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Abstract: High-fidelity models are increasingly used to predict, and guide decision making. Prior work has
emphasized the importance of replication in ensuring reliablemodeling, and has yielded important replication
strategies. However, this work is based on relatively simple theory generating models, and its lessons might
not translate to high-fidelitymodels used for decision support. UsingNetLogowe replicate a recently published
high-fidelitymodel examining the e�ects of aHIV biomedical intervention. Weuse amodular approach to build
our model from the ground up, and provide examples of the replication process investigating the replication
of two sub-modules as well as the overall simulation experiment. For the first module, we achieved numerical
identity during replication, whereas we obtained distributional equivalence in replicating the second module.
We achieved relational equivalence among the overall model behaviors, with a 0.98 correlation across the two
implementations for our outcomemeasure even without strictly following the original model in the formation
of the sexual network. Our results show that replication of high-fidelity models is feasible when following a set
of systematic strategies that leverage the modularity, and highlight the role of replication standards, modular
testing, and functional code in facilitating such strategies.
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Introduction

1.1 Agent-Based Modeling (ABM) and simulation are becoming increasingly common as a scientific method to ex-
amine complex phenomena (Bonabeau 2002; Epstein 2009; Grimm et al. 2005; Maglio et al. 2014; Thiele &
Grimm 2015; Wilensky & Rand 2015). The value of ABM as a means for building theory and gaining a better un-
derstanding of mechanisms driving complex phenomena is becoming widely recognized. The computational
nature of these models allows them to be run frequently (with varying parameters), making ABM a particularly
useful tool for exploring the parameter space of dimensions that drive the phenomena under study, and con-
ducting computational experiments on the impact of changes in these dimensions.

1.2 This ability of ABM to explore a large parameter space makes it a valuable tool for decision-making and policy
development. ABM’s ability to examineboth impact at local andhigher systems levelmakes it increasingly used
as adecision support tool in complex social systems. Whenusing ABMs to guidedecision-making andpolicy de-
velopment, it becomes critical to ensure that thesemodels accurately capture thenuances of thephenomenon,
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so that their behavior becomes increasingly realistic, and they can be used tomake predictions about the phe-
nomenon in practice.

1.3 We classify the resulting models as high-fidelity models, and loosely define them as being more inclusive and
detailed, incorporating a higher number of dimensions, being strongly grounded in empirical data, withmodel
behavior that produces realistic behavior when compared to observed data, all with the aim of supporting de-
cision making. In contrast to Janssen (2009) who identifies two types of models, we identity a spectrum for
models ranging from completely abstract to including many elements and in greater detail based on empirical
data, without a clear cut-o� as to when exactly models become high-fidelity. Models aimed at highlighting the
dependence relationships, so-called theory-driven models, reside towards the abstract side of this spectrum.
Whereas high-fidelity models are placed closer to the real-world side. As high-fidelity models aim to support
decision making in practice, for them to be useful one will need to demonstrate that these models produce re-
alistic findings by validating model behavior against empirical data. Only when validity is shown one can use
the models to make accurate projections and support decision making.

1.4 The relatively high number of (interacting)mechanisms in high-fidelitymodelsmake it challenging to associate
the system-level behavior, which is generally used as a source for validation ofmodel behavior, to the behavior
of underlying mechanisms. This means that to ensure the model behaves as intended, we need to validate
each mechanism (and module capturing that mechanism) individually as well as their interactions with other,
relatedmechanisms. Thismakes accurate replication of high-fidelitymodelsmore laborious, to such an extent
that we propose that it requires a di�erent set of replication and documentation strategies as compared to
those presented in the current replication literature. Thus, there is a significant gap in our scientific protocols
for the process of replicating high-fidelity ABMs.

1.5 Our paper aims to fill this gap by providing best practices distinct for replication of high-fidelity models, and
highlightwhichpractices are sharedwith research focusedon replicating theory-generatingmodels (e.g.Wilen-
sky & Rand 2007; Rand & Rust 2011; Fachada & Rosa 2017). Specifically, in this paper, we address two funda-
mental questions. First, what are successful approaches, procedures, and practices for replicating high-fidelity
models? And second, what can thosewhobuild high-fidelitymodels do to facilitate replication of theirmodels?

1.6 To address these questions, we report on our e�orts in replicating a modeling research study conducted by
Jenness et al. (2016). In this study, a network-based model of HIV transmission dynamics, parameterized with
empirical data on sexual partnership network structure, sexual behaviors within partnerships, and HIV trans-
mission risks given sexual activity, was used to evaluate di�erent scenarios of scaling up of HIV Preexposure
Prophylaxis (PrEP) among men who have sex with men (MSM) in the United States. PrEP is a highly e�ective
preventive medication, which has to date seen limited use among those who could benefit. We undertook this
replication e�ort with the goal to verify and validate both the study results and underlying model behaviors.

1.7 The remainder of this paper will be structured as follows. First, we will discuss the value of replication and
review the existing literature on replication of ABMs. We will identify facilitators and barriers, and consider
how high-fidelity model replication fits within the current literature. Second, we provide a brief overview of
the study being replicated and the original model, which from this point onwards we will refer to as EpiModel,
in line with the name of the platform on which the original model was built (Jenness et al. 2018). Next, we
highlight the replication process, resulting in the replicatedmodel, which we from this point onwards will refer
to as the NetLogo HIV spreadmodel (the NHSmodel) (Hjorth et al. 2020), using three separate examples of our
replication process. Each example focuses on a specific module at a di�erent level of granularity. And lastly,
in our discussion section, we present a synthesis across the lessons we learned during replication and provide
general guidance for e�ective replication of high-fidelity models.

The Value of Replication

2.1 Replication is a fundamental building block of scientific practice. By checking if others who follow the same
methods can obtain similar results, the reliability of these results can be increased, and previous research can
be used as the foundation for future experiments, facilitating the building of scientific knowledge.

2.2 Similar to improving the validity of research outcomes, replication can improve the validity of computational
model outcomes, yet doing so requires two additional steps (Wilensky & Rand 2007; Rand & Rust 2011). First,
as computational models are by definition abstractions of the real world, their conceptual model — which
describes how the various (agent) behaviors and interactions with the environment occur — will need to be
checked. This process is calledmodel validation, and refers to the process of checking whether themodel cap-
tures aphenomenonaccurately enough toanswer thedrivingquestionbehind themodel (e.g., “Does themodel
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behave like the phenomenon observed in the real world?”). Second, the implementedmodel — the translation
of the conceptual model into actual code — needs to be considered. This process is called model verification
and refers to the process of checking that the translation from conceptual model to the implementedmodel is
correct (e.g., “Does the model do what it is intended to do?”). Both of these processes should occur naturally
during replication of ABMs and other computationalmodels (Wilensky &Rand 2007, 2015; Rand&Rust 2011) be-
fore the implementedmodel can be considered as credibly producing counterfactual evidence of experiments
for hypothesis testing, and decision-making. The fact that complex systems models o�en exhibit sensitive de-
pendence to initial conditions (Lorenz 1972), with very small changes in inputs sometimes resulting in very large
di�erences in outputs, leads to challenges in conducting these model correctness checking processes.

Replication of ABMs

2.3 Several computational modelers have previously recognized the need for model replication (Axtell et al. 1996;
Edmonds & Hales 2003; Wilensky & Rand 2007; Thiele & Grimm 2015). Wilensky & Rand (2007, 2015), for exam-
ple, focused on standards for replicating ABMs and provided an overview of the replication work done in the
agent-based domain prior to 2007; this includes the seminal works of Axtell et al. (1996), and Edmonds & Hales
(2003). We highlight Axtell et al. (1996) specifically as they introduce three standards of replication (RS) used in
our work: numerical identity — the notion that exact numerical matching across multiple implemented mod-
els is obtained— distributional equivalence— the notion that twomodels produce distributions of results that
cannot be di�erentiated statistically — and relational alignment, the notion that two models can be shown to
produce the same internal relationship among their results. These standards highlight that, depending on the
output that is considered, varying levels of strictness can be adopted in what one considers successful repli-
cation, with numerical identity being the strictest, followed by distributional equivalence and relational align-
ment respectively. Wenote that choosinga stricter standarddoesnot imply amore rigorous replication—ahigh
quality replicationwill choose a replication standard that iswellmatchedwith validationof the focalmodel and
outcomes. If, for example, we are replicating amodel of network partnership formation which aims to produce
variations of a partnership network, it would not bewise to use an RS of numerical identity as by its very nature
the original model must produce a distribution of partnership networks, and therefore a RS of distributional
equivalence would be preferred.

2.4 Since theWilensky & Rand (2007) paper, work on replication of ABMs has continued. Merlone et al. (2008) com-
pared three implementations of a model of industrial production to study the emergence of structures found
in the real world. They found relational but not numerical alignment among their models, and recognized that
the a�ordances of the platform used to implement the model mattered strongly for simulation results. Will &
Hegselmann (2008) reported on their failure to replicate a trust model that aims to describe the formation of
markets, based on the original publication by Macy & Sato (2002). Janssen (2009), presents a replication of the
Artificial Anasazi model (Axtell et al. 2002) which considers historical population dynamics in the Long House
Valley in Arizona between 800 and 1350. While they find results that relationally align with data, they conclude
the original findings hold only partially and are produced mainly by fitting the model to field data. Stonedahl
& Wilensky (2010) and Gunaratne & Garibay (2017) build replications of the same model showing how generic
algorithms can be used for calibration and optimization models. They show this method can be leveraged to
presentalternative theories forobservedbehavior. Radax&Rengs (2010) replicated theDemographicPrisoner’s
Dilemmamodel (Epstein 1998), and found that the replicatedmodel results di�ered from the original, and dis-
tributional alignment could only be achieved under certain circumstances. They highlighted timing in themod-
els as a potential cause of the discrepancies. Arifin et al. (2010) described the replication of an Anopheles gam-
biaemosquito’smodel usingmultiple implementations. Themodel simulated population dynamics basedon a
conceptual framework of reproductions and death. The authors found that variations among implementations
had an extensive e�ect on population structure and dynamics. Miodownika et al. (2010) replicated the Bhav-
nani (2003)model that considers the process bywhich historical political units could have evolved to form civic
regions that approximate those observed in present day Italy. The authors were not able to distributionally
align the implemented models, and noted that observed di�erences in model outcomes might stem from im-
plementation di�erences. Seagren (2015) replicated the model of Tiebout sorting (Kollman et al. 1997), which
considered the stylized interactions between individual (political) preferences and local policy making under
various electoral landscapes. The authors achieved relational alignment in their replication, and highlighted
the value of doing additional sensitivity analysis based on the replicatedmodel. Donkin et al. (2017) replicated
amodel originally published by Potting et al. (2005), describing an agro-ecological world in which pest insect’s
behavior was modeled on two platforms. The authors based their replications solely on the published model,
and found model behaviors to be numerically, distributionally and relationally dissimilar. They attributed this
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misalignment, to a large extent, to the unavailability of source code. Fachada & Rosa (2017) replicated a version
of the predator-prey model, and used it as a showcase for formal testing of replication and model alignment,
resulting in guidelines on how to examine replication e�orts statistically. The above presented review of repli-
cation e�orts shows how di�icult it has been to fully reproduce model-based research, sometimes even at the
least strict level of relational alignment.

2.5 The limited degree of alignment achieved in many replication studies is both problematic, and highlights the
importance of replication as a means to ensure reliable models and validated model outcomes. Without un-
dertaking model validation and model verification, reliability of models and their outcomes are questionable.
With the trend of models to become more sophisticated and become widely adopted, a lack of a comprehen-
sive replication methodology and practice would have the potential to result in a strong increase in unreliable
models. In turn, the field of simulationmodeling runs the risk of lowering its credibility and risking the integrity
of computational modeling as a rigorous scientific method.

2.6 This risk has been previously identified (Edmonds & Hales 2003), and others have highlighted various lessons
for improving replication e�orts. Wilensky & Rand (2007), for example emphasize the need for replication stan-
dards, availability of detailed documentation including source code, and the value of interaction and collabo-
ration with original authors. Thiele & Grimm (2015) identify a number of ways in which to stimulate a culture of
replication within the research community, including, standardizing model descriptions, so�ware platforms,
and sub-models, and providing open code and documentation. Additionally, various authors have argued
for the need for standards, both in terms of model description (Grimm et al. 2006, 2010, 2017) model build-
ing (Grimm et al. 2014), and sharing (Collins et al. 2015). Furthermore, recent work by Fachada & Rosa (2017)
describes a set of formal testing approaches for replication. This body of work on replications has identified
several standards that help integrate replication into general modelling practice and ABM usage. While these
are certainly steps in the right direction, su�icient documentation of replications remains relatively rare.

Replication of high-fidelity models

2.7 The provided overview of replication work done within the ABM domain consists largely of theory-drivenmod-
els built without extensive calibration based on existent empirical data. The purpose of these models is gener-
ally tohelp researchersbetterunderstandeither theunderlyingmechanisms thatdriveacomplexphenomenon,
or to generate or improve their theory of the phenomenon. By design, the models used in such attempts are
more stylized, focus on behaviors that are more abstract, and have a limited connection to the complexities
present in real world phenomena. While such simplifications are what makes these models especially power-
ful for theory development and for eliminating possible explanatory factors, not all models have those specific
aims.

2.8 In contrast, the high-fidelity models aim to support decision-making and policy development. High-fidelity
models embrace the complexities of real-world complex systems tomakemodel outputs as relevant aspossible
andmaximize their value for decision support. Models with these aims will thus incorporate a large number of
dimensions and will use empirical data to link with the real-world dynamics. As such, they will have a larger
number of moving parts which are likely to be interdependent. Such interdependencies make it challenging
to fully grasp how the system-level behavior traces back to the behavior of modules within the overall model.
This means that unless we validate eachmechanism (andmodule) individually, even numerical identity on the
model level could be the result of a coincidence (albeit an unlikely one).

