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Abstract: This article describes the generation of a detailed two-layered synthetic population of households
and individuals for Frenchmunicipalities. Using French census data, four synthetic reconstructionmethods as-
sociatedwith two probabilistic integerizationmethods are applied. The paper o�ers an in-depth description of
each method through a common framework. A comparison of these methods is then carried out on the basis
of various criteria. Results showed that the tested algorithms produce realistic synthetic populations with the
most e�icient synthetic reconstruction methods assessed being the Hierarchical Iterative Proportional Fitting
and the relative entropy minimization algorithms. Combined with the Truncation Replication Sampling allo-
cation method for performing integerization, these algorithms generate household-level and individual-level
data whose values lie closest to those of the actual population.

Keywords: Synthetic Population Generation, Multi-level, Microsimulation, Simultaneous Control

Introduction

1.1 Agent-BasedModels (ABMs) have grown in popularity since the 1990’s and are nowapplied in a range of sectors:
healthcare (Tomintz et al. 2008; Edwards & Clarke 2013), economic policy evaluation (Avram et al. 2013; Suther-
land & Figari 2013), geography (O’Sullivan 2008), and transport (Kickhöfer & Kern 2015; Hörl et al. 2018). These
models require comprehensive data on the demographic and socioeconomic characteristics of individuals and
households. However, for privacy reasons, no complete dataset can be compiled on the socio-demographic
characteristics of individuals at the small geographic scale. To perform a microsimulation, one necessary step
consists of generating a "synthetic population" that is representative of the actual population. During this pro-
cess, the characteristics of (all) the individuals within a given study area are normally inferred from the charac-
teristics of individuals in the sample from that area, as well as from themarginal distributions (aggregate data).
The resulting synthetic population is a simplifiedmicroscopic representation of the actual population because
only the variables of interest are to be reproduced (Chapuis & Taillandier 2019). Most approaches developed to
generate a synthetic population have focused on deriving either individual-centred or individual-centred pop-
ulations. For example, Iterative Proportional Fitting (IPF), which by far is the most widely used algorithm for
generating a synthetic population, does not yield populations linking households and individuals (and thus
controlling at both levels); use of this algorithm, outputs a population yet does not link individual characteris-
tics to household information. In many cases, this absence of a link clearly constitutes a shortcoming since an
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individual’s decision depends on both his/her characteristics and family situation, which highlights the need
to generate synthetic populations that take into account not only the individual level but also household-level
information. This article evaluates and tests, for the French case, the most appropriate methods to generate a
two-layered population capable of satisfying the following conditions:

• maintaining the hierarchical structure of the data by associating individual and household variables in
the most optimal manner;

• reflecting the heterogeneity of the distribution of households and individuals across geographic areas
(Münnich & Schürle 2003);

• reproducing the interdependencies among agents in the same household (Sun et al. 2018);

• possessing the ability to fit with aggregate data.

1.2 Many methods serve to generate a synthetic population of individuals and households; they di�er depending
on the assumptions made or according to the total or partial use of the sample and aggregate data. Along the
lines of Sun et al. (2018), we have classified the methods into three categories: synthetic reconstruction (SR),
combinatorial optimization (CO), and statistical learning (SL). The SR approach combines information from the
sample and the aggregate data and moreover computes weights that reflect the representativeness of each
household in the the sample within a given zone. The CO methods also use the sample and aggregate data
in order to select an appropriate combination of households that best fits the marginals. The third and last
methods (SL) merely consider the sample and focus on the joint distribution of all attributes by estimating a
probability for each combination.

1.3 The choice of appropriate method closely depends on the amount, type and quality (representativeness and
comprehensiveness) of available data (Rich 2018). The overwhelming majority of statistical institutes make
available two kinds of data for the public. The first is a disaggregated dataset, consisting of data for a sample of
the population. Such a sample is typically referred to as a Public Use Micro Sample (PUMS). This is commonly
compiled fromcensusdataandprovides informationon the socio-demographic characteristicsof individualsor
households (gender, profession, household size, household income, etc.) for a specific zone. The second source
consists of aggregate data that provide the marginal distributions of socio-demographic variables covering a
specific zone. These variables and distributions are referred to as the marginals or control variables (Templ
et al. 2017), and their aspects di�er from one country to the next. France di�ers from many countries in two
regards: the sample made available is quite large (30% of the population as opposed to o�en less than 5%
elsewhere); and all data stem from the same source (French census), which ensures data consistency.

1.4 Based on a review of the methods available to generate a synthetic population that jointly controls household
and individual attributes (Yaméogo et al. 2021), it can be concluded that, given the characteristics of the French
population data, SRmethods are themost appropriate. We introduce herein four di�erent algorithms from the
SR family, namely Hierarchical Iterative Proportional Fitting (HIPF), Iterative Proportional Update (IPU), Gener-
alized Raking (GR), and relative entropy minimization (ent), within a common framework so as to harmonize
notations. We then test and compare the four algorithms by generating a two-layered population for eachmu-
nicipality within the Nantes Urban Area (western France). Thesemethods however produce fractions of house-
holds and individuals, a problem that can be solved by converting the fractions into integers through an inte-
gerization process. To achieve this step, we apply two probabilistic integerization methods: the proportional
probabilities approach and the truncation replication and sampling (TRS) method.

1.5 Theobjective of this paper therefore is to introduce andassess these variousmethods. To thebest of our knowl-
edge, no published research has quantitatively compared these specific approaches on the basis of a common
conceptual framework (featuring a harmonization of notations, detailed description of each method, use of a
case study, and application of quantitative performance metrics proposed in the scholarly literature).

1.6 The remainder of the paper is organized as follows: The second section reviews the existing population syn-
thesis methods. The third then formally introduces the algorithms used for population generation within a
common framework (in harmonizing notations). The fourth section is devoted to presenting the data and case
study. The fi�h section provides and discusses the results of our analyses followed by a conclusion o�ering
perspectives on this paper.

JASSS, 24(2) 5, 2021 http://jasss.soc.surrey.ac.uk/24/2/5.html Doi: 10.18564/jasss.4482



Literature Review

2.1 The methods utilized to generate a synthetic population can be grouped into three main categories: Synthetic
Reconstruction (SR), Combinatorial Optimization (CO), and Statistical Learning (SL) (Sun et al. 2018). These
methods will be described and compared hereina�er.

