inSTREAM-Gen 
identified as the most influential by the Morris method influencing seven demographic and genetic 
outputs under the increased-temperature profile scenario. Mean estimates and standard errors from 
1000 bootstrap iterations are shown.  

Parameter  Count 

Age0 

Count 

Age1Plus 

Biomass 

Age0 

Biomass 

Age1Plus 

Males 

GMSL 

Females 

GMSL 

Emergence 

Length 

habPreyEnergyDensity -0.001 

(0.034) 

-0.020 

(0.037) 

0.052 

(0.059) 

0.088 

(0.059) 

-0.035 

(0.052) 

-0.066 

(0.058) 

-0.065 

(0.056) 

fishFecundParamB 0.360 

(0.104) 

0.123 

(0.072) 

0.198 

(0.073) 

0.071 

(0.037) 

0.022 

(0.050) 

-0.019 

(0.055) 

-0.020 

(0.056) 

fishRespParamB 0.032 

(0.033) 

0.026 

(0.031) 

0.061 

(0.042) 

0.094 

(0.060) 

0.068 

(0.045) 

0.071 

(0.048) 

0.075 

(0.047) 

fishRespParamC 0.072 

(0.040) 

0.066 

(0.028) 

0.080 

(0.043) 

0.075 

(0.035) 

0.018 

(0.042 

-0.008 

(0.048) 

-0.006 

(0.049) 

fishMaxSwimParamC 

 

-0.037 

(0.017) 

-0.029 

(0.013) 

-0.041 

(0.029) 

0.009 

(0.030) 

-0.061 

(0.033) 

-0.070 

(0.038) 

-0.069 

(0.038) 

mortFishConditionK9 0.148 

(0.054) 

0.256 

(0.112) 

0.130 

(0.060) 

0.211 

(0.077) 

0.353 

(0.098) 

0.334 

(0.095) 

0.336 

(0.101) 

mortFishHiTT9 0.087 

(0.050) 

0.053 

(0.049 

0.061 

(0.034) 

0.076 

(0.032) 

0.071 

(0.054) 

0.065 

(0.053) 

0.067 

(0.056) 

fishFitnessHorizon -0.019 

(0.019) 

0.003 

(0.026) 

-0.026 

(0.026) 

0.014 

(0.028) 

-0.003 

(0.042) 

-0.039 

(0.045) 

-0.033 

(0.045) 

 
The parameter fishFecundParamB had the highest contribution to the variance of numbers and 
biomass of age-0 trout (Table A32). In this case, the parameters mortFishConditionK9, 
mortFishHiTT9, habPreyEnergyDensity and fishRespParamB had a relatively important 
secondary role. Numbers and biomass of trout older than one year were highly sensitive to 
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mortFishConditionK9. While variations of mortFishHiTT9 alone had negligible effects on 
these model outputs, its interactive effects with other analysed parameters had a strong 
contribution, especially to explain numbers variability. In a lesser extent, the parameter 
fishRespParamB was also highly important (Table A32). For the three genetic outputs, 
mortFishConditionK9 was again the parameter that could reduce most of the variance when 
fixed to its true value, but the parameter habPreyEnergyDensity had also a high contribution 
through interactions with other parameters. The parameters fishMaxSwimParamC and 
fishFitnessHorizon seem to have a small contribution to the variance of the seven tested 
model outputs. 
 
Table A32. Sobol total-effect indices of sensitivity for the eight parameters of inSTREAM-Gen 
identified as the most influential by the Morris method influencing seven demographic and genetic 
outputs under the increased-temperature profile scenario. Mean estimates and standard errors from 
1000 bootstrap iterations are shown.  

Parameter  Count 

Age0 

Count 

Age1Plus 

Biomass 

Age0 

Biomass 

Age1Plus 

Males 

GMSL 

Females 

GMSL 

Emergence 

Length 

habPreyEnergyDensity 0.277 

(0.068) 

0.304 

(0.110) 

0.388 

(0.094) 

0.287 

(0.096) 

0.403 

(0.067) 

0.440 

(0.073) 

0.441 

(0.072) 

fishFecundParamB 0.564 

(0.081) 

0.274 

(0.085) 

0.458 

(0.081) 

0.163 

(0.079) 

0.193 

(0.053) 

0.235 

(0.057) 

0.234 

(0.057) 

fishRespParamB 0.161 

(0.056) 

0.204 

(0.108) 

0.301 

(0.067) 

0.428 

(0.078) 

0.159 

(0.047) 

0.203 

(0.054) 

0.196 

(0.052) 

fishRespParamC 0.137 

(0.067) 

0.186 

(0.104) 

0.131 

(0.070) 

0.097 

(0.063) 

0.114 

(0.049) 

0.180 

(0.054) 

0.175 

(0.053) 

fishMaxSwimParamC 0.035 

(0.037) 

0.036 

(0.050) 

0.070 

(0.054) 

0.052 

(0.068) 

0.116 

(0.035) 

0.160 

(0.040) 

0.157 

(0.039) 

mortFishConditionK9 0.348 

(0.084) 

