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Abstract: This paper uses two thought experiments to argue that the complexity of the systems towhich agent-
based models (ABMs) are o�en applied is not the central source of di�iculties ABMs have with prediction. We
define various levels of predictability, and argue that insofar as path-dependency is a necessary attribute of a
complex system, ruling out states of the systemmeans that there is at least the potential to say something use-
ful. ‘Wickedness’ is argued to be amore significant challenge to prediction than complexity. Critically, however,
neither complexity norwickednessmakes prediction theoretically impossible in the sense of being formally un-
decidable computationally-speaking: intractable being the more apt term given the exponential sizes of the
spaces being searched. However, endogenous ontological novelty in wicked systems is shown to render pre-
diction futile beyond the immediately short term.

Keywords: Prediction, Complex Systems, Wicked Systems, Agent-Based Modelling, Cellular Automata, Turing
Machines

Introduction

1.1 Agent-based modellers working on policy-relevant scenarios will typically find themselves needing to build
empirical agent-based models calibrated on real-world data, and then running these models forward under
various conditions to evaluate the range of outcomes. An example is Ge et al. (2018), who contrast potential
outcomes for three di�erent sizes of cattle farm in Scotland as a consequence of four Brexit scenarios relevant
at the time. As Gilbert et al. (2018), reviewing several examples of policy-relevant work they have undertaken,
observe, this kind of work is best done in as close a collaboration with those interested in the work as can rea-
sonably be achieved given other demands on their time. A particularly relevant question is the epistemic status
of the model’s results, and ensuring these are commonly understood by all concerned. This paper has the aim
of starting a discussion about the matter. Rather than making general conceptual remarks, it is an attempt to
ground the problem in computationally-relevant terms via two somewhat abstract thought experiments.

1.2 Though there are early examples of empirical applications of agent-based modelling in the 1980s, 90s and
2000s, Janssen&Ostrom (2006) guest editorial of Ecology and Societymarks awatershed in the field. Empirical
applications of agent-based models naturally raise questions about what the models usefully tell researchers
(and sometimes stakeholders) about the scenarios and systems being studied (O’Sullivan et al. 2016). One im-
portant use ofmodels generally is prediction, a subject aboutwhich the agent-basedmodelling community has
rightly been cautious. There are various reasons for this. One is a perception that prediction necessarily entails
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specific, quantitative point prediction of the formX[t] = 234.6± 3.7. Another is a view that the complexity of
the systems to which agent-basedmodels (ABMs) are typically applied is whatmakes prediction di�icult (if not
impossible). Edmonds et al. (2019a) say that “prediction ... is considered the gold standard of science” (para
2.2). Though this may be a matter of opinion, caution about prediction has been the cause of some debate
about whether ABMs can usefully be applied in empirical contexts. Although within the social simulation com-
munity the weight of opinion is arguably that prediction is not a necessary condition for an empirical ABM to
be useful, the same may not be said of those with a more traditional perspective on the purpose of empirical
modelling, and this has held back the more widespread adoption of ABM in policy analysis (Anzola 2019).

1.3 The matter was discussed in an exchange in the Journal of Artificial Societies and Social Simulation (JASSS)
roughly ten years ago. Epstein (2008) listed sixteen motivations for building a model “other than prediction”
(para. 1.9, emphasis Epstein’s). Thomson & Derr (2009) then criticized Epstein’s assertion in a heading to para-
graph 1.10 that “explanation does not imply prediction,” (Epstein 2008) arguing instead that an “explanation is
strong just insofar as it can make predictions and weak insofar as it cannot” (Thomson & Derr 2009). Troitzsch
(2009) o�ered a compromise in which he clarifies that the usages of “prediction” by Epstein (2008) and by
Thomson & Derr (2009) were di�erent, referring to discussions about the ambiguities of ‘explain’ and ‘predict’
among philosophers of science that took place in the 1950s and 1960s.