Synthetic reconstruction

2.2 This category of methods is the most widely used to generate synthetic populations. A synthetic population is
produced according to a two-step procedure: fitting and allocation. The fitting step involves assigning positive
weights to the individuals and households contained in the sample with the resulting weights typically being
non-integers. During the allocation step, these non-integer weights are converted into integer weights in order
to replicate individuals and households.

2.3 SRmethods are deterministic methods, meaning that depending on the sample studied, the weights obtained
during the fitting step never vary. The prerequisite to applying SRmethods is to possess both a sample and ag-
gregate data. The underlying assumptions here are twofold: the sample represents the true correlation struc-
ture among the attributes (Farooq et al. 2013); and the interactions present in the sample are, to a great extent,
preserved for the synthetic agents (Müller & Axhausen 2010). The sample therefore needs to be consistent, rep-
resentative and composed of at least one observation for each type of individual in the actual population.

2.4 One of the commonly used SR techniques is Iterative Proportional Fitting (IPF) (Beckman et al. 1996; Pritchard
& Miller 2012), which adjusts a contingency table constructed from the sample so as to match marginal distri-
butions.

2.5 In its original formulation, IPF cannot simultaneously estimate both household and individual-level attributes.
Some IPF-based algorithms have attempted to address both household and individual attributes (Arentze et al.
2007; Guo&Bhat 2007; Auld &Mohammadian 2010; Zhu& Ferreira Jr 2014; Pritchard &Miller 2012). However, in
all these studies, the joint distribution of household and individual-level attributes is fitted either separately or
sequentially which fails to guarantee the consistency between these two levels. Another approach consists of a
fitting stage using IPF and a simulation stage where individuals are grouped into households with a household
allocation procedure using the concept of "spouse matching" and "kids matching" (Rich 2018).

2.6 In order to generate a two-layered synthetic population, four main algorithms have been proposed: Iterative
Proportional Update (IPU) (Ye et al. 2009), Hierarchical Iterative Proportional Fitting (HIPF) (Müller & Axhausen
2012;Müller 2017), relative entropyminimization (ent) (Lee&Fu2011), andGeneralizedRaking (GR) (Deville et al.
1993). In e�ect, these techniques generate populations of individuals grouped into households by computing
household-levelweights that satisfy themarginals atboth thehouseholdand individual levels. Suchalgorithms
will prove tobe themostappropriate for thecase studypresentedbelow, inconsidering theavailable inputdata,
and will be presented in greater detail in the third section.

Combinatorial optimization

2.7 The second category of approaches falls under to Combinatorial Optimization (CO) techniques. CO based tech-
niques are two-layered since they can directly generate a list of households and individuals (Ma & Srinivasan
2015).

2.8 Similar to SRmethods, CO requires information on both the sample andmarginal level, with the synthetic pop-
ulation being obtained by replicating individuals (without explicitly determining the joint distribution across
all controlled attributes). But unlike SRmethods, Combinatorial Optimization is a stochastic process. The data
requirements for CO methods are less restrictive than those for SR methods (Templ et al. 2017), though on the
other hand they do su�er from computational complexity when the population size is large (Lee & Fu 2011). A
description of this method has been given by Voas & Williamson (2000) and Templ et al. (2017).

Statistical learning

2.9 The third approach available to generate a two-layered synthetic population is Statistical Learning (SL), also
known as the simulation-based approach. SL focuses on the joint distribution of all attributes in the sample by
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directly estimating a probability for each combination, including those not observed in the sample (Sun et al.
2018).

2.10 SL methods o�er greater flexibility in terms of data requirements and data sources; in general, they display
good performance both in treating the lack of heterogeneity problem encountered in SR and CO (Sun et al.
2018) and with small samples (Borysov et al. 2019; Sun et al. 2018). However, a major drawback of SL methods
is their inability to satisfy the conditional distributionswhile satisfying themarginal distributionsof all variables
simultaneously. During the population synthesis process, whenmarginals are available, it is indeed necessary
to precisely match the observedmarginal distributions with the population generated at the zonal level. Some
of the two-layered SL-based algorithms derived for synthetic population generation include: the hierarchical
Chain Monte Carlo method (hMCMC) (Farooq et al. 2013), the Bayesian Networks-based method (Sun & Erath
2015; Zhang et al. 2019), hierarchical mixture modeling (HM) (Sun et al. 2018), and deep generative modeling
based on a Variational Autoencoder (VAE)(Borysov et al. 2019). Ye et al. (2019) proposed a tensor decomposition
method toguarantee the consistencybetween three levels of constraints: individual, householdandenterprise.

A comparison of methods

2.11 Two-layered SR methods (IPU, HIPF, ent and GR) can generate high-quality two-layered synthetic populations
that closely represent the actual population. Nonetheless, such techniques require a major preprocessing ef-
fort and are very stringent in terms of data needs. In fact, they require a representative sample and aggregate
statistics at both the individual and household levels (Chapuis & Taillandier 2019). COmethods are less restric-
tive ondata quality than SRmethods for generating a two-layered synthetic population, yet they cannot always
guarantee the optimal solution with respect to matching marginals and moreover require too much comput-
ing time. This CO category is better suited for generating small synthetic populations. SL methods are able to
produce consistent results even for small sample sizes and generate a synthetic population from sample data
only when necessary. On the other hand, SL methods make it impossible to satisfy marginal distributions of
variables, which constitutes a major drawback when these marginals are available. In some configurations,
combining SR and SLmethods could be themost relevant option to have an accurate synthetic population sat-
isfying marginal distributions. For example, combining a Variational Autoencoder model with IPF and quota-
based random sampling (Borysov et al. 2019) or Bayesian Networks with Generalized Raking techniques (Sun
& Erath 2015).

2.12 The aim of this paper is to generate two-layered synthetic populations using French census data. The particu-
larity of this dataset is the availability of a representative sample at the municipality level. The sample size is
roughly 30%of the totalmunicipal population; furthermore, aggregate statistics for both individual and house-
hold attributes are available which ensures data consistency. The data requirements for using SR methods in
order to generate a synthetic population of individuals and households are therefore being met. Hence, SR
methods are best suited since neither CO nor SLmethods will not provide any advantage over SR. COmethods
will in fact limit the population size potentially generated while SL methods prevent fitting to the marginals.
The SRmethods adopted to generate the synthetic population will be detailed in the next section.