2.9 Toour knowledge, there is a void in thedocumentationon replicationof high-fidelitymodels. Yet, the increased
complexity of thesemodel suggests that accurate replication of high-fidelity models is more laborious, to such
an extent that it requires a set of replication strategies di�erent from those documented in previous replication
literature, a hypothesis we explore in this paper.

The Computational Experiment Being Replicated

3.1 In this paper, we describe the replication of a simulation study by Jenness et al. (2016). The primary focus that
study was to predict the impact of CDC’s recommendations for HIV Pre-Exposure Prophylaxis (PrEP) among
menwho have sex withmen (MSM) in the United States. This biomedical intervention, when taken regularly by
MSM engaged in unprotected anal intercourse in non-monogamous relationships, greatly reduced the risk of
HIV infection for this high-risk group (Liu et al. 2016). However, to date, PrEP usage in the United States is far
below that recommended by the Centers for Disease Control and Prevention (CDC 2014).
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3.2 To judge the impact of the CDC guidelines, Jenness and colleagues developed a network-based model of HIV
transmission dynamics, calibrated with empirical data on sexual partnership network structure, sexual behav-
iorswithin partnerships, andHIV transmission risks given sexual activity. The resulting EpiModel (Jenness et al.
2018)was theplatformused to evaluatedi�erent scenarios of scalingupPrEPbasedondi�erent interpretations
of CDC guidelines. As these indications for PrEP require an interpretation that could be implemented in prac-
tice, e.g., a non-monogamous relationship cannot be completely assessed during testing of only one partner,
multiple versions of the CDC guidelines were defined and their impact on population-level infections averted
were compared (see Table 1, Jenness et al. 2016). This paper aims to replicate this experiment and consequently
validate the results of the same nine di�erent interpretations of the CDC’s indications for PrEP, and doing so re-
quired two replication steps.

3.3 In the first step, based on the conceptualmodel of HIV transmission used in the original study, an implemented
replicationmodel had to be created, whichwe call theNetLogoHIV spreadmodel (theNHSmodel) (Hjorth et al.
2020). We opted to build the NHS model using a platform other than the original EpiModel for two reasons.
First,being able to replicate successfully across platforms makes the results more robust. Second, as building
high-fidelity models requires a high level of familiarity with the platform in which the model is build, we chose
to adopt the platform the replicatorsweremost familiar with. The EpiModel has been implemented in the open
source R package similarly called EpiModel, the version used was version 1.2.5 (Jenness et al. 2018) and this
package relies on a statistical estimation of dynamic networks (exponential random graphs modeling, ERGMs)
to form and dissolve sexual relationships. The replication model uses NetLogo version 6.1. NetLogo is a widely
used and flexible ABM platform (Wilensky 1999), and our implementation forms network structures based on
agents’ local behaviors. Consequently, the NHSmodel followed a conceptual model for governing the network
formation and dissolution that is similar, but not identical, to the one used in the EpiModel. For all other parts
of the model (behavioral dynamics, and transmission risks) the NHSmodel does strictly follow the conceptual
model from EpiModel.

3.4 In the second step, once the NHSmodel was built, we repeated the computational experiment originally done
with EpiModelwith the re-implementedNHSmodel, and compared the results of this replication to theoriginal.
In doing so, we simultaneously attempted to validate the results of these experiments and the conclusions in
the original study.

EpiModel — A brief overview of the conceptual model

3.5 EpiModel incorporates awide array of dimensions feeding into system level HIV transmission behavior. The be-
haviors of these dimensions are anchored in empirical data from various sources to ensure themodel behavior
matches observations made of the phenomenon in practice. As such, EpiModel clearly fits our description of a
high-fidelity model both in terms of its model and its goals.

3.6 Below, we provide an overview of the originalmodel. We consider it essential when considering any replication
study that the original model description be accessible, and consequently we refer the reader to the Technical
Information of the original study (Jenness et al. 2016) for full details on the description of the EpiModelmethod,
and the model itself, and its component behaviors. Additionally, we refer the reader to the complete source
code for EpiModel which is publicly available on Github (http://github.com/statnet/EpiModelHIV). Here
in this paper we present aminimal overview ofmodel behavior below, and an abstract flow of the stages of the
model behavior can be found in Appendix A.

3.7 EpiModel by default consists of twomain components: a partnership dynamics component and a transmission
behavioral component. The partnership dynamics component determines how agents create and break sexual
partnerships with each other over time, forming longer or shorter-term relationships and one-time ties. The
transmission behavioral component describes the spread of HIV based on the behavior of agents within this
sexual activity network, how they choose to have intercourse, sexual positions, condom use, etc. Together,
these two components simulate how HIV spreads dynamically in this MSM population. For the purpose of the
specific experiment in the original paper an additional component describing the various PrEP intervention
interpretations is added to this model. While themodel combines the interactions between these components
into system level dynamics, each of these components acts and can be described relatively independently.

3.8 Partnershipdynamics: Themodeledpartnernetworkdescribed three typesofpartners: mainpartners, shorter-
term casual partners with repeated contacts, and one-time partners. Parameters for sexual behavior were
drawn from 2 empirical studies of MSM in Atlanta, Georgia (Hernández-Romieu et al. 2015). The predictors of
partnership formation varied by partnership type, with di�erent model terms for degree (number of ongoing
partners for each member of the pair), age, homophily (selecting partners of similar age and race/ethnicity),
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and sexual role segregation (such that 2 exclusively receptive men cannot pair, nor can 2 exclusively insertive
men). For main and casual partnerships, there was a constant risk of relationship dissolution, reflecting the
median duration of each type. This resulted in a dynamic network on which HIV can spread.

3.9 Transmission behavior: Per-act factors influencing the transmission probability for HIV included viral load of
the infected partner (Hughes et al. 2012), condom use (Weller & Davis-Beaty 2002), receptive versus insertive
sexual position (Goodreau et al. 2012), circumcision for an insertive negative partner (Wiysonge et al. 2011), and
the presence of the CCR5-∆32 genetic allele in the HIV negative partner (Marmor et al. 2001; Zimmerman et al.
1997). Once infected the clinical HIV progression was programmed to follow the empirical courses of disease
and antiretroviral therapy (ART) treatment profiles (Mugavero et al. 2013). ART is associated with a dramati-
cally decreased viral load and consequently lower transmission risks (Cohen et al. 2011) and extended life span
(Goodreau et al. 2014). Persons who were HIV positive and not on ART were modeled with evolving HIV viral
loads that changed their infectivity over time. A�er infection, persons were assigned into clinical care trajec-
tories controlling for timing of HIV diagnosis, ART initiation, and HIV viral suppression, to match empirical esti-
mates of the prevalence of these states (Sullivan et al. 2015).

3.10 PrEP Indications and Uptake: The CDC guidelines for PrEP prescription consider the sexual behaviors in the
6 months prior to diagnostic HIV testing (the risk window). MSM were assessed for PrEP indications only at
visits in which their HIV test result was negative, as ART, rather than PrEP, is indicated for positives. At time
of HIV testing, eligible MSM were allowed to start PrEP only if the proportion of MSM on this regimen had not
surpassed a threshold coverage of 40% of the population. This threshold accounted for an external constraint
on PrEP availability, and was varied in robustness checks in the original experiment.

3.11 PrEP eligibility is determined based on the 3 behavioral conditions in the CDC guidelines: Unprotected Anal
Intercourse (UAI) in monogamous partnerships with a partner not recently tested negative for HIV, UAI outside
a monogamous partnership, and AI in a known-serodiscordant partnership (CDC 2014) .For each criteria 2 dif-
ferent functional definitionswere implemented: a “literal” version based on the specific guidelinewording and
a “clinical” version that could be more realistically assessed in practice.

3.12 An importantgoalof the simulationwas toorder thealternative interpretationsofCDCguidelineson their ability
to e�ect incidence. While the clinical versions are generally less strict than literal ones (e.g., a monogamous
individual may erroneously indicate his partner is alsomonogamous), no version is defined in such a way to be
superior to any other. Thus, all orderings are possible, and therefore their replicationwould provide a good test
of distributional or relational alignment.

The Replication Process in Overview

4.1 The full replication process constituted several months of work spread out over a period of 18 months. In it
we followed an approach that can be divided into three stages. In the first stage, the replicating team started
from the published documentation to validate the translation from conceptual model to implemented model,
and used the Technical Information from the original paper to implement the NHS model based solely on this
information. As this translation le� some open questions as to how to implement the NHS model, the second
stage involved connecting with the senior author of the original model to provide clarification on the model
implementation details. In the third stage, we started testing the alignment of the models, one module at a
time, at which point we pulled in the full source code to further align the NHSmodel.

4.2 While all three stages are critical for e�ective replication, in this manuscript we report primarily on the third
stage of our process. Rather than going through each step of the replication process we will highlight the pro-
cess by presenting three examples of replication that occurred during out process: the replication of the viral
load progression module, the replication of the transmission risk module, and the replication of the computa-
tional experiment. The selectionof these specific examples is basedon four reasons. First, eachof the examples
considers replicationatadi�erent level of granularity, the first example considers amicro-levelmodule, the sec-
ond a meso-level module consisting of a combination of multiple modules, and the latter the full system-level
behavior of themodel including all its sub-modules. As such, the combinationof examples provides insight into
how interactions among modules occurs and can cause emergent behaviors, and how the hierarchical struc-
ture and modularity can be leveraged during replication. Second, this combined set of examples allows us to
highlight how the replication di�ered from the original and discuss challenges during replication (Wilensky &
Rand 2007). Examples of such challenges include the impact of having a di�erent set of authors replicate the
model and interpret model documentation, the potential impact of di�erences in algorithms, and the impact
of varying the platform and/or modeling philosophy can have. Third, each of the examples considers replica-
tion using a di�erent replication standard (Axtell et al. 1996), therefore the combination of examples allows us
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to provide a comprehensive description of replication covering each of these standards. Lastly, we found the
combination of these three examples to be illustrative of the lessons we learned during our process of replica-
tion of this high-fidelity model, and as such this set of examples was considered both necessary and su�icient
for the purposes of this manuscript. In the sections following, we will describe each of the examples in detail.

Example 1: The viral loadmodule

4.3 The first example involves replication of the viral-load module. We chose this example specifically because
the viral load of a person with HIV directly a�ects their risk of transmitting HIV. Consequently, it is considered
a critical component in determining the system level spread of HIV. While being a critical driver of systemic
behavior, viral load progression is a dimension that can be specified relatively independent of the remainder of
themodel and hence is an ideal starting point for replication. When someone contracts HIV, “viral load” is used
as a measurement of the number of copies of the virus that person has in their blood; it is directly related to
infectivity. Detailed viral load progression for HIV in the absence of ART follows four general stages. In the first
stage upon infection (the acute rise stage) the viral loadwill rapidly increase to a peak viral load, a�erwhich the
viral load will drop towards set point levels (acute decline), this stage is followed by a relatively long period of
stable viral load (stable set point), until inevitably in the AIDS stage the viral load increases untilmortality (Little
et al. 1999).

The structure of the original viral-loadmodule

4.4 EpiModel captures the evolutionofHIV viral load continuously. Following thepreviously described viral dynam-
ics it determinesan individual’s viral loadbasedon twodimensions; disease stage, andanti-retroviral treatment
(ART) adherence.

4.5 Disease stage: The progression of viral load over the course of an infection is captured using four stages in
EpiModel: 1) An initial rapid increase to peak viral load, 2) a rapid decline from peak to set-point viral load, 3) a
long period of stable set-point viral load, and 4) an AIDSphasewith increasing viral load and eventualmortality.
Both within and between stages the rate of change over time was assumed to be linear.

4.6 ART: An infected individual can be put on anti-retroviral treatment (ART) when their test for HIV results in a
positive test result. ART treatment will e�ectively reduce the set-point viral load of the individual (for as long as
they remainonART). Theextent towhich this set-point is reduceddependson individual attributes (suppression
level), and the extent to which viral load is e�ectively reduced depends on the sustained adherence to ART.

The process of replicating the viral-loadmodule

4.7 Replicating the viral progression module from EpiModel required various steps and substantial e�ort on the
replicators’ part. In the followingparagraphswewill highlight the processwewent through to align thismodule
across implementations, this process is strongly influenced by the framework put forward in Wilensky & Rand
(2007).

4.8 The first step in any replication process, is to determine which sources of information are going to be used
during replication. Replication can be based on various types ofmodel descriptions: a fully documentedmodel
description, a model’s source code, or a verbal description of the model during communication by the model
authors. Eachof thesedescriptionshas itsowna�ordancesand limitations, and requirements in termsofaccess
to resources. We initiated our replication process by considering only themodel description, and did so for two
reasons. First, themodel description is aimed to be comprehensive, and as such should be a source that is both
detailed and relatively easy to process. Second, for most researchers, the documentation is the (only) source
that is available for replication, and as such replicating based on the documentation is a good representation
of what one can reasonably expect to achieve in replication based on the current reporting standards.

4.9 With our replication source determined, we considered the level of alignment that is desirable and required to
consider the replication e�ort successful. This applies asmuch to the replication of completemodels as it does
to sub-modules. Among the three standardsof replication, relational alignment, distributional equivalenceand
numerical identity (Axtell et al. 1996), we selected numerical identity as the replication standard for the viral
load module for three reasons. First, we see viral load to be a critical component of EpiModel as it is one of the
most prominent factors driving the risk of transmission. Second, high accuracy in the replication is critical for
alignment of results on the system level. Values of viral load can vary by six orders of magnitude depending on
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the stageof infection. Thus,weconsidered it necessary toadopta strict replication standard thatwouldallowus
to capture such fluctuations accurately. Third, as viral load describes an agent property (which is independent
of population behaviors), and there are substantial quantitative data on which to build a model of viral load,
it was feasible to numerically align this module. These arguments indicated numerical identity was both an
achievable and desirable replication standard.