1.4 More recently, the prediction thread (https://rofasss.org/tag/prediction/) in the Review of Artificial So-
cieties and Social Simulation has taken up the discussion on prediction, particularly in response to a position
paper by Squazzoni et al. (2020) on the COVID crisis. The threadmakes clear the depth of the issueswith predic-
tion in the social simulation community. Polhill (2018) reported onhaving to cancel a competition to predict the
outcome of the Swedish general election in 2018, while Edmonds et al. (2019b) thenmake amore general open
call for documented examples of “models that predict useful aspects of complex social systems”.1 Reflecting
on the use of models in the COVID crisis, de Matos Fernandes & Keijzer (2020) exhort the community to avoid
the use of the word ‘prediction’, largely because non-experts do not understand concepts of complexity and
uncertainty (and howwe address themwith ABMs), and focus instead on communication. In a similar vein, but
with a more constructive suggestion, Steinmann et al. (2020) advocate couching predictions in terms of ‘deep
uncertainty’ (Lempert et al. 2003, pp. 3-4, 24), which applies when stakeholders in the model are unable to
agree on its structure. Elsewhere, Batty (2020), in an opening editorial to Environment and Planning B that also
reflects on the use of models to inform policy responding to the COVID crisis, observes that the pace of change
is so rapid that “unpredictability is now the norm.”

1.5 Edmonds’s (2017; 2019a) pragmatic definition of “predict” refers to “the ability to reliably anticipate data that
is not currently known to a useful degree of accuracy via computations using themodel.” Two elements of this
definition should be elaborated on. One, the “useful degree of accuracy” and two, the “reliable anticipation.”
Unknown data needn’t be quantitative, and if they are, their accuracy need only be “useful” for Edmonds’s def-
inition to apply. The criterion rightfullymakes the social context in which amodel’s prediction ismade explicit.
Consequently, usefulness of the model as a criterion becomes problematic, because it depends on subjective
opinions of individuals. One person may deem the same anticipated data to be usefully accurate (fulfilling the
definition of prediction), and at the same time another person may deem it useless. Moreover, those opinions
can changeover time,which introduces a risk of the sameunknowndata tobe labelled aprediction at onepoint
in time, and a non-prediction at another point in time.

1.6 For the purposes of this article, ‘usefulness’ is a modal assertion with respect to predicted states of the system
and a set of stakeholders. We assumeall stakeholders in themodel care about at least onemember of the state-
space of themodel; either because theywant to bring it about, or because theywant to avoid it happening. This
is the condition for a predicted state to be useful. Since not all states of themodel need have a stakeholder who
cares about them, we cannot know in general whether a prediction that says that state can or cannot occur will
be useful. Hence, such a prediction is ‘possibly useful’, and is equivalent to saying it is ‘not necessarily useful’
and ‘possibly not useful’. However, if a prediction says that all states of the model are equally probable (i.e.
anything can happen and we cannot even say that one outcome is more likely than another), this is useless
(‘necessarily not useful’).2 A prediction that only one model state can occur as outcome is ‘necessarily useful’,
as stakeholders know that the model has either said a state they care about will not happen, or it has said that
a state they care about will happen.

1.7 It is reasonable to querywhether predictions in generalmust be valid, i.e. correspond correctly to the predicted
phenomena as they happen to occur in the real world. There is a sense in which Edmonds incorrectly couches
validity in terms of being “reliably ... useful”. Statistical “reliability” refers to an estimable degree of consistency
between predicted values (Gulliksen 1950). While there is a relationship between reliability and validity, as the
former limits the upper level of the latter, Edmonds’smeaning of the term “reliably” pertainsmore to the sense
of the anticipation of unknown data being dependably correct. That is, there exists an acceptable proportion,
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W , of the times the model is used for prediction in which the predictions for the unknown data are not correct
to within a useful degree of accuracy once the unknown data become known, this number being agreed by the
stakeholders in themodel. With that qualification inmind, this paper will apply Edmonds’s definition: allowing
predictions to be uncertain, imprecise and occasionally wrong, so long as this does not unduly compromise
validity or usefulness in the social context in which the model is applied.3 Note also that in engineering, where
predictivemodelling (predictive analytics) o�enuses ABMalongwith other simulationmodellingmethods (e.g.
system dynamics and discrete event), the focus is on themodel’s usefulness rather than the correctness of pre-
dicted outcomes. Further, engineers’ approach to verification and validation is also di�erent than in scientific
disciplines, which we will discuss later.

1.8 The argument that the complexity of the system is the cause of di�iculties with prediction is made by various
authors. Byrne (1998), in his account of the relationships between Complexity Theory and the Social Sciences (as
he entitled his book), contrasts linear with nonlinear systems (p. 19), noting that, as per chaos theory, predic-
tionmight be possible in principle in nonlinear systems, given su�icient, accurate information about the initial
conditions and rules governing dynamics. In practice, he points out, prediction is not possible. This, however,
does not, in Byrne’s opinion, imply an end to the project of rationally analysing such systems. Later in the book,
Byrne (pp. 40-41) is critical of Gould’s (1991) assertion that historical contingency renders prediction irrelevant,
and optimistic about the potential for complexity-savvy governance to appropriately, if modestly, intervene at
critical points: “Complexity/chaos o�ers the possibility of an engaged science ... founded in ... a humility about
the complexity of theworld coupledwith a hopeful belief in the potential of human beings for doing something
about it.”