Synthetic Population Generation Methodology

3.1 The synthetic population is generated using a two-step procedure: 1- fitting, and 2- allocation (see Figure 1). In
the first subsection, the four two-layered SR methods (Iterative Proportional Update (IPU), Hierarchical Itera-
tive Proportional Fitting (HIPF), relative entropy minimization (ent) and Generalized Raking (GR)) available for
use during the first step are presented. The second subsection then describes the two methods (proportional
probabilities approach and TRS method) that convert non-integer weights resulting from the fitting step into
integer weights in order to replicate individuals and households.
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Figure 1: Simplified flowchart of Synthetic Reconstruction methods to generate a two-layered synthetic popu-
lation (households and individuals)

The fitting step

3.2 The objective of this step is to find the vector of household weights:W = (wh), where h = 1 . . . nsh. n
s
h is the

number of households in the sample and wh is a positive real measuring the importance of the correspond-
ing household. This weight will be used in the allocation step to repeat or draw its corresponding household.
Marginals are modeled as constraints on the weights vector.

3.3 Wepropose formulating this problemwithin the framework of the regularization of ill-posed inverse problems1
in order to clarify the comparison among the various algorithms. From this point of view, the objective here is
to findW that satisfies the marginal constraints, i.e.:

OH ·W = MH

OI ·W = M I

W ≥ 0

(1)

MH (resp. M I ) is the nmh × 1 (resp. nmi × 1) vector of marginals for the households (resp. individuals)
(with nmh constraints on the households and nmi on the individuals). OH (resp. OI ) is the nmh × nsh (resp.
nmi×nsh) occurrencematrix that codes the sample according to themarginals on the households (resp. on the
individuals). The next section on IPU will detail these equations.
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3.4 This problem is ill-posed inasmuch as there are more variables than constraints (nm = nmh + nmi < nsh). The
constraints are o�en inconsistent with one another. The solution therefore must be regularized. An intuitive
regularization consists of seeking a solution that is not too far removed from the sample, i.e. the vector solution
Ŵ is not too distant from the vector of the prior weights, W prior, which models the sample. The following
optimization problem serves to translate this idea.

Ŵ = arg min
W≥0

OH ·W'MH

OI ·W'MI

dist(W,W prior) (2)

withdistbeing ameasurement of the distance between the vectorW and the priorweight2. Without consistent
information on sampling, all the components of the prior weight vector have the same value: 1 (W prior = 1).
Theproposedmethods tolerate some small deviations to themarginal constraints, which iswhy the constraints
are no longer strict equalities. In the following,O is the concatenation of the occurrence matricesOH andOI ,
O =

(
OHtOI t

)t. Using the same notation,M =
(
MHtM I t

)t.
3.5 The Statistical Reconstruction (SR) methods described in this paper, i.e. Iterative Proportional Update (IPU),

Hierarchical Iterative Proportional Fitting (HIPF), Relative Entropy Minimization (ent) and Generalized Raking
(GR), can all be interpreted within this common framework: these methods are in fact di�erent views of the
regularized Problem 2 of ill-posed Problem 1. For ent and GR, the minimization is explicit though the distance
measurement di�ers. For IPU and HIPF, the minimization is implicit.

• Iterative Proportional Update o�ers a geometric point of view of Problem 2. The IPU method starts
from the sample, with initial weights being uniform. This vector is projected onto the hyperplane corre-
sponding to household constraints before being projected onto a second hyperplane corresponding to
the constraints on individuals. The process is iterative in support of the purpose of this algorithm to find
a solution which is not too far removed from the initial sample and consistent with the constraints. It can
be interpreted as a heuristic solution of Problem 2. IPU has been proven to have some limitations when
generating a synthetic population at both individual and household levels. In particular, Ye et al. (2020)
have shown that theoretically, IPU is unable to converge to an optimal population distribution that si-
multaneously satisfies the constraints from individual and household levels. The authors have proposed
an extension of IPU in order to address IPU failures. However, in our use case, IPU generates suitable
solutions because the sample is large.

• Hierarchical Iterative Proportional Fitting presents a dual view of Problem 2: it minimizes the distance
toboth constraint typesonhouseholdsand individuals, starting fromuniform initialweights. Theweights
are modified as little as possible while optimizing the distance to the constraints.

• Relative Entropy Minimization conveys a probabilistic point of view of Problem 2. The objective is to
determine a probability, ph, associated with each household that can be interpreted as the weight, wh,
divided by the number of households in the target population,nh. The solutionmust satisfy themarginal
constraints and minimize the relative entropy to a prior, nearly uniform probability. By dividing in Prob-
lem2, theweights vectors by the size of the target population and thenby replacing thedistance operator
dist(ph,p

prior
h ) by ph log( ph

ppriorh

), the entropy formulation can be derived.

• Generalized Raking provides an optimization point of view of Problem 2. It proposes solving this prob-
lem by setting up the Lagrangian.

3.6 A�er this more comprehensive introduction of the framework for treating inverse problems, the various meth-
ods will now be presented in greater depth.

Iterative proportional update

3.7 The Iterative Proportional Update (IPU), developed by Ye et al. (2009), is an iterative heuristic algorithm that si-
multaneously controls individual and household-levelmarginals during the fitting procedure. The correspond-
ingmathematical optimizationproblemcanbe formulatedwith the followingobjective function (Ye et al. 2009):

min
wh

∑
j

[(∑
h

oj,hwh −mj

)
/mj

]2
(3)
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Subject towh > 0, where: h denotes a household (h=1, 2,...,nsh); j denotes the constraint or population charac-
teristic of interest (j=1, 2,...,nmh); and oj,h represents the frequency of the constraint j in household h (i.e. the
occurrence), as one element of the matrix of occurrence, O. Moreover, wh is the weight attributed to the hth
household andmj the value of constraint j.