4.10 Next, we determined the mechanisms that went into the viral load calculations, and identified for which cases
alignment ofmodel behavior needed to be tested. We explored three behaviors: 1) the viral load progression in
the absence of treatment, 2) the dynamics of getting on and o� ART, and 3) the interaction between the viral-
load progression and the treatment behavior.

4.11 While studying the viral progression in the absence of treatment we found that even minor implementation
di�erences in implementation can have large e�ects on model behavior. Conceptually we know that viral load
numbers, thenumberof copiesof theviruspresent inamlof someone’sblood, impacts the risksof transmission
ofHIV; themore virus in one’s blood the higher the risk of transmission. The implementedEpiModel determines
the extent of this e�ect on risk based on the following calculation: 2.45(x−4.5) whereX is the logarithm (base
10) of the number of copies in one’s blood. For each of the stages of infection, the documentation described
end point viral load, and it described a linear change over time across the various disease levels. EpiModel
applied this linear e�ect to the logarithm of the viral load levels (so e�ectively increasingX linearly), while our
replication applied a linear change over time to the number of virus copies in one’s blood. While this might
seem like a minor di�erence in interpretation, the e�ect this had on emergent model behavior was significant,
with the NHS yielding an HIV prevalence level of∼10% higher than the EpiModel implementation.

4.12 To understand the impact on the system level better, the actual viral load across implementations needs to
be plotted, and the interactions of the viral load with other modules needs to be understood. Note that the
two implementations di�er only in the way they process changes in viral load, and consequently only produce
di�erent results in the stages of the infection during which viral-load is in flux (acute rise, acute decline (which
we combine into anonset stage) and the AIDS stage). For both implementations the viral load level during these
stages are plotted in Figure 1.
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Figure 1: The viral load progression, the logarithm (base 10) of the number of copies of virus in one’s blood, over
time during the onset stage (le�) and the AIDS stage (right) across the two implementations; EpiModel (Blue)
and the NHSmodel (Red).

4.13 While di�erences are observable across implementations, the gravity of their impact can only be understood
within the larger model structure. To do so we first reiterate that log of viral load is used as an exponent in
the risk calculation formula 2.45(x−4.5). This implies that even small di�erences in the log of the viral load (X)
will have substantial impact on the actual risks of transmission during phases whereX is high. Add to this the
notion that during the onset period (acute rise and acute decline) the infection is acute and is consequently
much more contagious (by a factor 6), and one can see how risks of transmission can be drastically inflated by
a seemingly small implementation di�erence.

4.14 Figure 2 shows the factors by which risk of transmission are inflated during the onset and AIDS stages based
on only the viral-load and acute stage multiplier. A detailed look at these results (Appendix B) shows that the
di�erence of implementation yielded an inflation by on average a factor 12.509 during onset, 2.258 during the

JASSS, 23(4) 7, 2020 http://jasss.soc.surrey.ac.uk/23/4/7.html Doi: 10.18564/jasss.4352



AIDS stage and 1.442 over the entirety of the infection. These numbers highlight how interaction betweenmod-
ules can radically amplify minor implementation di�erences, and in turn a�ect the emergent behaviors on the
system level. In our case the interaction yielded a situation of extremely high risk a�er initially contracting HIV,
which caused a self-perpetuating mechanism of new infections.
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Figure 2: The factor by which risk of transmission is increased as a product of the viral load and the acute stage,
for both the EpiModel implementation (blue) and NHS model (red), during the onset stage (le�) and the AIDS
stage (right).

4.15 Weshould note that both implementations are accurate translations from the conceptualmodel, which posited
linear changes over time, and hence from a model verification standpoint there is no a priori reason to prefer
one over the other. This is a perfect example of how seemingly small di�erences in implementedmodels, even
when using the same conceptual model, can have significant impact on the emergent properties of a system.
The complex nature of high fidelitymodels stems from to the interactions and feedback loops inherent in them,
so that small changes can be amplified to have significant e�ects on the system level behavior. This observa-
tion highlights that even minor di�erences in implementation can potentially result in large changes in model
behavior on the system level, and that further attention to the behavior of thismodule is needed to understand
its behavior.

4.16 The progression over time of viral load in EpiModel is based on previous work by Little et al. (1999). Taking their
progression as the ground truth for HIV viral load progression, we can compare the behavior of both implemen-
tations to the behavior in that paper as ameans to validate the behavior of both implementations. The second
figure in Little et al. (1999) reveals a smooth transition of viral load progression which more closely fits the im-
plementation of the NHS model than it does the EpiModel. Regardless, we choose to align the NHS model to
the implementation of EpiModel, to ensure comparison of thesemodels. But in doing sowe note that our repli-
cation e�ort reveals that the viral load progressionmodule is an areawhere futuremodel improvementsmight
be desirable.

4.17 For successful replication, it proved critical that we also aligned the treatment dynamics. In implementing the
process of ART adherence in the NHSmodel, we based ourmodeling decisions primarily on the provided docu-
mentation. However, in the case of treatment dynamics, the extensive documentation (EpiModel has an elab-
orate 25 page description of model behaviors (SI of Jenness et al. (2016)) did not provide su�icient information
for exact re-implementation of the module. We consider this to be an inherent problem with documentation
of high-fidelitymodels rather than an issuewith EpiModel specifically, as the sheer amounts of documentation
and translation needed in this type of model is likely to introduce points of uncertainty.

4.18 Toclarify the sections thatwereunclear to the replicators during the re-implementationprocess, the replicating
teamcontacted the lead author of the EpiModel (SMJ), to engage in a richermeans of communication regarding
model functioning. Based on a concrete set of clarifying questions, the author of EpiModel referred us to spe-
cific segments of the source code of EpiModel specifically addressing these questions (see Appendix C). Taking
into consideration the sources code allowed the replicating team to strictly align the behavior of the treatment
module in the NHS model with EpiModel. This process is a clear example of how each resource has di�erent
a�ordanceswhen it comes to replication, the documentation provides themain conceptualmodel, the authors
the details and the model overview, and the source code the details needed for re-implementation.

JASSS, 23(4) 7, 2020 http://jasss.soc.surrey.ac.uk/23/4/7.html Doi: 10.18564/jasss.4352



4.19 Withboth thenatural progression and impact of ART treatmentmodules evaluatedon their own,we considered
the interaction between the two. E�ectively we considered the e�ect of initiating or maintaining treatment at
di�erent stages of the disease progression. Being on ART for a week has an e�ect of reducing the viral load by a
given amount (up until a given threshold). Similarly, not adhering will result in the agent moving back towards
thedefault trajectory. As ARTe�ectswear o�during theAIDS stage, suchdynamics result in a set of six scenarios
(see below) for which the behavior will need to be tested for alignment.

1. Get on ART during acute rise stage, and remain on ART

2. Get on ART during acute decline stage, and remain on ART

3. Get on ART during stable setpoint stage, and remain on ART

4. Being on ART during acute rise stage, and go o� ART during that stage

5. Being on ART during acute decline stage, and go o� ART during that stage

6. Being on ART during stable setpoint stage, and go o� ART during that stage

4.20 This set of scenarios was replicated for 2 types of agents (thosewith complete suppression, and thosewith par-
tial suppression), resulting in a total of 12 critical scenarios. The e�ects of treatment are fairly straightforward
during the set-point viral progression stage (scenarios 3 and 6) as the viral load in that stage is stable except for
deviations due to ART treatment thus leaving very little room for variation in interpretation of how to imple-
ment. However, during the other stages, the e�ects of treatment are far less obvious. As viral load is changing
naturally during these stages, the implementation of an additional change is far from unambiguous.

4.21 To test alignment we wrote test cases for all of the 6 scenarios both in EpiModel, by extending its code, and
the NHS model. We then compared the outputs of these test scenarios across implementations. In doing so,
we observed some model behavior which was not expected based on the conceptual model. We found that
in EpiModel once a single dose of ART is taken, the default trajectory is disregarded and viral load progression
is based on an in-treatment (and potentially adhering) logic rather than the traditional viral progression path.
Particularly in the acute rise (and decline) stages, this can yield a dramatic shi� from default behavior (see
Appendix D), in which taking one pill can e�ectively prevent the occurrence of the complete acute stage, or
slow down the default viral load decline to such levels that it is worse than not taking a dose at all (when a dose
is taken during the acute decline stage).

4.22 The replicating team considered these scenarios to be unrealistic, but recognizes that theywill occur extremely
rarely. Similar to the earlier variation in implementation, they also found that these scenarios do have a sub-
stantial e�ect on the virility of an individual and that such discrepancies are amplified during the acute stage,
and consequently significantly impacted the system level behavior of themodel. This is another example of the
value of replication as a tool for model validation. It is unlikely anyone would first explore, second notice, and
third interpret, the impact of such an implementation decision unless replication was attempted.

4.23 The viral load progression module proved di�icult to replicate primarily due to a di�erence in the conceptual
model of the ARTmodule between the two teams. More specifically, the assumptions relating to the role of path
dependence in this module di�ered between the original model builders and the replicators, which caused an
initial hurdle in alignment. Where EpiModel e�ectivelymade an agent’s viral load aMarkov process conditional
on the previous state, the replicating team assumed that path played a role in determining these treatment
dynamics. In the path dependent interpretation, it is not only the state but also the direction in which the viral
load has moved in the past that determines the e�ect of a dose of treatment. E.g., the e�ects of treatment
might be very di�erent for someone whose viral load has been on the rise and is currently at 105 compared
to someone who has a viral load that has been dropping and is currently at 105. Capturing such a conceptual
interpretation of treatment requires the path an agent has taken to get to its current state, and the history of
agents’ behavior, to be incorporated into themodel, whereas theMarkov implementation does not incorporate
such information.

4.24 While our goal was to numerically align behavior of the module across implementations, the replicating team
decided to adjust its initial implementation in theNHSmodel, and re-implement it so itwould strictly follow the
implementation of EpiModel, while at the same timemarkingmodeling of ART e�ects as an area that deserves
future considerations in sensitivity analysis. Consequently, the NHS model dynamics were modeled to e�ec-
tively stating that once adose of treatment is consumedan individual’s viral-loadwill changewith a rate of 0.25,
andwill gravitate towards the set-point viral-load (4.5) with that rate when no treatment is consumed, similarly
itwill gravitate towards thevirally suppressed levelof viral-load (1.5)with that ratewhen treatment is consumed.
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This is in line with what EpiModel implementation does. Once this conceptualization was implemented both
implementations indeed showed numerical identical results for the viral-load progression module, and hence
replication of the viral-loadmodule was considered successful and numerically identical (see Appendix E).

Example 2: Replication of the risk-of-transmissionmodule

4.25 As a second example of our replication process, we discuss the replication of the module that determines the
risk of HIV transmission. This module describes the transmission of HIV by means of a process that depends
on both a series of agent behaviors and on the complex evolution of sexual activity networks in the model. We
chose to report on thismodule as it di�ers from thepreviousmodule in somekeydimensions. First, thismodule
considers the behavior of a dyad rather than an individual, and hence considers interactions among agents.
Second, this module includes randomness, whereas the previous module was fully deterministic. Third, the
module consists ofmultiple sub-modules, that each feed into it, as such it highlights the relevance of hierarchy,
structure and interaction among sub-modules during model replication. And lastly, this example presents a
perspective on how to deal with situations in which strict alignment in one of the sub-modules is impossible
(or as in our case purposely foregone).

The structure of the risk-of-transmissionmodule

4.26 The risk-of-transmissionmodulecanbeconceptuallybrokendown intoasetof three independent (sub)modules
that, when combined, determine the risk of spread on the system level. 1) A Partnership Formation and Dis-
solution Module, which determines where ties are present to facilitate spread using three types of ties, main,
casual and one-time ties; 2) a module determining the rate of sexual acts within each tie; and 3) a module
determining the Risks of Transmission per sex act.

The process of replicating the risk-of-transmissionmodule

4.27 Replication of the risk-of-transmission module was done using an approach that began similar to the one de-
scribed for the viral-load example but di�ered in later steps. We again considered each of the sub-modules
in isolation, before combining them into to a more complex module where they interact, which is similar as
before. However, as one of the sub-modules di�ered across implementations our assessment of the interac-
tions of these modules di�ered. During the replication process wemade the conscious choice to not to strictly
replicate the partnership formation and dissolution sub-module. We did so primarily because the philosophy
of network formation adopted in EpiModel di�ered from our own. EpiModel adopts an ERGM based formation
process which bases the formation of ties on the fit with system-wide structural characteristic. In contrast, the
replicated model assumes partnership formation to inherently occur at the individual level, where individual
decision making results in an emergent structure. Consequently, to align with this modeling philosophy, we
implement this module in NHS in a classic agent-based manner, where each individual’s partnering decisions
result in an emergent partner network (see Appendix F for pseudo code of this module). We do use the global
properties to cap individual’s behaviors to ensure the formed networks in the NHS model match the global
properties of those produced by EpiModel. In choosing a di�erent conceptualization for producing aggregate
network structures and dynamics our replication has become a test of the hypothesis that these two di�erent
approaches to partnership formation align, not only in the requisite aggregate parameters, but rather alignwell
enough to supportmodel validity and themain conclusions of a successful replication. We stay alert to the pos-
sibility that this hypothesis will be rejected and these di�erent mechanisms will yield fundamentally di�erent
results.