0.470 

(0.090) 

0.272 

(0.089) 

0.429 

(0.092) 

0.570 

(0.084) 

0.586 

(0.087) 

0.591 

(0.087) 

mortFishHiTT9 0.337 

(0.077) 

0.605 

(0.100) 

0.283 

(0.073) 

0.364 

(0.088) 

0.246 

(0.056) 

0.237 

(0.056) 

0.234 

(0.061) 

fishFitnessHorizon 0.117 

(0.039) 

0.191 

(0.055) 

0.047 

(0.040) 

0.078 

(0.051) 

0.156 

(0.046) 

0.189 

(0.053) 

0.181 

(0.045) 

 
- Conclusions: 
1. Values for the habitat parameters habDriftRegenDist, habDriftConc and habSearchProd, as 
well as the fish parameters controlling terrestrial and aquatic predation mortality 
mortFishTerrPredMin and mortFishAqPredMin, must be estimated via calibration because (1) 
all model outputs are highly sensitive to their variations, (2) they are typically unknown and 
highly uncertain, and (3) they are typically site-specific.  
2. Values for the habitat parameter habPreyEnergyDensity should be calibrated when no 
information is available for the studied rivers since it is highly site-specific and all model 
outputs are very sensitive to its variations.  
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3. The fish parameter controlling the probability of surviving starvation, 
mortFishConditionK9, is a key parameter irrespective of the temperature profile used in the 
sensitivity analysis, influencing all model outputs. Values are not well known and changes in 
them are likely to have widespread, complex, and unexpected effects. Therefore, we 
recommend not to change the default values.  
4. Parameters defining the fecundity (fishFecundParamA and B) and length-weight 
(fishWeightParamA and B) relationships are strongly influential to all model outputs under 
any temperature profile. They are highly site-specific population parameters, so their values 
should be known for the study population before calibration. 
5. Parameters driving respiration costs (fishRespParamA-C) and fish swimming capacity 
(fishMaxSwimParamA-E) are strongly influential to all model outputs irrespective of the 
temperature profile. Further, the influence of the parameters involved on the temperature 
functions significantly increased under limiting water temperatures. Values are relatively well-
known from laboratory studies, and typically should not be changed. 
6. Parameters defining the conditions under which spawning occurs, fishSpawnMinAge, 
fishSpawnMinCond, fishSpawnProb and fishSpawnMaxTemp, have strong effects on genetic 
outputs. The first three parameters are highly influential under no temperature limitation, 
while on the contrary, the latter one was important only under increased temperature 
conditions. Values can be uncertain and site-specific so they should be selected for each study 
site, before calibration. 
7. Temperature-related parameters controlling trout and redd mortality (mortFishHiTT9, 
mortFishAqPredT9 and mortReddHiTT9) influence all model outputs under limiting 
temperatures. Values are typically quite uncertain, so caution must be paid when changing 
their values; it is not recommended. 
8. Sensitivity of inSTREAM-Gen's model outputs to fishFitnessHorizon was higher than 
previously reported for inSTREAM. What is more, its relevance increased under increasing 
temperature conditions. Further investigation on this parameter is required. 
 
 

8 Model output corroboration  
This TRACE element provides supporting information on: How model predictions compare to independent 
data and patterns that were not used, and preferably not even known, while the model was developed, 
parameterized, and verified. By documenting model output corroboration, model users learn about evidence 
which, in addition to model output verification, indicates that the model is structurally realistic so that its 
predictions can be trusted to some degree.  

Summary: 
So far inSTREAM-Gen’s predictions have not been compared to independent 
data. We summarize, nevertheless, the numerous ecological patterns successfully 
reproduced by inSTREAM, which should be accordingly mimicked by 
inSTREAM-Gen.  