3.8 The objective function measures the inconsistency between the weighted sample and the given constraints.
At the first iteration, all households have a weight of one. IPU typically starts by adjusting weights to satisfy
household constraints first, then updating them to satisfy individual constraints. At each iteration, a statistical
measurement δ provides a goodness-of-fit result; it is the averageof the absolute value of the relative di�erence
between the weighted sum and the constraints, i.e.:

δ =

∑
j [|(
∑
h oj,hwh −mj)| /mj ]

nm
(4)

with nm = nmh + nmi being the number of marginals.
3.9 The gain in fit between two consecutive iterations is then calculated (∆ = |δa − δb|). The entire process is

continued until the gain in fit is negligible or below a preset tolerance level. This tolerance level serves as the
convergence criterion for terminating the algorithm (Ye et al. 2009).

Hierarchical iterative proportional fitting

3.10 TheHIPF algorithm (Müller & Axhausen 2011; Müller 2017) converts the household-level weights into individual-
level weights and vice versa. It also proceeds in iterations and the procedure can be defined as follows (Müller
& Axhausen 2011):

• k ← 0

w0
h ← 1 for all h ∈ S

repeat

• w(k+1)
h ← FIT(w

(k)
h ,mh

a ,m
h
b , ...) for all h ∈ S

• w(k+2)
hi ← w

(k+1)
h for all i ∈ S for all i ∈ I(h)

• w(k+3)
hi ← FIT(w

(k+2)
hi ,mi

α,m
i
β , ...) for all h ∈ S for all i ∈ I(h)

• w(k+4)
h ← 1

nmi(h)

∑
i∈I(h) w

(k+3)
hi for all h ∈ S

• estimatew(k+5)
h from w

(k+4)
h by adjusting the individuals-per-household

ratio using the relative entropy minimizing.

• k ← k + 5

until convergence

returnw(k)
h

3.11 In the above algorithm, h denotes a household, i an individual, k the iteration number, w(k)
h the weight at-

tributed to the hth household, w(k)
hi the weight attributed to the i

th individual in household h,mh
a andmh

b are
household-level control totals, andmi

α andmi
β individual-level control totals. Moreover, S = {1 . . . nsh} with

nsh being the number of households in the sample. P (h) = {1 . . . nmi(h)}, whereby nmi(h) is the number of
individuals in household h.

3.12 At the first iteration, all households have a weight of one. For all households, weights are computed to fit
household-level control totals and converted to individual-level weights. Theseweights are then used as initial
values to estimate new individual-level weights to fit the individual-level control totals. The next step (Step 5)
is to convert these new individual-level weights to household-level weights by considering that the weight of
each household equals the average of the sum of the weights of the individuals in that household.

3.13 The sixth step consists of recomputingnewhouseholdweights (w(k+5)
h ) byminimizing the relative entropy from

weights obtained in Step 5 (w(k+4)
h ) to these latest weights, as defined below:

D
(
w

(k+5)
h ||w(k+4)

h

)
=
∑
h

w
(k+5)
h ln

w
(k+5)
h

w
(k+4)
h

(5)
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subject to the following constraints:

nsh∑
h=1

w
(k+5)
h = nh (6)

nsh∑
h=1

nmi(h)∑
i=1

w
(k+5)
hi = n (7)

where: nh represents households totals, n individuals totals, and nmi(h) the number of individuals in house-
hold h. This process is then repeated until convergence.

Entropyminimization

3.14 Amathematical formulation, using the relative entropyminimization function as the objective function, to gen-
erate synthetic datawasproposedbyBar-Geraet al. (2009) andLee&Fu (2011). According to this approach, both
household and individual-level characteristics are contained in the constraints. The entropy optimization (ent)
method described in this section closely follows that of Lee & Fu (2011).

3.15 Let’s consider the following notations: nh andn are respectively the total number of households and total pop-
ulation in the research area;nv andnu respectively the number of household-level and individual-level charac-
teristics (factors);α andβ are two subsets of respectively {1, 2, . . . , nv} and {1, 2, . . . , nu} (α andβwill be used
to model the marginals); xhv represents one household-level characteristic and xiu represents one individual-
level characteristic; xhα represents the household-level characteristics associatedwith subsetα (xhα = (xhv )v∈α),
while xiβ represents individual-level characteristics associated with β (x

i
β = (xiu)u∈β).

3.16 Furthermore, let’s consider:

• nxiu is thenumberofpeople inhouseholdhwithperson-level characteristicxiuwherenxiu ∈ Nandwhere
u = 1, 2, . . . , nu; nxi, is the vector of possible number of people in a household with a given individual-
level characteristic and nxi equals {nxi1, . . . , nxiu, . . . , nxinu};

• hv denotes one possible value of xhv , where hv ∈ Ωv , andΩv is a finite domain of values of xhv , where v is
equal to 1, 2, . . . , nv ; hα denotes one possible value of xhα, where hα ∈

∏
v∈α Ωv ; and h is the vector of

all possible values of xh;

• nxiβ is the number of people in household h with person-level characteristics x
i
β , where nx

i
β ∈

∏
u∈β N.

3.17 Using the above notations, p̃α(hα), Ẽβ(nxiβ), and p[h,nxi] are defined as follows:

• p̃α(hα) = joint distribution across household-level characteristics xα, where p̃α(hα) =mh(hα)/nh and
wheremh(hα) is the aggregate summary count across household-level characteristic xhα;

• Ẽβ(nxiβ) = expected number of people in one household across person-level characteristics xiβ , where
Ẽβ(nxiβ)) =mi(xiβ)/nh; andmi(xiβ) is the count of person-level characteristics xiβ , with

∑
βm

i(xiβ) = n;

• p[h,nxi] =multiwayproportionof households in the research areawithhousehold-level characteristicsh =
{h1, . . . , hv, . . . , hnv}andnumberof individualswithperson-level characteristicsxi,nxi = {nxi1, . . . , nxiu, . . . , nxinu}
and u = 1, 2, . . . , nu.

• pprior[h,nxi]= prior p[h,nxi], easily computed from the disaggregated sample.