4.28 While partnership selection is one of the sub-modules that a�ects the risk of transmission, our design choice
has implications for the method of replication and the replication standard adopted. As one of the input sub-
modules conceptually di�ers, aiming for numerical identical results at the level of the completemodulemakes
little sense. In fact, to consider alignment when the various sub-modules are combined, we will need to first
control for the e�ects of the partnership formation and dissolution module and test alignment for all other
interacting sub-modules. Only a�er that process is done can we include it in our tests for alignment and see
if this specific sub-module yields comparable results. As such, we add an intermittent step in our replication
process, in which a�er aligning the sub-models individually we check for their interaction while controlling for
the partnership formation and dissolution module.
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Aligning the risks per act sub-module

4.29 The first sub-module, the per-act risk of transmission module, has 5 independent inputs. The first, the Viral
load module, has been discussed previously, two others are trivial binary checks. The acute stage and CCR-5
mutation each have their own risk multiplier. Two less obvious interacting sub-modules include condom use
and sex-role.

4.30 All of these input modules are fully deterministic, and consequently we consider numerical identity an appro-
priate standard for replication for this module. Additionally, as these per act risks are the backbone of the
spreading behaviors we consider accuracy critical for overall model behavior, and hence claim that numerical
identity for this sub-module is desirable.

4.31 For the two remaining non-trivial input modules we identify the variability that can occur given that all other
inputs remain constant. Ceteris paribus, sexual acts resulting in HIV transmission can occur in three ways; An
HIV-positive agent can either be insertive, receptive, or versatile (i.e. both positions), and whose behavior is
conditional on the sexual behavior preferences of both partners in the tie. When versatile behavior occurs, it is
considered a compound of 1 x insertive and 1 x receptive act, and consequently by knowing both the risk for the
insertive and receptive acts, one can deduce the risk related to versatile acts. As such, 2 critical states exist from
the sexual behavior perspective. From the condom use perspective also two options are available — Protected
and Unprotected — resulting in a total of 4 (2 x 2) critical scenarios for which alignment has to be tested.

4.32 For both the EpiModel and NHS models we create scripts to generate the risks based on these critical input
scenarios and compare results acrossmodels. We initially found significant di�erences across implementation,
which required substantial e�ort to identify –— a di�erence in interpreting a parameter being on a log versus
a log-odds scale –— and then minimal e�ort to resolve. (Details on the steps required for alignment of this
sub-module can be found in Appendix G).

Aligning the rate of sexual acts per partnership sub-module

4.33 Next, we considered the sub-module that determines the rate of sexual acts within a partnership. Note that
the rates in this module are based on average behaviors in a previous cohort study (Hernández-Romieu et al.
2015). These rates thus represent the mean behavior within the entire population, stratified by partnership
type. Based on the population behavior each individual relationship in each week is assigned an activity by
drawing from an independent Poisson distribution. This means that stochasticity is added to this module’s
outputs. While one could potentially align the random number generators and random seeds across both im-
plementations — and by doing so attempt to obtain numerically identical results– we consider this a task that
requires too much e�ort for relatively little gain. Instead we adopted the less strict replication standard of dis-
tributional equivalence, which is more appropriate, allowing us to incorporate the stochasticity and consider
the alignment in a distribution of outputs rather than every unique outcome.

4.34 Comparing the number of acts per type of tie across both models initially revealed large di�erences. More
specifically, the replicated model showed far less sexual activity across all types of ties. Exploration of the po-
tential causes of these di�erences proved di�icult, and only a�er inspection of the EpiModel source code were
we able to pinpoint the cause of the misalignment. Di�erences were caused by an inflation factor applied in
EpiModel, which was not implemented in the NHS model. EpiModel included a parameter (AI_Scale), which
modified the number of acts in all types of ties; it was used to fit the model’s system level HIV prevalence to
observed empirical data. In the implemented EpiModel study this value was set at 1.324, e�ectively inflating
the sexual activity by that factor across the board (compared to empirical point estimates). Incorporating this
inflation factor in the NHS model resulted in distributional equivalence of acts among implementations (see
Appendix H).

Aligning the Partnership formation and dissolution sub-module

4.35 As mentioned prior, in building the NHS model a design choice was made not to strictly follow the network
formation and dissolution processes as implemented in EpiModel. In EpiModel, the network formation and
dissolution is controlled by a statistical model for network structure: a temporal exponential random graph
model (TERGM) (Krivitsky & Handcock 2014). TERGMs try to find dyadic mechanisms that results in a fit of a set
of system-level network structural properties; as such it makes local behaviors conditional on population level
properties. Such aprocess runs somewhat counter to themodeling philosophyof agent-basedmodels inwhich
agents use only local information in their decisionmaking and have no access to population-level information.
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While implementing a network formationmodule that strictly follows the EpiModel method would be possible
inNetLogo, such amodule is not as good a fit for ABM, as ERGMmodels fit aggregatemodel parameters. Instead
we decided to re-implement the network formation process in a more agent-based fashion, and replaced the
TERGMsnetwork component by an individual-levelmatchingmodule that similarly fits the population distribu-
tions, but does so by employing local matching decisions for partner selection and dissolution (see appendix
F).

Controlling for the partnership formation and dissolutionmodule

4.36 As, by design, the network formation process di�ers across implementations, it is reasonable to assume the
networks createdwith those processes will di�er. Both implementations formnetworks with the same number
of individuals, density, and degree distribution, and hence produce networks with similar global network pa-
rameters (SI of Jenness et al. (2016) for a detailed parameterization). However, the networks formed are likely
to di�er locally as the mechanisms that determine where ties are formed di�ers drastically. As it is known that
such a local di�erence can have a large impact on spreading processes, it is to be expected that HIV spread
will di�er in the networks formed using the di�erent implementations. Consequently, should we find any dif-
ference in the spread module we would be unable to attribute to these di�erences to any failed alignment in
specific mechanism ormodule or interactions among them; observed di�erencesmight stem from variation in
the partnership network formation, the dynamics of network change, or misalignment elsewhere in the mod-
ule, making for an inconclusive test scenario. To e�ectively compare model implementations, we therefore
needed to control for network formation (and its dynamics) while testing alignment of the interaction of the
two other modules.

4.37 Leveraging the modular structure of both models, we could relatively easily do so. The network module sim-
ply provides an input (a network structure, and list of agent states) to the spreading module. As such, we can
swap out the module in both implementations with a fixed network having stable characteristics. As long as
the stable network is identical as across both models, the stochastic behavior on top of this network should
be the same as long as the models’ behavior is in fact aligned. To create such a test, we ported the world-state
acrossmodels: we outputted all the agent and tie attribute data of a givenworld state fromEpiModel andwrote
a script to read those into the NHSmodel, creating two identical instances. Bymatching the world-state across
both models we ensure both are identical in terms of the networks they use, as such we control for the influ-
ence of network structure. However as network are dynamic and change over time the network structures will
only stay identical for a single time step (tick). To control for the dynamics of the networkwe consequently con-
sider only the spreading behavior in the first tick (when networks are still identical), and do a test for alignment
for those spreading data. This “one-tick-test” e�ectively controls for modules known to vary across implemen-
tations and isolates the modules and mechanisms that we do want to align. In modular models this general
approach can be extremely powerful to reduce the complexity, and allow one to focus on alignment of spe-
cific (sets of) modules. What is more, this type of test can be devised for formally testing higher level modules
even when lower sub-modules are known to deviate. In our case as the network formation and dissolution
wasmodified purposely this test was our primary tool for aligning the spreading behavioral component across
implementations.

A “one-tick-test” for aligning the spreadingmodule

4.38 During the one-tick-test, we evaluated alignment of the system-wide transmission risk by considering the num-
ber of new infections across implementations, the HIV incidence. Note that the occurrence of new incidence
cases is conditional upon a set of stochastic processes throughout the system. This has two implications on
how alignment needs to be tested; 1) To obtain reliable results we need a su�icient number of repetitions of
the same experiment to account for variance that is inherent in any stochastic process, and 2) the stochasticity
implies that the results are unlikely to be numerically identical, and that we instead will look for statistically
similar results, and adopt distributional equivalence as the replication standard.

4.39 In both implementationswe found substantial variance of the incidence across repetitionswith new incidences
cases ranging from0 to 18per time stepwith amodeof 4. Given the relatively lowper act transmission risk, such
variance is not surprising. We can assess this variance by repeating the same experiment multiple times and
considering the average behaviors across these repetitions. E�ectively we are producing a distribution of inci-
dence, which becomesmore andmore stable as behavior is averaged overmore repetitions. We found that our
incidence distribution becomes stable once the number of repetitions was increased to the order of 50-100k,
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and that consequently the variance of themean incidence largely disappeared as that point, and that very nar-
row confidence intervals for the incidence distribution are obtained. Consequently, we used the one-tick-test
with 100k repetitions to compare the incidence across implementation for a given world-state. This compari-
son revealed distributional di�erences in incidence across the implementations, given that we had previously
aligned the sub-modules that drive this distribution this was a surprising result.

Addressing themisalignment across spreadingmodules

4.40 A�er findingdi�erences in themeanvaluesof transmission risks across implementations,weexplored themod-
ule for indicationsof the sourceofmisalignment. First,we lookedat themean risks for each tie individually (over
50k repetitions). We fixed the number of acts per tie to one (for all tie types), and compared the risks obtained
across both implementations. We filtered out the ties that yielded di�erentmean risks across implementations
and explored their characteristics to identify the potential source of the di�erences. We went through several
iterations of this process, which allowed us to 1) spot a bug in our script for porting world-states across imple-
mentation, which caused two agent attributed to be switched, 2) notice that the acute stage had been renamed
in a later version of EpiModel which resulted in it not being correctly translated during the porting across im-
plementations resulting in a misalignment of risks, and 3) most notably, it allowed us to track di�erences back
to a discrepancy in the risk calculation module, which we will further elaborate on below. These are but a few
examples of how statistical testing of alignment can serve as an exploratory tool for finding source of misalign-
ment.

4.41 By outputting the distribution of risks for each tie (rather than just the means), we observed that a total of up
to six di�erent risks could be generated within a given tie. These risks are linked to the critical scenarios iden-
tified previously as a combination of the sexual behaviors (insertive/receptive/versatile) and use of condoms
(Yes/No), resulting in 2× 3= 6 scenarios. We found that for the versatile sex acts, the risk numbers across the
implementations did not align. Note that such sex acts are the compound of both an insertive and a receptive
sex act, and hence had previously been considered a non-critical scenario in our tests. However, due to di�er-
ences in the way risks were compounded, the NHS model and EpiModel did not yield the same numbers a�er
compounding, evenwhen the risk for the individual insertive and receptive acts didmatch numerically. Chang-
ing the implementation of compounding of risks in the NHSmodel (e�ectively treating the act as two separate
acts one insertive and one receptive rather that combining them in a single chance of success) resulted in num-
bers for all risk scenarios thatmatchedexactly (achieving numerically identical results also for versatile events).
A�er these changes, the one-tick test showed promising results, with nearly identical HIV incidence frequency
distributions across implementations, when simulated 100,000 times (Figure 4).

Diagnostic plots and tests for distributional alignment

4.42 While the overlay of the two distributions in Figure 3 seems to show a high degree of agreement as the frequen-
cies look similar, this typeof figure is a poorway todeterminedistributional di�erences since there is little room
to examine the tails of the distribution. In what follows, we describe the statistical tests and plots we used to
compare distributions of new incident cases across implementations.

4.43 We examined whether the new incidence distributions is both implementations match well against a Poisson
or mixture of Poisson distributions. This is shown in Figure 4, where for each observed number of incident
cases, k = 0, 1, . . .K, we plot this against a function of the following observed proportion, P (k) of observed
cases across all simulations. With Y (k) = log(P (k) + log(k!), a Poisson random variable will show a linear
relationship on k, with intercept ˘λ and slope log λ, where λ is the mean of the distribution. A typical Poisson
mixture distribution will show an approximate quadratic relationship. In this plot, both the EpiModel and NHS
model plots look exceptionally linear, and they are nearly on top of one another. Thus, there is no indication of
a departure from Poissonness, and the di�erence in the EpiModel and NHSmodel means are extremely small.

4.44 These graphical results were then repeated across 50 variations of randomly generated starting networks. A
Poisson model fits all these data well (and formal tests for extra-Poisson variation are all nonsignificant). Con-
sequently, we conducted formal tests of the di�erences betweenEpiModel andNHSmodelmeans under a Pois-
son assumption.

4.45 Running this formal test on all 50 networks revealed that, for 10 out of the 50networks (20%), therewas a signif-
icant di�erence in mean incidence rates between the EpiModel and the NHSmodel at the 0.05 level (Appendix
I). This is far above the 2-3 out of 50 trials we would expect by chance, signaling that full alignment had not yet
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Figure 3: Distribution of incidence from the HIV disease spreadmodule for a single tick with an identical under-
lying network structure (EpiModel implementation in black, NHSmodel implementation in red).

Figure 4: The incidence distributions compared to a Poisson distribution for both implementations (EpiModel
in black, NHSmodel in red).

been achieved. Our analysis also revealed the di�erences in means across implementations were tiny in terms
of e�ect sizes, with the largest being 0.006, indicating that a small but systematic di�erence was occurring.

4.46 To address this misalignment, we once more looked at the distribution of risks per tie and found (as estab-
lished before) that the transmission risks calculated are identical across themodels. This le� only twopotential
sources of the discrepancy: 1) the frequency of acts that occur is di�erent across the implementations, or 2) the
distribution of risk scenarios— that is, a combination of using a condom, and choosing a sex-rolewhich is asso-
ciated with a set risk of transmission— is di�erent across implementations. Outputting data of all acts (per tie)
revealed no structural di�erences across implementations in the distribution of the risk scenarios. For the rate
of sex acts, we only found significant di�erences in one type of sexual tie—Casual Ties—but not for the others.
A�er observing these results, we found that the parameter for the mean number of sex acts in casual ties dif-
fered slightly between the EpiModel code—0.955— and the value reported in its documentation—0.96—, the
latter being the rounded up version of the prior. Whereas the prior was used in the EpiModel implementation,
the NHSmodel, relying on the documentation, used the latter.