In the section 5 (“Implementation verification”) of this document, we proved that 
inSTREAM-Gen and inSTREAM produced the same results (i.e., results did not statistically 
differed) when run under the same simulation scenarios (same model inputs and parameter 
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values, with no genetic transmission of heritable traits). We have not tested so far how 
inSTREAM-Gen’s predictions compare to independent data or qualitative patterns described 
in the literature. Nevertheless, Railsback and colleagues have shown along the way that 
inSTREAM is capable of reproducing numerous ecological qualitative patterns described in 
the literature regarding stream-dwelling trout populations (Table A33). Here, we summarized 
all these ecological patterns successfully reproduced by inSTREAM, which should be 
accordingly mimicked by inSTREAM-Gen. 
- Habitat selection and foraging behaviour: 
Railsback and Harvey (2002) showed that inSTREAM (using input data and parameters 
representing a resident cutthroat trout Oncorhynchus clarki population) was able to reproduce 
six habitat selection patterns observed in real trout populations; patterns that (1) are general 
responses to relatively well-understood changes in growth and risk conditions, (2) are 
documented in the literature, and (3) occur over spatial and temporal scales compatible with 
the model. Importantly, the authors showed that those patterns were only reproduced by the 
IBM when modelled trout selected habitat to maximize “Expected Reproductive Maturity”, 
but no when habitat-selection objectives were to maximize either growth rate or probability of 
survival. The tested and successfully reproduced patterns are: 
1) Hierarchical feeding in heterogeneous habitat:  this pattern is defined by (a) a consistent 
preference for specific feeding sites, (b) dominant fish displacing others from the most 
preferred sites, and (c) subdominant fish occupying the most preferred sites when the 
dominant fish are removed. 
2)  Response to high flows: trout move to stream margins during flood flows and return to 
previous locations as flows recede. 
3) Response to interspecific competition: competition with a larger species produces a shift in 
habitat selection by age-0 trout toward higher velocities and shallower depths. 
4) Response to predatory fish: the presence of piscivorous fish results in a shift by age-0 trout 
to faster and shallower habitat. 
5) Variation in velocity preference with season: trout prefer higher velocities in summer 
compare to winter. 
6) Changes in habitat use with food availability and energy reserves: trout move to habitat that 
provides higher food intake, at the cost of lower survival probability, when food availability is 
reduced. 
Railsback and Harvey (2005) performed simulation experiments (modelling a trout 
assemblage comprised by brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss) 
that showed that the IBM reproduces eight diverse diel behavior patterns observed in real 
trout populations. A key feature of the simulation experiment was that the model was able to 
explain all the following patterns of variation in diel foraging behaviour without assuming 
that populations or individuals vary in how inherently nocturnal or diurnal they are. The 
reproduced patterns were: 
1) Diel activity (whether foraging occurs during day and/or night) varies among a 
population’s individuals, and from day to day for each individual.  
2) Salmonids use shallower and slower habitat for nocturnal feeding than for daytime feeding.  
3) Local densities of trout in the best habitat are higher when feeding at night.  
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4) Salmonids feed relatively more at night if temperatures (and, therefore, metabolic 
demands) are low. That is, the relative frequency of nocturnal feeding decreases as 
temperature increases. 
5) Daytime feeding is more common for life stages in which potential fitness increases more 
rapidly with growth.  
6) Competition for feeding or hiding sites can shift foraging between day and night: 
competition from larger, night-feeding fish increases the fraction of feeding by smaller fish 
that occurs in daytime. 
7) Daytime feeding is more common when food availability or fish condition is low.  
8) Diel activity patterns are affected by the availability of good habitat for feeding or hiding. 
 
- Population dynamics: 
Railsback et al. (2002) illustrated the ability of inSTREAM to reproduce five patterns of 
population-level behaviour observed in real trout. The modelled cutthroat trout population 
(same as in Railsback and Harvey 2002) followed the next theoretically-expected and/or 
observed patterns: 
1)  A "self-thinning" relationship, a negative power relationship between mean weight and 
mean abundance among age classes. 
2) The “critical survival time”, the duration of intense, density-dependent mortality in newly 
hatched trout. 
3) Age-specific quantitative patterns in population variation over time observed in a trout 
stream similar to the modelled one: (a) fourfold interannual variation in abundance of age 0 
trout; (b) age 1 had the most stable abundance, with the highest abundance only twice the 
lowest; (c) age 2+ was the most variable age class, with sixfold interannual variation; (d) no 
correlation between the number of age 1 fish one year and the number of age 2+ fish the 
following year; (e) a weak correlation between peak flow in winter and abundance of age 1 
trout the following summer; (f) no correlation between summer low flow and trout 
abundance. 
4) Density-dependent growth. 
5) Fewer large adult trout in the absence of deep pool habitat. 
Harvey and Railsback (2014) additionally showed that inSTREAM successfully predicted 
differences in adult trout growth and how growth was affected by stream flow as observed in 
empirical studies. 
Harvey et al. (2014) applied inSTREAM to stream reaches above and below a diversion that 
have been monitored on their biophysical properties for 4 years. The model accurately 
predicted the observed difference in fish biomass between control and diversion reaches at the 
ends of the dry seasons. Instream also reproduced the large seasonal differences in growth, 
small differences between reaches in individual growth, and natural distributions of growth 
among individuals. 
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Table A33. Patterns theoretically expected or observed in real trout populations reproduced 
by the inSTREAM IBM.  

Pattern  Reference 

Habitat selection behaviour: 
Hierarchical feeding in heterogeneous habitat, 
responses to high flow, interspecific competition and 
predatory fish, seasonal shifts in velocity 
preferences, and changes in habitat use with food 
availability and energy reserves 

 
Railsback and Harvey (2002) 

Diel foraging behaviour: 
Variations in individual diel activity and habitat use, 
and responses to temperature, competition, food 
availability and habitat quality 

 
Railsback et al. (2005) 

Demographic and life-history population-level 
behaviour: 
Self-thinning, the critical survival time after 
emergence, density-dependent growth, and age-
specific quantitative patterns in population variation 
over space and time 

 
Railsback et al. (2002) 
 

Adult trout individual growth rates and streamflow 
effects on growth rates 

Harvey and Railsback (2014) 

Population biomass below vs. above a flow diversion Harvey et al. (2014) 
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