3.18 The objective is to minimize the relative entropy between p[h,nxi] and pprior[h,nxi] (i.e. the estimation of p[h,nxi]

must be discriminated from pprior[h,nxi] with a minimum di�erence).3

3.19 This objective function can be written as follows:

min
p[h,nxi]

D(p[h,nxi] || p
prior
[h,nxi]) =

∑
h,nxi

p[h,nxi] ln

(
p[h,nxi]

pprior[h,nxi]

)
(8)
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subject to∑
{h,nxi|v/∈α}

p[h,nxi] = p̃α(hα) ∀hv ∈ Ωv, v = 1, 2, ..., nv, hα ∈
∏
v∈α

Ωv (9)

∑
nxiβ

nxiβ

 ∑
{h,nxi|u/∈β}

p[h,nxi]

 = Ẽβ(nxiβ) ∀nxiu ∈ N, u = 1, 2, ..., nu, nxiβ ∈
∏
u∈β

N (10)

p[h,nxi] ≥ 0
∑
h,nxi

p[h,nxi] = 1 (11)

3.20 This formulation is an implementation of Problem 2, in considering probability p[h,nxi] instead of weight wh,
by inputting in Equation 9 and 10 the constraints on households and on individuals and by instantiating the
distance measurement dist

(
ph,p

prior
h

)
with ph log

(
ph

ppriorh

)
.

Generalized raking

3.21 The Generalized Raking (GR) techniques were developed by Deville et al. (1993) to generate a synthetic popula-
tion of both individuals and households. These techniques allow adjusting sampling weights in order tomatch
known population totals. The problem formulation aligns with that of Deville et al. (1993) and Müller (2017).

3.22 Let’s now consider a finite populationU = {1, . . . , h, . . . , nh}with a response variable yh ∈ R. A sample sof size
nsh is drawn from U with a given sampling design such that the inclusion probabilities pinclusionh,x = P (x ∈ s)
are known. Let yh be the value of a variable of interest y , for the hth population element. The objective then
is to estimate the finite population total ty =

∑
h∈U yh. An unbiased commonly used estimator of y is the

Horvitz–Thompson estimator:

ŷ =
∑
h∈s

1

pinclusionh,x

yh =
∑
h∈s

wpriorh yh (12)

wherewpriorh are thepriorweights (inverse of the prior probabilities). However, wehaveno information about y
and only havenm auxiliary variablesXi = (xi1, . . . , xij , . . . , xinm)∈ Rnm for eachmember of the population.
Also, the vector-valued population totalM :=

∑
h∈U Xh is known accurately (i.e. the auxiliary variables and

vector-valued population total correspond respectively to the occurrencematrix andmarginals vector in Prob-
lem 2). In order to estimate y, wemust seek newweights denotedwh, by modifying the prior weightsw

prior
h in

light of the auxiliary information while remaining close to the original weights. Let’s consider a distance func-
tion G tominimize the gap betweenwh andw

prior
h subject to the constraints

∑
h∈s whXh =

∑
h∈U Xh = M .

Gmust bepositive and strictly convex,withG(1) = G′(1) = 0 andG′′(1) = 1. In the context of synthetic popu-
lation generation, we hold a sample tomatch the aggregate data, and the auxiliary variables are themarginals.
The objective then is to minimize the di�erence existing between initial weights and final weights in order to
fit the constraints at both the individual and household levels. The objective function is given by the following
formula:

min
wh

∑
h∈s

wpriorh G(wh/w
prior
h ) (13)

subject to: ∑
h∈s

whXh = M (14)

3.23 This problemcannowbe solvedby introducinga vector of Lagrangemultipliers asdemonstrated inDeville et al.
(1993).

3.24 This formulation isan implementationofProblem2, by instantiating thedistancemeasurementdist
(
wh, w

prior
h

)
withwpriorh G( wh

wpriorh

) and by identifyingXh with the occurrence matrixO.
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Generation process comparison across the four methods

3.25 Iterative Proportional Update (IPU), Hierarchical Iterative Proportional Fitting (HIPF) and relative entropy min-
imization (ent) all generate populations of individuals grouped into households by computing household-level
weights that satisfy the marginals at both the household and individual levels. The HIPF algorithm constantly
switches between household and individual domains, in employing an entropy-optimizing adjustment step
(Müller & Axhausen 2011). With the IPU and ent algorithms, weights are adjusted to satisfy household-level con-
straints first and then updated to satisfy individual-level constraints. The di�erence between IPU and ent lies
in the procedure applied to adjust weights for a given individual-level control: if a household contains two or
more individuals of the same category, ent reweights this household more heavily than a household with just
one individual from this category, while IPUmakes nodistinction (Müller 2017). TheGeneralizedRakingmethod
directly adjusts weights to satisfy both individual and household-level constraints.

The allocation step

3.26 All themethods described above generate fractional weights of households and individuals, making the results
di�icult to analyse. To construct the final population, we thus need to integerize these weights. The integeriza-
tion process refers to converting these fractionalweights into integerweights. To achieve this, twoprobabilistic
methods are used: the proportional probabilities approach, and the truncate replicate sample (TRS) method.
According toLovelaceet al. (2015), bothof themoutperformdeterministicmethods (simple rounding, threshold
approach) in terms of final population counts and accuracy.

The proportional probabilities approach

3.27 The proportional probabilities (PP) approach considers fractional weights as probabilities (Lovelace et al. 2015;
Joubert 2018). For example, the probability ph of a given household lies in the final synthetic population is thus
given by: ph = wh/

∑
wh. The higher the fractional weight, themore likely an individual/household lies in the

final population. As a result, an individual with a very high weight may be replicated several times, while one
with a very low weight might not be included in the final synthetic population.

The TRS approach

3.28 The TRS approach (Lovelace & Ballas 2013) combines deterministic and probabilistic sampling in order to gen-
erate integer weights according to a three-step process: truncation, replication, and sampling.

1. The truncation step yields integer values by removing all information to the right of the decimal point.
The decimal remainders (between 0 and 1) are then kept. As an illustration, a household with a weight of
4.65 will have a truncated value of 4. Its decimal remainder is 0.65.

2. During the second step, individuals/households are replicated depending on their integer weights ob-
tained during the truncation step. Only truncatedweights greater than 0 are replicated. For example, the
householdwith aweight of 4.65will be replicated4 times. Another householdwith aweight of 0.99would
not be replicated in this step (its truncated value is 0). When performing truncation and replication, no
chance of oversampling exists (i.e. the sum of all integer weights will always be less than the population
size).

3. During the last step, only the decimal weight remainders are included in applying a weighted random
sampling without replacement. The rest of the individuals/households are selected from the entire sam-
ple, with selection probabilities set equal to the decimal weight remainders. In our example, the house-
hold with the starting weight of 4.65 will have a 0.65 probability of being chosen again, while the other
household will have a 0.99 probability.