4.47 We adjusted the EpiModel implementation to reflect the value used in its documentation (and the NHSmodel)
and reran the one-tick test. The results (Appendix I) showed that in 48/50 (96%) of cases, the outcomes of the
models were statistically indistinguishable. Figure 5 shows two sets of significance levels for these tests; the
lower set for 50 variations using the initial parameter, and the upper ones for the same 50 variations using the
updated (aligned) parameter. On the x-axis we provide the expected values of 50 p-values (log transformed)
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Figure 5: An overview of the P-values of the comparison between the EpiModel and the NHS implementations.
In blue the P-values when the models are aligned, in black when they are not aligned.

under a null distribution; on the y-axis are the ordered observed p-values.

4.48 Under the null distribution, the p-values should fall along the y = x line. The observed p-values for the Epi-
Model and the NHS model comparisons with the non-adjusted parameter (black squares) fall well below this
line, evidencing systematic di�erences between these EpiModel and the NHS model distributions. However,
once the parameter for mean number of casual sex-acts was aligned to 0.955 (blue squares), the p-values fall
nearly perfectly on the y = x line, indicating excellent agreement.

4.49 Figure 6 describes how small a di�erence we are able to detect. This empirical quantile-quantile (EQQ) plot
(Chambers 2018) uses the ordered corrected e�ect sizes of EpiModel versus the NHS model on the x-axis, and
presents the ordered e�ect sizes for the non-aligned variations on the y-axis. The non-aligned version clearly
deviated from the expected y = x line. Themarginal distributions for the corrected and rounded-o� e�ect sizes
are shown on the top and right sides of the figure, and the medians are shown on the dotted lines. Note that
the median for those that are corrected are centered at zero while the median for those with the rounded o�
parameter are slightly positive. Also note that the e�ect sizes are all exceptionally small, ranging from +/-0.005,
demonstrating how precise we can estimate these quantities with large enough number of simulations.

Figure 6: An empirical Q-Q plot of the e�ect sizes for the aligned versus the non-aligned comparison of the
incidence distributions. Whereas the aligned e�ect sizes are centered (blue) around 0, the non-aligned e�ect
sizes (yellow) are not.

Example 3: Replication of the computational experiment

4.50 Generally speaking, high-fidelity models are created with the aim of making inferences about certain phenom-
ena. They serve as a tool for facilitating experimentation or exploration, and as such increase our knowledge
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and support decision making. EpiModel is no exception in this regard. In the work by Jenness et al. (2016)
the model is used to make inferences about the relative e�ectiveness of di�erent interpretations of CDC clini-
cal practice guidelines of PrEP indications among MSM, e�ectively determining what the criteria are for being
eligible to receive PrEP. By adding a PrEP intervention module to the previously described transmission risk
module, the e�ects of various interpretations are studied using a computational experiment. Because this ex-
periment e�ectively incorporates the full model, we chose this computational experiment as our final example
of replication.

4.51 The experiment compared a total of 10 scenarios; 1 baseline without interventions and 9 variations with di�er-
ent (combinations of) interpretations of CDC guidelines for PrEP. For each scenario a period of 520 time-steps
(representing 10 years) wasmodeled, a�er which the prevalence was recorder. As each simulation run consists
of a multitude of stochastic decisions which have an inherent path dependence in them, random fluctuation
in model behavior are to be expected. Consequently, obtaining reliable results for any given scenario will re-
quire averaging the results across multiple repetitions. For this reason each of these scenarios was repeated
250 times. Based on the collected data, a the mean incidence, and a 95% confidence interval of this mean is
calculated for each scenario, allowing a comparison of the relative e�ectiveness of the interpretations of the
CDC PrEP guidelines. Additionally, as data for the EpiModel experiment is presented in Jenness et al. (2016),
this also allowed us to compare the NHSmodel findings to the findings of EpiModel.

4.52 Prior to running the experiment, EpiModel implemented aburn-in procedure to generate a randomized starting
state. During the burn-in process 250 instantiations of the model (set up with the parameters reported) were
run for a period of 2600 time-steps (50 years). This burn-in period aimed tomake sure that bias from the initial
setup was dissolved and potential model dynamics stemming from a potentially biased setup had stabilized
and as such played no role in the experiment. A�er this burn-in period, the single instance (1 out of 250) that
best fitted empirical data (indicated by a stable prevalence at a level of∼26%) was selected. This “world” was
then used as the starting state of all experiments.

The structure of the computational experiment

4.53 In replicating this experiment, there are threemodules that needed to be considered; the interventionmodule,
the partnership selectionmodule, and the transmissionmodule. Thesemodules essentially make up the com-
plete EpiModel method, and determine the macro-level behavior of the model. Two of the modules (partner
selection and transmission risk) have been discussed as part of our previous replication examples. In order to
compare CDC guidelines, only amodule describing the e�ects of such guidelines had to be added to themodel.

4.54 Intervention Module: This module e�ectively describes how individuals get tested, and, when found to be
HIV-negative, get assigned to PrEP if eligible. The assignment to PrEP depends on two factors; 1) an individual’s
indications, which depend on interpretation of the CDC guidelines being adopted, and 2) on availability for
PrEP. The latter we kept fixed for the purpose of replication as we consider it of secondary importance in our
replication e�orts. Once an individual is on PrEP, their risk of being infected is reduced by an amount which is
conditional on the level of adherence to the drug.

The process of replicating the experiment

4.55 Replication of the intervention module proved particularly challenging. The documentation, which provided
a plain English description of the meaning of the interpretations of the CDC guidelines, proved insu�icient to
convey and distinguish the nuances of how each of these interventions varied across scenario, and hence how
it should be implemented. Communicatingwith the senior author of EpiModelmodel did resolvemany but not
all issues in this regard, the nuances of the interpretation are simply hard to convey in plain English. However,
by referring to specific sections of the source code directly, the EpiModel author made sure these nuances and
the di�erences in the meanings of the various intervention scenarios could be distinguished.

4.56 In replicating the experiment, we opted for relational alignment for two reasons; first, relational alignment suf-
fices to answer the key question. In the original paper the experimental results are discussed only in relative
terms (A is more e�ective than B) and the actual numerical impact is ignored (e.g. A reduces prevalence by X
percent). The authors of the original experiment made this choice intentionally, and this signals the relative
confidence in the models numerical results. More specifically, it indicates that the relative orderings are con-
sidered themost critical take-aways from the experiment, especially among those that produce the lowest inci-
dence. As such, relational alignment, as a replication standard, su�ices for making claims about the alignment
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of these results across implementations. Second,we consider it feasible, in fact the only feasible standard avail-
able. The fact that by design the partnership selection and dissolutionmodule di�ers across implementations,
and the fact that the resulting di�erences in structure can have an impact on the spreading dynamics (Vermeer
et al. 2018), limits the alignment that can be expected among the two models. Based on these di�erence we
consider the chance that models will produce outputs that are numerically identical essentially non-existent,
and the chance that results distributionally align slim at best. Consequently, it is most appropriate to aim for a
replication standard of relational alignment.

4.57 A�er having aligned the interventionmodule based on the source code, we ran a set of simulationswith varying
conditions for qualifying for PrEP, replicating the experiment conducted in the original study (see Table 1). Note
that in these simulationsweknowthat the spreadingbehaviormodule is aligned, and thatpartnership selection
module is not strictly aligned.

4.58 The results of these simulations (Table 1, Figure 7) revealed three critical things. First, our results show that we
are quite far from distributional alignment. A comparison of the 10means yields a z-value of 8.6, with a p-value
< 10−17. Second, there is a very strong correlation across implementations (Figure 7), in fact the correlation
between the average incidence in the 10 scenarios, across EpiModel and the NHS model was 0.98. And third,
in addressing the question of whether the orderings of the 10 EpiModel and 10 NHS model interventions on
incidence are similar, we find that 92% of all pairwise orderings in intervention e�ectiveness were consistent
across implementations. We note that this percent could well be improved if the EpiModel means had higher
precision like those we calculated in the NHSmodel (Table 1).

Criteria code Interpretation of the CDC guideline for prescribing PrEP EpiModel NHSmodel

Baseline 25.9 25.3
Condition 1: Unprotected Anal Intercourse (UAI) in a monogamous partnerships with unknown HIV status
1a A partnership is monogamous when it is the only tie for both

partners
24.5 23.1

1b A partnership is monogamous when it is the only tie for at least
one of the partners

23.6 21.6

Condition 2: Unprotected Anal Intercourse (UAI) outside a monogamous partnership
2a Any tie beyond the first classifies as ‘outside a monogamous

partnership’.
23.3 20

2b All ties other than the main tie is classify as ‘outside a monoga-
mous partnership’.

21.1 15.7

Condition 3: Anal intercourse (AI) in any known-serodiscordant partnership
3a Any AI will quality the person 23 20.8
3b Only Unprotected AI will qualify the person 23.5 21.7
Combinations of conditions
J1 Criteria 1a, 2a and 3a all quality an individual 20.6 16.2
J2 Criteria 1b, 2b and 3a all quality an individual 19.2 14.8
J3 Criteria 1b, 2b and 3b all quality an individual 19.4 14.9

Table 1: This table presents the mean Prevalence a�er running the simulation for 10 years, under various PrEP
assignment interventions. The precision for all EpiModel values is +/- 1.1, precision for all NHS model values is
+/- 0.1

Discussion

5.1 Wilensky & Rand (2007) have specified 6 di�erent dimensions in which replications can vary from the original
model: (1) time, (2) hardware, (3) languages, (4) toolkits, (5) algorithms and (6) authors. Our replication pro-
cess di�er in all 6 of these dimension. Throughout the examples described above we have seen various ways
in which the latter four of these dimension have a�ected our replication process. More specially, we have high-
lighted tensions in the language dimensions when touching upon the translational process required. We ran
into toolkit dimension tensions during our choice to modify the partnership formation and dissolution mod-
ule. We had to address the algorithmic dimension in our process of aligning risk calculation using factors and
log-odds. And throughout theprocessof replicationwehad tomanagehowourown interpretations varied from
the original model authors, resulting in various discussions relating to model validity during replication. While
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Figure 7: The correlation between the Prevalence levels obtained in the EpiModel and those obtained in the
NHSmodel is found to be nearly perfect.

all six dimension were varied, and our replication thus was the most challenging test of replication one could
design, we have obtained relational alignment in the final experiment, distributional equivalence in modules
where randomness was involved, and numerically identical results for the deterministic modules. For this rea-
son, we consider the model replication a success. In the section following we use our process as the basis for a
more elaborate discussion on various lessons for improving future replication e�orts in general and replication
of high-fidelity models specifically.

5.2 In replicating, verifying, and validating this model for HIV spread, we rapidly learned that the process of repli-
cating high-fidelity models is far more complex than replication processes currently described in the replica-
tion literature, as these generally focus on replicating abstract, theory building models. High-fidelity models
attempt to more closely resemble and capture real world phenomena, and as such they increasingly incorpo-
rate a wide set of dynamics considered relevant in practice. Doing so, by definition, increases the number of
moving parts, or modules, of which the model consists. As these modules are o�en nested and interacting,
the complexity of high-fidelity models is not only much larger, but also grows non-linearly with the number
of dimensions incorporated in them. Consequently, the more dimensions a model uses to capture details of a
phenomenon, the more complex it and its replication becomes. This complexity does not stem from the be-
havior themodel produces per se, as simplemodels can easily produce complex behavior. Rather it stems from
the higher dimensionality and number of sub-modules of these models and themany dependencies that exist
among them.

5.3 We found that replication of these high-fidelitymodels requires a replication strategywhich inmany respects is
similar to replicationof simplermodels; however, to dealwith the increased complexity it becomes increasingly
important to leverage modularity. Below we will list and discuss the various lessons learned and strategies
we adopted during our process, and consider how these are similar or di�erent for replication of high-fidelity
models compared to simpler ones.

Amodularmodel design andmodular replication strategy are prerequisites for success-
ful replication of high-fidelity models

5.4 Both the examples of replicating the viral loadmodule as well as the treatmentmodule highlight that using the
written documentation of the EpiModel as the sole source of describing the model rather quickly resulted in a
misaligned replicatedmodel. To solve the problem ofmaking the implementedmodels match and to come up
with an actionable strategy on how to resolve misalignment, our natural tendency was to scope the problem
down, and cut it into chunks for which we could provide an actionable checklist and test behavior. The first
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two replication examples described in the previous section highlight exactly how this way of scoping down the
e�ort of replications, from a high-fidelity model as a whole to replication of a single (sub-) module, make the
task manageable.

5.5 Note that a key design principle for EpiModel was to break a complex social system and its behaviors intomod-
ules, each with an associated R function that may act independently or depend on other modules (Jenness
et al. 2018). It was this structure that allowed us to look at behaviors at the level of themodule, rather than hav-
ing to consider the model as a whole. This modular structure is what allowed us to pursue replication piece by
piece and compare each module’s behaviors across implementations. Doing such a comparison for a module
rather than for the model as a whole, significantly reduces the complexity of the replication task at hand, and
the e�orts required to keep track of and report on the process of replication and its success.

5.6 A modular replication strategy can also be e�ective in reducing complexity in the replication of theory-driven
models, but to a lesser extent. In contrast, in our replication of the high-fidelity EpiModel, the ability to scope
down to smaller sub-modules resulted in considerable gains in term of reducing complexity. As such, the ben-
efits of amodular replication strategy are primarily reaped in replication of high-fidelitymodels. Evenmore so,
weargue thatwithout such reductions of complexity, replicationof high-fidelitymodels becomesnearly impos-
sible. Consequently, we considermodular replication to be amajor key to successful replication of high-fidelity
models.