This section has demonstrated how four SR methods function in abstract terms; a test scenario is now needed
to conduct a practical comparison. The next section will describe the case study and data implemented.
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Case Study

4.1 The performance of the various methods described above will now be assessed using data drawn from the
French census. This dataset has been collected by the French National Institute of Statistics and Economic
Studies (INSEE). Since 2004, this census has covered all municipalities and is valid over a five-year period. By
compiling successive five-year surveys, an array of population statistics could be obtained. To build a more
robust database, the collected data were then adjusted to a single reference date, thus ensuring that all munic-
ipalities were being treated equally. This reference date was set on January 1st of the median five-year survey
period.4

4.2 The data provided by INSEE are available in two distinct forms: a sample of individuals and households, and
control variables, both at the level of an IRIS (acronym for "aggregated units for statistical information"), which
represents the basic unit for dissemination of intra-municipal data. Municipalitieswith over 10,000 inhabitants,
and a large proportion of those with 5,000 to 10,000 population, are divided into several IRIS units and, by
extension, all municipalities not divided into IRIS units constitute IRIS units in themselves.

4.3 We are specifically using census data from the Nantes Urban Area5 (NUA) from 2015 (these data were collected
from 2013 to 2017). The total population of the NUAwas approximately 949,000 individuals, residing in 418,000
households within 307 IRIS or equivalent units. The sample included 287,000 individuals and 136,000 house-
holds. Each observation in the sample represents a unique individual with his or her personal characteristics,
as well as the household andmain residence characteristics. Table 1 describes the attributes used in the gener-
ation process.

Descriptive statistics

4.4 Table 1 describes the variables collected for all 307 IRIS included in the sample. For our analysis, we considered
5 variables at the individual level and 4 variables at the household level. An IRIS contains on average of 1,363.3
households (±631.3) and3,092.2 individuals (±1, 334.6); the samplescontainonaverage32.30%ofhouseholds
(±11.36) and 30.87% of individuals (±9.96) from the actual population.

Table 1: Individual and Household-level attributes
Level Variable Definition Categories

[number of categories]

Household Fam Family composition [5] Single member; The nuclear family is a couple without chil-
dren; Thenuclear family is a couplewith children; Thenuclear
family is a single-parent family; Other composition

ProfRP Profession of the reference
person [7]

Farmers, tradespeople; Executive; Intermediate occupations;
Clerical support workers; Lower-skilled technical occupa-
tions; Retiree; Unemployed

Size Household size [2] One person; Two persons or more

Cars Number of cars [3] No car; One; Two or more

Individual Age Age [12] 0-2; 3-5; 6-10; 11-14; 15-17; 18-24; 25-29; 30-39; 40-54; 55-64;
65-79; 80/+

Sex Gender [2] Female; Male

Relate Relationship to the house-
hold reference person [2]

Household reference person; Other household member

Prof Profession [7] Farmers, tradespeople; Executive; Intermediate occupations;
Clerical support workers; Lower-skilled technical occupa-
tions; Retiree; Unemployed

Wstat Work status [7] In fixed-term employment; Permanent employment; Self-
employed; Unpaid apprenticeships for those 15 or older; Un-
employed; Under 15 years old; Other non-active persons

Wtime Working time [3] Full-time worker; Part-time worker; Not applicable

JASSS, 24(2) 5, 2021 http://jasss.soc.surrey.ac.uk/24/2/5.html Doi: 10.18564/jasss.4482



4.5 Figure 2and3display thedistributionsof the sharesof the various categories of individual-level andhousehold-
level variables within the 307 IRIS. For most of these distributions, a fairly large variability can be observed.

Figure 2: Distributions of the shares of the various categories of individual-level variables within the 307 IRIS

Figure 3: Distributions of the shares of the various categories of household-level variables within the 307 IRIS

Validation

4.6 Thenext sectionwill compare the four previously described approaches to generating a synthetic population of
households and individuals: IPU, HIPF, ent and Generalized Raking.6 For each of these, we have used the pro-
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portional probabilities (PP) and truncate replicate sample (TRS) methods to integerize the weights. We have
thus evaluated not only the performance of the four generation approaches but also that of the two integeriza-
tion techniques.

4.7 Two main aspects can be considered regarding an evaluation of the accuracy of a synthetic population: inter-
nal validation and external validation. Internal validation consists of comparing the variables of the synthetic
population with the marginals in order to test the reliability of the generated data (e.g. does the estimated
distribution of family composition correspond to distribution given by the census data?). In other words, an
internal validation tests the ability of the population to fit with aggregate data. A validation is external if the
estimated variables of the synthetic population are compared with another data source not used in the esti-
mation process. Our case study does not feature a data source external to the French census at the IRIS level.
Hence, we have solely focused on the internal validation.

4.8 According to the literature, internal validation can be carried out on either variables (marginals are compared
with corresponding ones in the synthetic population), cells or the entire synthetic population. Many quanti-
tative methods are available for internal validation (Lovelace et al. 2015; Timmins et al. 2016). The following
performance metrics have been considered herein:

• The coe�icient of determinationR2 is the square of the Pearson correlation; it is a quantitative indicator
that varies between0 and 1 andmoreover reveals howclosely the simulated values fit the census data. An
R2 value of 1 denotes a perfect fit, while anR2 value close to zero suggests no correspondence between
constraints and simulated values (Lovelace et al. 2015).

• Total absolute error (TAE) and the standardized absolute error (SAE). TAE is the sum of the di�erence
between simulated values and the marginals and SAE is TAE divided by the total population.

• Standardized RootMean Squared Error (SRMSE). This indicator focuses on error dispersion and is used to
evaluate the goodness of fit between the estimated synthetic population and themarginals; it is the one
of the most common indicators used (Lee & Fu 2011; Lovelace et al. 2015; Sun & Erath 2015; Saadi et al.
2016). A zero value indicates a perfectmatch between census data and synthetic population, while a high
SRMSE value suggests a poor fit.

• The Bland-Altmanmethod. Widely employed in healthcare studies to compare twomeasurements of the
samevariable, this graphicalmethod canalsobeused to complement theother indicators (Timmins et al.
2016). The Bland-Altman method consists of plotting of the di�erence between simulated and census
counts versus the averages of the two counts.