5.7 The extent to which amodular replication strategy can be pursued is conditional on the structure of themodel
being replicated. The structuremust allow for easy identificationof submodulesand their interaction inorder to
beable topursue this strategy. Asboth themodularity and the structureof themodel are inherently determined
during the model building, the replicability of high-fidelity models is largely conditional on the choices made
during themodeldesignprocess. Toensure reliablemodel supporteddecision-makingandknowledgecreation
in the simulation domain, it is critical thatmodels can be replicated. Therefore, specificallywhenbuilding high-
fidelity models, one should be aware of modularity, and adopting modular designs for high-fidelity models
should be the standard within the modeling community.

Functional code is the key tomodular replication

5.8 We consider writing functional code to be a fundamental step in facilitating the creation of modular models.
Functional code is structured in a way that it takes an input and returns a value, much like a mathematical ex-
pression [input→ output]. By design, such a structure allows a model to be broken up into pieces, modules,
and allows each of these modules’ behavior to be aligned and tested independently. One can simply replace a
section of code with a given function and provide both the original and the replicated module with the same
input and check if the outputs matches. This strategy is similar to the concept of unit testing which is well es-
tablished in the so�ware development domain (Hayes 1986). Themain di�erence betweenmodular replication
and unit testing is that while unit testing has various testing dimensions associatedwith it, herewe focus solely
on checking the input and output relationship. As such, we are e�ectively checking only if, when provided the
same inputs, a re-implementedmodule provides replicated outputs (given the replication standard adopted).

5.9 An added benefit is that the adoption of functional andmodular code allows for easiermodel adaptation. Mod-
ules can be swapped in and out without a�ecting the remainder of the model code, as long as they take the
same type of input and produce the same type of output. This swapping potential provides an easy way to
upgrade amodel (e.g., adding uncertainty in parameter values), to improve amodel (e.g., based on new empir-
ical data), or to apply local data for local decision-making (e.g., HIV prevalence) which is particularly valuable
whenmodeling a real world phenomenonwith increasing levels of accuracy, as is the case inmany high-fidelity
models.

The hierarchical structure should be leveraged to build alignment during replication

5.10 In the process of reproducing the transmission risk module, we have highlighted the nested structure of mod-
ules, and that this structure can be leveraged to reduce the replication complexity. The fact that we had pre-
viously aligned the viral-load progression module, and that this is one of the inputs for replication of the risk
of transmissionmodule, clearly indicates the hierarchy in themodel. While this nested structure is an example
of what makes high-fidelity models complex, it is also something that can be leveraged during replication, as
is shown in our second replication example. Having previously aligned the behavior of the input sub-modules
significantly reduced the complexity of the replication e�orts required for the higher-level modules, as it only
involved checking the interaction amongmodules.
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5.11 Leveraging these e�iciency gains does require one to build reliability from the ground up, and doing so consis-
tently. During our replication process, we realized thatwe could not take shortcutswith respect to this strategy,
as attempting to do so compromises the reliability of the foundation of each module, which once scaled up
can cause undesirable emergent behaviors, for which the cause cannot be easily traced. An example of this can
be found in our process, during which we assumed the calculation of compounding risks of versatile acts was
too trivial to include as a critical case during alignment of the risks calculation module. In doing so we took a
shortcut in checking for the complete alignment of the risk calculationmodule. When in the next stage of repli-
cation this module’s interactions were considered, and these interaction could not be aligned acrossmodels, a
vast amount of e�ort was needed to back trace the cause of this misalignment to the underlying sub-module.
This example highlights that taking shortcuts, in building alignment from the ground up, can easily nullify the
reductions in complexity that are gained by the modular replication approach.

Replication standards should be assigned at the (sub) module level

5.12 In adopting our modular replication strategy, we found ourselves re-evaluating the standard of replication we
were using for each module. Whereas the module of viral-load calculation considered a deterministic mecha-
nism of each single agent’s behavior, the risk of transmissionmodule was fundamentally stochastic and based
on a group of interacting agents. These di�erences made it apparent that di�erent modules can, and likely
should, have di�erent standards for replication. As such, a replication standard should not be considered to
apply to the entire model including all its modules, but rather, it should be specified on the module level and
should match the requirements and options one has for that particular module. This Indicates that multiple
replication standards could (and likely should) be used during a single replication process.

Both reliability and uncertainty trickle up

5.13 Wenote that, as we hierarchically went through replicating the variousmodules in the EpiModel we recognized
that there is a strong dependence on the replication standards one adopts. To consider distributional equiva-
lence as a standard at the level of the transmission module (the meso-level), our sub-modules (e.g., the viral
load) at the micro-level needed to be numerically identical. In using a validated viral load sub-module during
the replication of the transmissionmodule, we observed that while reliability can trickle upwards in the hierar-
chy of a model, so can uncertainty.

5.14 Having aligned (sub) modules allows one to more e�ectively examine the higher-level modules they feed into,
having less strict alignment in those sub-moduleswill constrain the alignment that one can reasonably achieve
at those higher levels. One simply cannot aim to obtain numerically identical results when one of the compo-
nents only has a distributionally equivalent replication standard. As small uncertainties (or discrepancies) at
lower levels can be amplified due to interaction, they can strongly restrict the replication standard that one can
achieve on the higher levels. The nature of uncertainty therefore implies that stricter replication standards at
the more granular levels are a requirement to achieve alignment at higher levels in the hierarchy. A constrain-
ing factor, such dependence on strictly aligned low level modules need not be problematic, as the choice of
the standards of replication strongly depends on the questions one aims to address during replication. Even
with less strictly aligned granular modules, model level alignment can be achieved. This highlights there is no
golden rule on the replication standard to choose at which level, instead one should be aware of how structure
interacts with (un)certainty, and devise a replication strategy that accounts for this interaction while achieving
the replication aims.

Statistical testing can serve as a diagnostic tool

5.15 During the replication of the risk of transmissionmodule we spent considerable e�ort showing that pursuing a
less strict standard of replication, distributional versus numerical alignment, does not imply we are less certain
about replication success. Instead the replication standard should be considered based on the aims and the
characteristic of the module being tested. In this case the inclusion of population e�ects and random pulls
from a distribution of outcome highlight that distributional alignment better suits our needs.

5.16 Our process of statistical testing for distributional alignment using the one-tick-test shows that the value of
statistical testing is two-fold. First and foremost, with large enough numbers of simulations it is an increasingly
precise tool for creating confidence in the alignment acrossmodels ormodules, and should be used as ameans
for detectingmisalignment. Second, especially when combinedwith numerically identical sub-modules, it can
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serve as a tool to pinpoint the source of the di�erences acrossmodel implementations, and allows one to trace
discrepancies back to areas where one would not normally look to find them. Statistical testing for replicators,
therefore, serves both as a tool for diagnostics and one for measuring alignment.

The (modular) structure should be incorporated inmodel documentation

5.17 Throughout our replication e�ort, and especially during the replication of the viral load module and the repli-
cation of the various CDC interventions required for the replication of the experiment, we found, in line with
previouswork (Grimmet al. 2017; Thiele &Grimm2015), model documentation is a key barrier to e�ective repli-
cation.

5.18 We found that adhering to full coverage of the elements in a reputable replication standard like ODD (Grimm
et al. 2006, 2010, 2017), which the EpiModel documentation does to a large extent, is still not su�icient to allow
unambiguous replication. Especially in high-fidelitymodels, like EpiModel, the sheer amount ofmodel descrip-
tion required makes it likely that some deviation during the translational process will occur.

5.19 Amodular approach to documentation, in which the documentation follows the structure of themodel, is crit-
ical. It highlights not only how the model can be broken up into modules, but also how the various modules
interact andarehierarchically ordered,whichboth improves the translational process, aswell asprovides struc-
tural overview. Both are particularly useful for documentation of high-fidelitymodels, as the number of dimen-
sions is higher and as such the need for overview increases. Modular documentation will help replicators in
their process, but the extent towhich these benefits can be reaped is to a large extent conditional on the e�orts
of model authors. As such, replicability of high-fidelity models requires model builders to adopt a mindset of
facilitating replication, both during model building and during the creation of the model documentation.

Modular documentation allows for easier identification and reporting on critical cases, which strongly
increases replicability

5.20 Modular documentation has additional benefits related to reporting of critical cases. During ourmodular repli-
cation process, we adopted a strategy of identifying the critical cases: the cases where themechanism of trans-
lating inputs into outputs might potentially di�er within a given module. Rather than testing all inputs of a
module, the behavior in these critical cases was tested to check alignment. As highlighted in both the process
of replicating the viral-loadmodule and the replication of the risk of transmissionmodule we found that these
critical cases can provide an enormous amount of information relating to themodule dynamics for replicators.
We, however, also found that identifying these cases can be a challenging task for replicators as it requires an
in depth understanding of the module’s behavior.

5.21 While exploring critical cases is relatively hard for replicators it is generally part of the model verification pro-
cess that amodel builder undertakes as part of themodel building process. Yetwhile the originalmodelermost
likely takes these steps of identifying and testing, this information is rarely reported. To facilitate replication,
we suggest that model documentation should make sure to include these critical cases. A more ideal solution
would be to go even further and provide executable test code for modules; such pieces of code can be used to
generate data for the critical cases of the specificmodule, which can then be compared directly without requir-
ing a replicator to interactwith the originalmodel’s source code further lowering theboundaries for replication.

Replicating high-fidelity models likely requires additional sources of model description

5.22 Various authors have argued thatmaking source code available can negate some of the uncertainties that arise
from translation of the documentation (e.g., Collins et al. 2015). We, during our replication e�orts, found that
availability of source code can e�ectively cut out the steps of translating to/from plain text. However, using
source code poses its own problems. As previously recognized it introduces the prospect of groupthink that
forgoes some of the validation process inherent in replication (Wilensky & Rand 2007). And it introduces yet
another barrier to replication as the use of source code during replication requires replicators to be fluent in
the language of the implemented model. What is more, replication based on implemented code can stand
in the way of gaining an overview of the model structure. Source code, even if generously commented and
structured, is simply not meant for comprehending model behavior — grasping model behavior from source
code is a non-trivial task especially in high-fidelity models.

5.23 While source codewas available in our replication process, we sidestepped the initial concerns by notmaking it
our first source of information. Furthermore, we partneredwith the author of the originalmodel who guided us
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through the source code, pointing to specific sections of interest that explicitly covered the modules we were
replicating at that point in time. This partnership proved extremely valuable and is considered one of the key
success factors in our replication process. Of course, such a partnershipmay not be available to the replicators,
and this will make the replication e�ort more challenging.

Conclusion

6.1 We found thatwhile various previous replication e�orts have yielded factors critical for replication success, this
knowledge is primarily drawn from replications of abstract theory generating and relatively simple models.
In this study, we therefore replicated a high-fidelity model of HIV spread among Men-who-have-sex-with-Men
(MSM), originally published by Jenness et al. (2016) and reported on the lessons learned. We have provided
three examples of steps in the replication process, covering the model (and its sub-modules) at various levels.
We find that high-fidelity models primarily constrain the replication process due to their complex structure.
Our lessons therefore aremainly focused on how to leveragemodularity during replication to reduce this com-
plexity. While the lessons distilled from our replication process apply to replication processes in general, they
becomemore apparent and are critically important when replicating high-fidelity models.

6.2 We found that our replication would have been considerably more di�icult without a source model that has a
modular structure, available source-code for the model, and direct communication lines with the original au-
thors to facilitate the translational process. Other factors critical to replication success are functionally written
source code, which enables modules to be tested separately, and documentation that provides an overview of
model structure, follows the modular structure of the model, and provides critical scenarios and tests for each
module. We summarize the lessons from our replication process as follows:

6.3 For Replicators:

1. Start replication by identifying the modular and interaction structure of the model

2. Scope down complexity by replicating modules,

3. Replicate from the ground up, starting with the most fundamental modules

4. Choose replication standards fitting the module being considered

5. Leverage functional code to test alignment in the critical cases

6. Increase the scope of replication by combining previously validated modules, and test their interactions

7. Use statistical testing as both a source of evidence and a tool for diagnostics

6.4 For Model builders:

1. Design the model with a modular structure in mind

2. Align documentation with this modular structure

3. Use functional code whenever possible

4. Write code to facilitate testing module outputs, and identify critical cases as part of the documentation

5. Providemodel descriptions in variousmodes, e.g. Source code, written text, a structured technical infor-
mation appendix, and be willing to communicate relating to model behavior

6.5 This paper, while describing examples of steps within the process of replication of a high-fidelity model, does
notdocument the full replicationprocess. Instead, it highlightsparticular factors thatmakehigh-fidelitymodels
morechallenging to replicate. Whileour replicationprocesshighlightedstrugglesdi�erent fromthoseobserved
in simplermodels, we note these tensions can at times arise in simplermodels. Wedo, however, expect them to
be less prominent due to the smaller amount of translation needed, modules incorporated, and less complex
model structure that is naturally present in simpler models. The replication of high-fidelity models therefore
should mainly focus on reducing such complexity by adopting a modular approach. Once one implements
such a modular strategy, model verification of high-fidelity models becomes closer to the process of verifying
relatively simple models.
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6.6 One aspect that has largely remained outside the scope of our paper has been model validation, checking if
themodel behaves like the phenomenon as observed in reality. At various points along the replication process,
the replication raised validation questions and these questions were pursued, and some marked as requiring
further examination. As the main purpose of this paper was documenting the alignment of the model imple-
mentations, discussions pertaining to these areas will be le� for a future paper.

6.7 Onemodel section that particularly stands out for further exploration is the partnership dynamicsmodule. The
observed distributional di�erences in the replicated experiment can solely be attributed to di�erences in the
partnership structure and dynamics. While this indicates the strong dependence of HIV spread dynamics on
the underlying network structure, which implementation provides more realistic behaviors is not yet fully un-
derstood. Both implemented partnership selection modules are themselves models of the real-world process
of partnership formation, but they implement this process in a di�erent way. While both fit the same network
level characteristics, both are abstracting the realistic mechanism and hence both have their flaws. The distri-
butional sensitivity of the HIV model behavior to the outputs of these partnership dynamics models highlights
that understanding the e�ects of this module specifically and validating its behavior will be a critical next step
for aligning both implementations to practice.