Results and Discussion

5.1 This section presents the results of the internal validation procedure. The four SR algorithms have been im-
plemented in the open-source MultiLevelIPF 7 extension to the R statistical so�ware package. 8 A synthetic
population has been generated for each IRIS of the NUA.

Internal validation withR2, TAE, SAE and SRMSE

5.2 The validation results show that all the proposed methods produce synthetic populations that are represen-
tative of the actual population, yet some methods prove to be more e�icient. The first indicator,R2, revealed
that even though all methods tested performedwell, the TRS integerizationmethod yielded better results than
the proportional probabilities method. Moreover, the results of the Generalized Raking method results were
less accurate compared than the other three generationmethods. Amore detailed description of theR2 results
follows:

• HIPF or IPU combined with TRS (HIPF+TRS or IPU+TRS) yields coe�icients above 0.99 for all individual
and household-level variables;

• HIPF or IPU combinedwith the proportional probabilitiesmethod (HIPF+PP or IPU+PP) and entropymin-
imization combined with either the TRS or proportional probabilities method (ent+TRS or ent+PP) yield
coe�icients greater than or equal to 0.98 for all individual and household-level variables;

• GR combined with either TRS or proportional probabilities method (GR+TRS or GR+PP) yield coe�icients
greater than or equal to 0.91 for all individual and household-level variables.
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5.3 TheR2 validation method merely provides an indication of fit and is influenced by outliers. A further analysis
based on three other indicators (TAE, SAE and SRMSE), is therefore displayed in Table 2. These results confirm
that all methods are globally e�icient, but entropy minimization and HIPF do outperform the others.

Table 2: Summary results of TAE, SAE and SRMSE between simulated and constrained data

Individual-level Household-level

Method TAE SAE (%) SRMSE TAE SAE (%) SRMSE

IPU+TRS 87,046 1.53 0.0024 17,082 1.02 0.0012

IPU+PP 188,191 3.30 0.0032 56,529 3.37 0.0027

HIPF+TRS 53,436 0.94 0.0013 14,134 0.84 0.0007

HIPF+PP 176,612 3.10 0.0027 54,564 3.26 0.0025

ent+TRS 50,412 0.88 0.0008 16,621 0.99 0.0009

ent+PP 168,567 2.96 0.0024 55,830 3.33 0.0026

GR+TRS 252,621 4.43 0.0090 71,778 4.28 0.0098

GR+PP 337,630 5.93 0.0093 108,368 6.47 0.0128

Note: IPU: iterative proportional update; HIPF: hierarchical iterative proportional fitting; GR: generalized raking; ent: entropy
minimization; TRS: truncation, replication, sampling; PP: proportional probabilities.

5.4 Based on Table 2, the method can be ranked in the following order frommost to least accurate:

• entropy minimization, HIPF, IPU and GR for the individual level;

• HIPF, entropy minimization, IPU and GR for the household level;

• TRS and proportional probabilities.

5.5 According to all the validation indicators considered (R2, TAE, SAE and SRMSE), it can be concluded as regards
the generation methods, slight di�erences exist between entropy minimization and HIPF. Moreover, these two
methods outperform IPU and GR. For the integerization methods, the TRS approach outperforms the propor-
tional probabilities approach. HIPF and entropy minimization combined with TRS therefore provide the best
possible approximation of the actual population.

IRIS-level analysis

5.6 In addition to the global analysis given above, a local analysis, IRIS by IRIS, has been conducted in order to iden-
tify the zones with the highest errors (i.e. IRIS with the highest SAE values). For each method tested, whether
at the individual or household level, three IRIS always stood out. Table 3 presents the values for the two best
methods.

Table 3: IRIS with the highest SAE values
Individual-level Household-level

Method Iris Id SAE (%) SAE (%)
136 35.25 6.63

HIPF+TRS 237 13.71 2.82
162 10.08 3.09
136 14.22 36.20

ent+TRS 237 3.71 10.37
162 2.40 7.51

Note: HIPF: hierarchical iterative proportional fitting; ent: entropy minimization; TRS: truncation,
replication, sampling.
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5.7 A qualitative analysis of the constraints from these three IRIS underscores their particular characteristics. IRIS
136 and 237 are activity zones with a small number of households and individuals. The population of IRIS 136
(resp. 237) is 359 (resp. 327) households and 964 (resp. 810) individuals. In these two IRIS, 67% (resp. 51%)
of households have just one member; also, most of the inhabitants of these IRIS are men (73% (resp. 62%))
and belong to the 18-54 age group. IRIS 162 is a residential area with 1,163 households and 2,133 individuals.
However, a significant portion of the territory is occupied by a psychiatric hospital. In this IRIS, 65% of the
households are single-member and 65% of the individuals are between 15 and 64 years old. In conclusion, the
simulation runs prove to be accurate for all IRIS except a few due to the particular population breakdown of
these IRIS.

Bland-Altman approach

5.8 A Bland-Altman plot analysis of the data has been performed for comparing the census and simulated values
of each IRIS for a given variable. This graphical method studies the mean di�erence and constructs limits of
agreement (Bland & Altman 1999). The X-axis corresponds to the mean of the two values, and the Y-axis is the
di�erence between these two values. The limits of agreement are defined by± 1.96× the standard deviation of
themeandi�erence. Analysis of theplot canhelp to identify someanomalies suchas systematic overestimation
or underestimation of census values by a synthetic reconstruction approach (Kalra et al. 2017).

5.9 Our analysis has been applied to the 400 possible cases (50 categories of variables× 8 synthetic reconstruction
approaches). The average of the di�erences (in both real and absolute terms) between simulated and census
values by category for each ofmethod has been computed. Figure 4 shows themean and standard deviation of
these mean values for each fitting method. Let us note that the average of the di�erences between simulated
values and census values, expressed in real terms lies close to zero for the HIPF and entropy methods with a
rather low standard deviation. The two measurements listed in Figure 4 would seem to confirm the HIPF and
entropy methods outperform Generalized Raking and IPU.

Figure 4: Bland-Altman approach: mean of di�erence (in both real and absolute terms) between simulated and
census values for each fitting method.
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Figure 5: Bland-Altman approach: di�erences between simulated and census values for the five categories of
the household-level variable "Family composition" generatedwith theHIPF fittingmethod (associatedwith the
TRS allocation approach)

Note: A: single member, B: couple without children; C: couple with children; D: single-parent family; E: other.
Middle line: mean di�erence between simulated and census values. Top and bottom lines: limits of agreement.

5.10 For purposes of illustration, Figure 5 plots Bland-Altman values for the five categories of the household-level
variable "Family composition", generated with the HIPFmethod (in association with TRS allocation approach).
The Y-axis shows thedi�erencebetween the twopopulations (synthetic andactual), while the X-axis depicts the
average of the two values. Depending on the IRIS, the simulated values are in some cases higher and in other
cases lower than the census values. The average of the di�erences (middle line) is close to zero. 95% of the
data points lie within the ’limits of agreement’(top and bottom lines) which indicates that there is agreement
between census and simulated values. Depending on the IRIS, the simulated values are in some cases higher
and in other cases lower than the census values. This suggests that there is no consistent bias.

Conclusions

6.1 This paper has provided a synopsis of the synthetic methods aimed at generating a population of individu-
als and households. We o�ered a detailed description of four synthetic reconstruction methods for the fitting
step throughuse of a common framework. Thesemethods areHierarchical Iterative Proportional Fitting (HIPF),
Iterative Proportional Update (IPU), GeneralizedRaking (GR), and relative entropyminimization (ent). Two inte-
gerizationmethodswerealsodiscussed, namelyproportional probabilities and truncation replicationandsam-
pling (TRS). Next, an evaluation was performed of the most relevant method for generating a two-layered syn-
thetic population. Thesemethodswere implementedusing theR language. A case study involving the synthesis
of agents (418,000 households, 949,000 individuals) from the Nantes Urban Area (western France) was consid-
ered, beginning with a sample of 136,000 households, including 287,000 individuals and 15,350marginals. The
synthetic population was generated with four household-level attributes and six individual-level attributes.

6.2 Results were evaluated using four indicators:R2, TAE, SAE, and SRMSE. The validation findings indicate that all
methods considered yield good results, i.e. a two-layered synthetic population whose aggregate characteris-
tics lie close to the censusmarginals. However, somemethods output better results than others. For the fitting
step, entropy minimization (ent) and Hierarchical Iterative Proportional Fitting (HIPF) prove to be the most ef-
ficient methods. For the allocation step, the truncation, replication and sampling (TRS) approach outperforms
proportional probabilities.
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6.3 We believe that the comparison of di�erent statistical reconstruction (SR) algorithms performed in this paper
with common notations and a common theoretical framework will facilitate a better dissemination of existing
algorithms. This common frameworkwill stimulate thedevelopment of newalgorithmsandposition themwith
respect to existing methods.

6.4 The next step is to spatially allocate households or add to the demographic characteristics of households and
individuals other socio-economic variables such as income by using other databases, e.g. fiscal database. The
mathematical model used in this article inspires our current research to propose data fusion algorithms that
enrich the synthetic population.

Appendix: Model Documentation

In this appendix, we describe in five steps the approach used in the paper in a more detailed fashion with an
R script. The first step presents the databases used and how to download them. The other steps describe the
statistical analyses performed with a toy model. Interested readers can directly contact the authors to get the
complete codes.
Step 1: Databases access
The databases used are available under the following links (consulted on 6 November 2020) :

1. sample data: https://www.insee.fr/fr/statistiques/3625223?sommaire=3558417

2. aggregate data fromwhich the control variables are extracted :

(a) Couple-family-households database: https://www.insee.fr/fr/statistiques/3565598
(b) Residents’activities database: https://www.insee.fr/fr/statistiques/3627009
(c) Evolution and structure of thepopulationdatabase: https://www.insee.fr/fr/statistiques/

3564100
(d) Housing database: https://www.insee.fr/fr/statistiques/3564300

Step 2: Data processing
Inputs : downloaded databases
Outputs :

1. A R dataframe for the sample.

2. For each control variable, we must have a R dataframe. In our case study, we have 10 variables, so we
must have 10 R dataframes.

Conditions:
Ensure data consistency.
Each row of the sample dataframemust represent an individual with his or her personal and households char-
acteristics, a unique personnal ID number, a household ID and IRIS ID.
Each row of a control variable dataframe must represent a category with the number of people/households in
this category and iris ID.
Step 3 : Fitting step
Useof the four two-layeredSRmethods (Iterative ProportionalUpdate (IPU), Hierarchical Iterative Proportional
Fitting (HIPF), relative entropy minimization (ent) and Generalized Raking (GR)).
Conditions:
-Install MultiLevelIPF package under the following link: devtools::install_github("krlmlr/MultiLevelIPF") and
then call library(MultiLevelIPF).
Outputs: households weights for each algorithm.
Step 4 : Allocation step
Use of TRSmethod.
Outputs: synthetic population of households to merge with individuals by household ID.
Step 5 : Validation step
Use of classical performance metrics (R2, TAE, SRMSE and Bland-Altman) to compare algorithms.
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Notes

1An abundance of literature exists of this subject ever since the seminal work by Tikhonov & Arsenin (1977).
2In this paper, distance is not intended in its strict mathematical definition.
3In the literature on synthetic population generation, this method is o�en called cross-entropy minimiza-

tion; froma strictlymathematical point of view, it is not valid. Wehave chosen to replace the termcross-entropy
by relative entropy, also known as Kullback-Leibler divergence, which is correct and consistent with the nota-
tion of D for the measurement of this relative entropy.

4https://www.insee.fr/fr/information/2383265, Consulted on 22 April 2020
5According to the INSEE Institute, an urban area is a group of adjoining municipalities, without pockets of

clear land, encompassing an urban centre (urban unit) providing at least 10 000 jobs, and whose neighboring
rural districts or suburban units (urban periphery) account for at least 40% of the employed residents working
in the center or in the municipalities attracted by this center.

6For the Generalized Raking approach, four distance functions G can be used: the linear method, the raking
ratio method, the logit method, and the truncated linear method. We tested all these functions, but conver-
gence was only achieved for the logit method.

7https://github.com/krlmlr/MultiLevelIPF, Consulted on 24 April 2020
8We used a computer of 2 x 2.60GHz CPU cores and 16 GB RAM.
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