6.8 Lastly, in our process, we have shown howdi�erent replication standards should be applied both to replication
ofmodules at di�erent levels, and have indicated how these can be leveraged to facilitate overall comparisons.
We have indicated howmore strict standards can be used to build a strong foundation for modular replication.
But a less strict standard such as relation alignment for projected incidence and other population based perfor-
mance measures can be incredibly powerful to support policy decisions. In our case our relational alignment
gave us clarity in comparing impact of di�erent PrEP guidelines. We believe this has general applicability for
replicabilityof high fidelitymodels. For example, in recentmodels addressingCOVID-19 spread their predictions
may give di�erent numerical results depending on how human behavior is modeled, but models in relational
alignment could still identify the highest risk areas where stronger countermeasures would be best served.

Model Documentation

The source code for both the original model and the replicated model can be found online.

NHSmodel: https://www.comses.net/codebases/d3d45a7e-24a4-42e9-a44b-e6e8e293e578/releases/
1.0.0/

EpiModel: https://github.com/statnet/EpiModel

For a completemodel description, we refer the reader to the Supplementary data of the replicated study, it can
be found at https://academic.oup.com/jid/article/214/12/1800/2632613#supplementary-data
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Appendix A: The flowof the EpiModel behavior in high level, pseudo code
and flow diagram

The behaviors of the EpiModel method can be described using 2 stages, an initialization stage and the regular
dynamicsduring themodel run. Both stagesaredescribedbelowatahigh level usingpseudocode. Additionally
we present a high level flow diagram of themodel’s behaviors that occur during the second stage of themodel
dynamics (Figure 8).

Stage 1: Initialization.

1. The data structure for collecting data and tracking agent attributes is set up
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2. The ERGM model is parameterized, it is determined what the fit measures are, and what the resulting
parameters for formation and dissolution are.

3. A set of agents is formed with characteristics based of the empirical data from the two Atlanta based
cohorts of MSM

Stage 2: Model dynamics

During this stage the actual behavior in themodel occurs, and agents states are changed by going through a set
of steps described below. Note that a changes in agent attributes are processed by means of vector processes,
meaning that all agents will go through these steps simultaneously.

Step 1: Individuals have their age updated

Individuals have their age (in weeks) increased by one

Step 2: Individuals are removed from the system

Individuals are removed from the system if they die (randomly or due to AIDS progression)

Individuals are removed from the system as they age out of the target population

Step 3: New individuals are ‘born’

Individuals age into the population range

Step 4: Individuals have a chance to get tested for HIV

Step 5: Individuals are put into ART treatment (if applicable)

Step 6: Individuals are put on PrEP (if applicable)

Step 7: Individuals have their progression through the HIV infection states updated

Step 8: Individuals have their viral-load updated

Step 9: Individuals potentially have their sexual activity determined for one-time ties

Step 10: Individuals potentially have their sexual role in main and casual partnerships updated

Step 11: The systemwide degree numbers are corrected based on the population size

Step 12: The systemwide network properties of the ERGMSmodel are updated

Step 12: The sexual networks are updated

Step 13: Individuals potentially have their HIV status disclosed to new partners

Step 14: Individuals have their condom use determined for each tie

Step 15 : Individuals have their eligibility for PrEP updated (based on various criteria in the experiment)

Step 16: Individuals have their sexual position determined for each tie

Step 17: Each tie has the potential to cause transmission

Step 18: Individuals have their HIV status updated (and prevalence and incidence numbers are update)
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Figure 8: A flow diagram of the processes agents will go through throughout a single timestep, highlighting the
role of various attribute play during these processes.

Appendix B: Calculation of the risk inflation based on viral load and the
stage of infection

Belowwepresent the inflation factors for the risk of transmission as the result of a combination of the viral load
levels and the stage of infection (an acute stage multiplier) for both implementation prior to alignment.
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Week number Risk inflation factor EpiModel Risk inflation factor NHS
model

Risk Inflation NHS rela-
tive to EpiModel

1 0.106 0.000 0.000
2 0.298 24.672 82.923
3 0.832 32.312 38.832
4 2.327 37.835 16.259
5 6.508 42.317 6.502
6 18.200 46.156 2.536
7 50.898 49.550 0.974
8 35.640 47.671 1.338
9 24.957 44.058 1.765
10 17.475 39.908 2.284
11 12.237 34.940 2.856
12 8.569 28.504 3.327
13 6.000 18.132 3.022

Average onset stage (week 1-13) 12.509
14-520 1.000 1.000 1.000
540 1.506 4.875 3.238
560 2.317 6.427 2.775
580 3.564 7.542 2.116
600 5.483 8.445 1.540
620 8.426 9.218 1.093

Average AIDS stage (week 521-621) 2.258
Average throughout the infection (week 1-621) 1.442

Table 2: A comparison of the factors by which risk of transmission is inflated across both implementations.

Appendix C: An example of the clarifying questions posed to the authors
of the original model, and the consequent answers to these question

Question 1: What happens to relationships in which one person turns 40 and leaves the model? More specifi-
cally, do all the relationships of this individual also get removed in the same step? Or does the younger partner
stay in the relationship even though their older partner is no longer part of the simulation? The reason we ask
is that in our model, ending the relationship severely reduces the duration of relationships for people in their
early 30s and older (who are likely to be in relationships with people who are removed from the model.) Con-
sequently, these people aremore o�en exposed to newpartners than they ought to be per the statistics in your
supplemental material.

Answer 1: Relationships end when nodes leave the network. Because this introduces an artifact in the dissolution
rate of partnerships, we adjust the dissolution coe�icients to accommodate this exogenous force of edge removal.
The adjustment, outlined at http://statnet.github.io/tut/NetUtils.html, has the e�ect of increasing
the log odds coe�icient (as the dissolution model is in reality simulating the process of relational persistence: 1-
dissolution).

Some related questions regarding population size and distribution:

Question 2a: First, regarding age distribution, we are unsure of what the age distribution is at the beginning of
the simulation. Do you distribute the age evenly, or does everyone start at 18 like they do during the model’s
runtime?

Answer 2a: Age is uniformly distributed across the possible ages in themodeled population: 18 to 40. See the code
here that does that:https://github.com/statnet/EpiModelHIV/blob/master/R/estimation.R#L412

Question 2b: Second, regarding the population size during runtime, we are not quite sure how your population
stays stable around 10,000. In your Supplementary Technical Appendix (STA) you state, “All persons enter the
network at age 18, which was the lower age boundary of our twomain source studies. The number of new entries
at each time step is basedona fixed rate (3 per 10,000persons perweekly time step) that keeps the overall network
size in a stable state over the time series of the simulations.”
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If in 2a you distribute the age evenly across all 22 years at the beginning of the model (10,000 people / 1144
weeks), you get around 8 people per week. Consequently, around 8 people per time increment leave the simu-
lation because they get too old, but only 3 new enter, for a net result of five fewer people in the simulation per
week. As the population dwindles, even fewer people are added to the model because people are added as a
function of the population size, further exacerbating the trend, resulting in a population of around 6770 a�er
10 years/520 time increments-and this is with neither HIV-related nor natural deaths in the model.

If in 2a everyone starts at 18, we get a larger population (typically around 11,680, again without deaths) but we
have a population that is at most 28 years old a�er 10 years of runtime.

We feel quite sure that we’ve misunderstood something, but we’re not sure what. Would you please elaborate
on how the population initiation and influx process works inmore detail or clarify what we aremisunderstand-
ing?

Answer 2b: Thiswas, unfortunately, an error in the Appendix. The actual per capita ratewas 0.001 perweek, which
translates to 10 entries per week in a population of 10k. Also, we used a fixed product here (new entries = rate *
starting population size) that does not account for any changes in population size over time because we did not
conceptualize entries into the network as a birth process (MSM do not, as of yet, give birth to new MSM). See the
codehere for the ratedefinition (https://github.com/statnet/EpiModelHIV/blob/master/R/params.R#
L275-L278) andapplication in the“birth”module (https://github.com/statnet/EpiModelHIV/blob/master/
R/mod.births.R#L35-L38).

Question 3: What is the per-act HIV transmission probability factor for IEVs? On p. 19 in your STA your table
with per-act HIV transmission probabilities shows the probabilities associated with respectively insertive and
receptive acts, but does not mention IEV. Is it the same as receptive (since that is the highest risk), or is there
are separate probability for IEVs?

Answer 3: IEV functions as a doubling of acts per “event” of AI, one insertive and one receptive. Therewas potential
for transmission to occur in each independent act, with the transmission probability based on the directionality
of each specific act. The code that does this is a little convoluted, but is all contained in the transmission module
(https://github.com/statnet/EpiModelHIV/blob/master/R/mod.trans.R#L67-L72), where we set up
the vector of transmission probabilities.

Question 4: On p5 of the STA, your research finds two di�erent parameters that relate to the rate AI: race and
sexual activity quintile of the individuals. But how are these two parameters related? Are they added or multi-
plied? Or something else? We suspect that wemay bemisunderstanding something about ART adherence, and
its relationship to viral load.

Answer 4: First, althoughwehave racebuilt into themodel, it is e�ectively ignored for this particular applicationby
averagingover the race-specific parameters. In any case, the sexual activity quintile is amain e�ect,meaning that
it is independentof theother variables in thenetworkmodel. You can see that in the codehere (https://github.
com/statnet/PrEPGuidelines/blob/master/scripts/estimation/02.estim.R#L74-L78)whereweset
up the network models. The heterogeneity by activity quintile is governed by the nodefactor(“riskg”) term.

5a) Regarding ART adherence: On p. 17 of the STA your table shows the probabilities of people falling in and out
of suppression with ART, but you also talk about cycling on and o� treatment. In that table, what does it mean
to fall out of, and re-achieve suppression? Does thatmean that this person stops or starts using ART (i.e. cycling
on and o� treatment)? Or can a person be on ART, and still not be fully suppressed?

We initially interpreted it to mean that when e.g. white people become diagnosed, they have a∼.1 probability
per week of going on treatment. Once they are in treatment, they have a 0.0071 probability of cycling o� treat-
ment per week and once they are o� treatment, they have a 0.00291 probability of cycling back on every week.
However, when we run this for a hypothetical population of 10,000 HIV+ people, we get the results in Figure 9.

Intuitively this makes sense to us, since for every individual, there is a high probability of going into treatment,
then a lowprobability of falling out, but then an even lower probability of cycling back on-resulting in a popula-
tion thatmostly is not in treatment. Inotherwords,we find it hard connect the individual per-weekprobabilities
with the .614 for white black men and .651 for white men in the table on p .17. Are we misunderstanding what
these numbers mean? Is this not what you mean by the per-week probabilities and “Proportion of those initi-
ating ART who achieve full suppression?”

Answer 5a: For this issue, I recommend that you run the code yourself in R to see how things are functioning. As
much aswe tried to define everything precisely in the Appendix, it is only a partial (and as above, potentially incor-
rect at times) translation of the code. I’mnot surewhy you are seeing a decline in the proportion treated over time,
while we see proportions on treatment and suppressed in equilibrium (at the 61% and 65% values in the table).
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Figure 9: The distribution of 10,000 individuals in treatment tracked over time, based on the replicators inter-
pretation of falling out of care dynamics.

Question 5b: How is the e�ect of being on ART calculated? On the bottomof p 16 you say that there is a 3-month
transition to the on-treatment viral loads, butwe’re not sure how to interpret this vis a vis the question of falling
in and out of suppression. If someone stays on ART for (at least) the 3-months, are they then not by definition
fully suppressed? Again, we might be conflating ART and full suppression here if they are not the same thing,
but we’re not sure how to interpret them on their own, and how they relate to each other.

Answer5b: Takea lookat theactual code in theviral loadmodule (https://github.com/statnet/EpiModelHIV/
blob/master/R/mod.vl.R). People have a suppression type assigned upon infection (partial vs full suppres-
sion), and they transition back and forth between set point viral load (4.5 log10) to either a partial suppression
level (at 3.5 log10) or a full suppression level (at 1.5 log10). When they are on ART, VL declines based on a three-
month slope to those nadirs, and when they are o� ART, it increases back up to the set point.

Question 6: We are unsure of how to interpret some of the PrEP indications, specifically with regards to timing
of the criteria. Your STA on p. 20 states indication 1 as, “UAI in a monogamous partnership with a partner not
recently tested negative for HIV.” But how do these criteria relate to the time window? Does the relationship
have to be monogamous at the time of the testing? Or does the relationship have to be monogamous at the
time of the “qualifying” UAI? Or do they have to bemonogamous throughout the entire window?

Answer 6: Throughout the entire window.

Consider this case: if twopartners in amonogamous (by either of the twodefinitions) relationshiphaveUAI, and
then both partners find each a second partner (turning the relationship into a non-monogamous relationship
by both definitions), and then one of them go in for testing-would that qualify for indication 1? Or vice versa —
they are non-monogamous during a UAI, but then both end all their other relationships, and then one of them
goes in for testing? Similarly for indications 2 and 3, how does the time window relate to the various cases in
which people can shi� in and out of eligibility?

If aman has UAI with amonogamous partner who recently (again within the past 6months) also tests for HIV (the
index man is by definition testing for HIV at the point of PrEP indication evaluation), then that index man is not
indicated for PrEP based on condition 1. If the sameman has UAI withmore than two partners within anyweek, he
is indicated for PrEP according to condition 2a. Indications for PrEP accumulate over the time risk window, such
that any qualifying events during that period trigger an indication.

Relatedly, for indication 3, does the serodiscordant status of the relationship have to be known to either partner
at the timeof theAI?Again, consider a case: A couple thatas faras theyknowarenot serodiscordanthaveAI.One
of themgoes in for testingand isdiagnosedasHIV+. Theotherpersongoes in, gets tested, and isHIV-. Would this
person qualify? What if the AI happened outside of thewindow, but theHIV+ diagnosis of the partner happened
during the window? The primary reason for these being important is that they change how permissive the
indications are, andmayeven introducenon-monotonicity into the relationshipbetweenwindow-duration and
permissiveness (.e. if they have to bemonogamous throughout the entire window, at first a longer windowwill
be more permissive, but then a�er a while it will be less permissive than a shorter window.)

In your example, the partner would need to get diagnosed, disclose to the index man (the man being evaluated
for PrEP), and then have AI with him within the window. The diagnosis and disclosure may happen outside the
window, but the AI needs to happen within the window.
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Appendix D: The viral load progression when interacting with ART treat-
ment

Belowwe depict the viral-load levels as theywere initially implemented acrossmodels, prior to alignment. In it
these figures we show the e�ect of consuming one single dose of ART treatment (going in treatment one week
and stop treatment the week a�er) at various times during the infection.

Figure 10: A progression of viral load levels over time for the bothmodels (EpiModel in orange, NHS in grey) for
a scenario in which a single dose of ART treatment was provided in the 2nd week of infection, compared to a
baseline of no treatment.

Figure 11: A progression of viral load levels over time for the both models (EpiModel in orange, NHS in grey) for
a scenario in which a single dose of ART treatment was provided in the 4th week of infection, compared to a
baseline of no treatment.
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Figure 12: A progression of viral load levels over time for the both models (EpiModel in orange, NHS in grey) for
a scenario in which a single dose of ART treatment was provided in the 6th week of infection, compared to a
baseline of no treatment.

Figure 13: A progression of viral load levels over time for the both models (EpiModel in orange, NHS in grey) for
a scenario in which a single dose of ART treatment was provided in the 8th week of infection, compared to a
baseline of no treatment.
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Appendix E: Viral load progressionwhen interactingwith ART treatment,
a�er re-implementation according to the EpiModel conceptual model

No treatment Single dose on day 2 Single dose on day 4 Single dose on day 6 Single dose on day 8

Week EpiModel NHSModel EpiModel NHSModel EpiModel NHSModel EpiModel NHSModel EpiModel NHSModel

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15
2 2.30 2.30 1.50 1.50 2.30 2.30 2.30 2.30 2.30 2.30
3 3.44 3.44 1.75 1.75 3.44 3.44 3.44 3.44 3.44 3.44
4 4.59 4.59 2.00 2.00 3.19 3.19 4.59 4.59 4.59 4.59
5 5.74 5.74 2.25 2.25 3.44 3.44 5.74 5.74 5.74 5.74
6 6.89 6.89 2.50 2.50 3.69 3.69 5.49 5.49 6.89 6.89
7 6.49 6.49 2.75 2.75 3.94 3.94 5.24 5.24 6.49 6.49
8 6.09 6.09 3.00 3.00 4.19 4.19 4.99 4.99 6.24 6.24
9 5.69 5.69 3.25 3.25 4.44 4.44 4.74 4.74 5.99 5.99
10 5.30 5.30 3.50 3.50 4.50 4.50 4.50 4.50 5.74 5.74
11 4.90 4.90 3.75 3.75 4.50 4.50 4.50 4.50 5.49 5.49
12 4.50 4.50 4.00 4.00 4.50 4.50 4.50 4.50 5.24 5.24
13 4.50 4.50 4.25 4.25 4.50 4.50 4.50 4.50 4.99 4.99
14 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.74 4.74
15 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50

Table 3: A tabulation of the viral load levels over time for both implementations a�er re-implementing the NHS
according to EpiModel conceptual model. Each column depicts a di�erent timing of a single treatment dose.

Appendix F: A description of the network formation process in the NHS
model using pseudo code

Prior to specifying the functioning of the network formation module we need to note 2 things:

1. The aim of the network formation module is to form networks that are representative, this means that
they follow the degree distribution taken from empirical data.

2. Empirical data distinguishes three types of links, main, casual and one-time links. For the combination
of main and casual there is a fixed distribution, whereas the degree in terms of one-time links is only
conditional upon the main and casual links, see the tables below.

0 Casual ties 1 Casual tie 2 Casual ties

0 Main ties 47.1% 16.7% 7.4%
1 Main tie 22.0% 4.7% 2.1%

Table 4: Distribution of longer ties (main and casual) among the population

0 Casual ties 1 Casual tie 2 Casual ties

0 Main ties 0.065 0.087 0.086
1 Main tie 0.056 0.055 0.055

Table 5: Average frequency of one-time ties, given the existing longer lasting ties

Step 1: It is determined if there are enough individuals with main ties. If ties more ties are needed, step 2 is
started, if not step 8 is started.

Step 2: All individuals that are eligible to form amain tie are added to a list of main-tie-seekers

Step 3: All individuals that are eligible to form a (additional) casual tie are added to a list of casual-tie-seekers

Step 4: a) As long as there are more than two additional main ties needed (based on the above table)
a. One of the main-tie-seekers is randomly chosen and selects another partner from the pool.
b. Which individual is chosen is conditional upon:

i. The alter not having a current tie to the agent
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ii. It being sexually compatible with the individual choosing
iii. It being of the approximate age compared to the choosing individual

c. A main tie is then formed among these partner

b) As long as there are more than two additional casual ties needed (based on the above table)

One of the casual-tie-seekers is randomly chosen and selects another partner from the pool.
Which individual is chosen is conditional upon:

The alter not having a current tie to the agent
It being sexually compatible with the individual choosing
It being of the approximate age compared to the choosing individual

A casual tie is then formed among these partners

Step 5: The list of main-tie-seekers is updated

Step 6: The list of casual-tie-seekers is updated

Step 7: go back to step 1

Step 8: Conditional upon the number of main and casual ties each individual determines if he want a
one-time tie this week.

Step 9: all those seeking a one-time-tie are added to a list of one-time-tie-seekers

Step 10: For as long as there are more than two individuals on the list of one-time-tie-seekers

One of the one-time-tie-seekers is randomly chosen and selects a suitable partner Again, which
individual is chosen is conditional upon:
The alter not having a current tie to the agent
It being sexually compatible with the individual choosing
It being of the approximate age compared to the choosing individual

If not suitable partner can be found, the individual stop seeking a one-time-tie
If a partner is found a one-time-tie is created among them, and both stop seeking a one-time-tie

Appendix G: Di�erences in the risks related to viral load, based on di�er-
ing implementations of the risk calculation

A�er initially finding di�erences in the per act risks of transmission across implementations, we explored the
behavior of both modules in greater detail. A�er substantial e�ort, we found the source of the misalignment
to be the way risks calculations were implemented across the models. In EpiModel, log-odds were used in the
risk calculations, whereas the NHSmodel, based on a reading of the technical appendix, used log-rates. While
these are statistically indistinguishable at low levels of risks, they do di�er when rates are moderate to high.
In the process of aligning module behavior, we found that this variation had a significant e�ect on the per-act
risks in scenarios with higher risks (e.g., in the acute stage) (see the figure below).
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Figure 14: Relative di�erence in the risks of transmission per intercourse for the replicated module compared
to the original model by level of viral-load.

While the question of which implementation is more valid and/or desirable is scientifically relevant, we could
not answer this questionwith the data at hand. What ismore as our goal was alignment, we opted to adjust the
NHSmodel implementation. By changing the implementation in the NHSmodel to log-odds, and strictly align-
ing the way in which risk calculations were executed across models, we found that the observed discrepancies
disappeared and results of the per act risk were numerically identical (see Table 6 below). This observation is a
yet another indication that small changes in the algorithm chosen and across implementations can have large
implications for model alignment.

NHSmodel used factors NHSmodel used log-odds

HIV+ individual is recepetive HIV+ individual is insertive HIV+ individual is recepetive HIV+ individual is insertive

Log of Viral load Risk NHS Risk EpiModel Risk NHS Risk EpiModel Risk NHS Risk EpiModel Risk NHS Risk EpiModel
0 0.0004 0.0004 0.0010 0.0010 0.0004 0.0004 0.0010 0.0010
0.25 0.0004 0.0004 0.0012 0.0012 0.0004 0.0004 0.0012 0.0012
0.5 0.0006 0.0006 0.0015 0.0015 0.0006 0.0006 0.0015 0.0015
0.75 0.0007 0.0007 0.0019 0.0019 0.0007 0.0007 0.0019 0.0019
1 0.0009 0.0009 0.0023 0.0023 0.0009 0.0009 0.0023 0.0023
1.25 0.0011 0.0011 0.0029 0.0029 0.0011 0.0011 0.0029 0.0029
1.5 0.0014 0.0014 0.0036 0.0036 0.0014 0.0014 0.0036 0.0036
1.75 0.0017 0.0017 0.0046 0.0045 0.0017 0.0017 0.0045 0.0045
2 0.0022 0.0022 0.0057 0.0057 0.0022 0.0022 0.0057 0.0057
2.25 0.0027 0.0027 0.0071 0.0071 0.0027 0.0027 0.0071 0.0071
2.5 0.0034 0.0034 0.0089 0.0089 0.0034 0.0034 0.0089 0.0089
2.75 0.0042 0.0042 0.0112 0.0111 0.0042 0.0042 0.0111 0.0111
3 0.0053 0.0053 0.0140 0.0138 0.0053 0.0053 0.0138 0.0138
3.25 0.0066 0.0066 0.0175 0.0172 0.0066 0.0066 0.0172 0.0172
3.5 0.0083 0.0082 0.0219 0.0215 0.0082 0.0082 0.0215 0.0215
3.75 0.0104 0.0103 0.0274 0.0268 0.0103 0.0103 0.0268 0.0268
4 0.0130 0.0128 0.0343 0.0333 0.0128 0.0128 0.0333 0.0333
4.25 0.0162 0.0160 0.0429 0.0414 0.0160 0.0160 0.0414 0.0414
4.5 0.0203 0.0199 0.0536 0.0513 0.0199 0.0199 0.0513 0.0513
4.75 0.0254 0.0248 0.0671 0.0635 0.0248 0.0248 0.0635 0.0635
5 0.0317 0.0309 0.0839 0.0785 0.0309 0.0309 0.0785 0.0785
5.25 0.0397 0.0384 0.1050 0.0966 0.0384 0.0384 0.0966 0.0966
5.5 0.0497 0.0477 0.1314 0.1184 0.0477 0.0477 0.1184 0.1184
5.75 0.0621 0.0591 0.1644 0.1446 0.0591 0.0591 0.1446 0.1446
6 0.0777 0.0730 0.2057 0.1756 0.0730 0.0730 0.1756 0.1756
6.25 0.0973 0.0900 0.2573 0.2119 0.0900 0.0900 0.2119 0.2119
6.5 0.1217 0.1105 0.3219 0.2538 0.1105 0.1105 0.2538 0.2538
6.75 0.1523 0.1351 0.4027 0.3015 0.1351 0.1351 0.3015 0.3015
7 0.1905 0.1644 0.5039 0.3549 0.1644 0.1644 0.3549 0.3549

Table 6: A comparison of the risk of transmitting HIV across implementations, for both insertive and receptive
HIV-positive individuals under two di�erent implementations of risk calculations in the NHS model. In the le�
column the risks are calculated as factors, whereas in the right log-odds are used

JASSS, 23(4) 7, 2020 http://jasss.soc.surrey.ac.uk/23/4/7.html Doi: 10.18564/jasss.4352



AppendixH: Alignmentof thenumberof sexacts across implementations
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Figure 15: The number of sex act per type of tie, for EpiModel (green), the initial NHS model without scaled up
sex acts (blue), and the adjust NHSmodel with scaled up sex acts (red).

This figure clearly shows how without incorporating the scalar for the number of sex acts, the number of sex
acts across implementations vastly di�ered, a�er adding this scalar to the NHS model the distribution of sex
act was is distributionally aligned.

Appendix I: Theone-tick-test, testing for significantdi�erencesunder the
poison assumption for world states

Based on the observation that the incidence of a given repetition of the one-tick-test is drawn from a Poisson
distribution we can devise a formal test to see if the result from both implementations are in fact drawn from a
distributionwith the samemean value. This test combines the observations of both implementations, but keep
track of the source of the observation by means of a dummy variable. Next it is tested if the dummy variable
is a significant predictor of the mean of the Poisson distribution. If a significant e�ect is found for the dummy
variable this is an indication that the source of data matters, and that there is a di�erence across implementa-
tion. An insignificant result indicates that there are no di�erences across implementations. For each network
we can conduct this test, resulting in a total of 50 observations.

The results of the initial test for alignment are presented below. The first figure shows the significance levels
that were obtained from the test across the 50 networks. It reveals that 10 out of the 50 tests yielded significant
results at the 0.05 confidence level, which is much more than expected. The second figure shows the coe�i-
cients for the test across the 50 networks, and reveal that the average coe�icient is slightly above 0, indicating
that the NHS has slightly higher mean in the Poisson distribution.
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Figure 16: Across all networks tested, this graph indicates which tests found a significant di�erences across
implementations.
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Figure 17: Across all networks tested, this graph shows the coe�icient of the di�erence across implementations.

We reran the tests a�er we eventually identified and fixed the di�erence across implementations. Below the
results of the second iteration this test are presented, again across the same 50 networks. In this second round
of tests only 2out of the 50 cameback significant, whichon thebasis of a 0.05 confidence level is tobeexpected.
What is more when considering the coe�icients of the observed di�erences we find that these coe�icients are
nowproperly spreadaround0, andhaveameanvalue that is very close to zero, combined theseFigures indicate
that the is no longer any indication of significant di�erences across implementations.
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Figure 18: Across all networks tested, this graph indicates which tests found a significant di�erence across im-
plementations.
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Figure 19: Across all networks tested, this graph shows the coe�icient of the di�erence across implementations.
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