1.9 Byrne’s contrast between what might be characterized as linear control and post-modernist laissez-faire re-
flects contrasting attitudes to complexity. At one extreme, the linear control end could be labelled ‘complexity
denialism’. Under this perspective, complexity is simply noise that can be averaged away, or an issue of scale
that disappears at su�iciently coarse-grain resolutions. Policy designwill be poor, and based onbeliefs in capa-
bility to control situations that are commensurate with the Dunning-Kruger e�ect (Kruger & Dunning 1999). At
the other extreme lies conceptualizations of ‘monomorphic complexity’ consistent with Mitchell’s (2009) defi-
nition: “large networks of components with no central control and simple rules of operation [that] give rise to
complex collective behavior, sophisticated information processing, and adaptation via learning or evolution”
(p. 13, our emphasis). Under this belief system, all attempts at rational governance are doomed, and system
(self-)organization should be le� to invisible hands, no matter what the consequences to individuals.

1.10 A ‘polymorphic’ conceptualizationof complexitywould recognize that there aremultipleways inwhich systems
can exhibit behaviours that defy linear analysis. (See for example Gotts et al.’s (2019) taxonomy of complex
systems.) Whilst such systemsmight not be amenable to full control, there are opportunities to influence them,
and as individuals and collectives, we have some responsibilities for the trajectories the systems take. To take
such responsibility seriously, we do need to be able to anticipate the consequences of our actions in a complex
world. This is the motivation for considering how agent-basedmodelling could tackle prediction.4

1.11 This paper will use a restricted conceptualization of complexity that is more consistent with the Santa Fe In-
stitute (SFI) school as per the quotation of Mitchell above. MacKay (2008, p. T273) caricatures social scientists
as conceptualizing complex systems as having “an intricate graph of causal links”, and with a few refinements
this seems a useful starting point, as it gets to the heart of why complex systems might be seen as di�icult or
impossible to predict. The first refinement is simply to note that the graph must be cyclic, which is simply an-
other way of asserting (as MacKay (ibid.) does) that the system has several feedback loops. From a prediction
perspective large numbers of feedback loops mean there is a high computational load associated with antici-
pating the outcomes of actions. This could be refined further by stipulating that there are a su�icient number
of feedback loops that all nodes are members of at least one feedback loop. The point of such a stipulation
is to create an infinite recursion if nodes try to optimize outcomes in that each node (ego) needs an internal
model of each other (alter) node’s behavioural algorithm, which itself must contain an internal model of ego’s.
The second refinement would be to assert that no node in the graph directly influences every other node. This
is intended to reflect the “no central control” element of Mitchell’s (2009) definition, and it a�ects prediction
in the sense that there is no easily identifiable action a single agent can take that will guarantee a consequent
state of the system as a whole. The third refinement, which is directed at the latter half of the above quotation
of Mitchell (but might be disputed by MacKay) is that there are at least some configurations of the states of the
nodes in the intricately connected graph for which there is no absorbing state (in the Markovian sense). This
a�ects prediction in that long-run dynamics of the system cannot trivially be identified analytically.

1.12 Beyond this restricted sense of complexity, Andersson et al. (2014) discern the concept of ‘wickedness’. Rittel
& Webber (1973) describe “wicked problems” as not being amenable to definitive formulation, not having an
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enumerable set of potential solutions, and not even being classifiable in the sense that although two prob-
lems may have similar features, di�erences between them might later prove significant. In a related note to
the agent-based social simulation community encouraging them to focus their attention there, Moss (2001) ar-
ticulates “messy systems” as having unclear boundaries, and shi�ing relationships among entities. Andersson
et al. (2014) define “wicked systems” as being both complex (in the SFI sense) and complicated (comprised of
many di�erent kinds of agent operating at di�erent levels), noting that they are worse than complex because
their rules and entities change as a result of the system’s dynamics (p. 153). Andersson & Törnberg (2018) later
elaborate the space of complexity, complicatedness and wickedness further, and (in an appendix) link their
conceptualization back to Rittel & Webber (1973).

1.13 With respect to its amenability to analysis with agent-based models, a pragmatic perspective on wickedness
is that there is no single formalization that will be agreed by everyone to be adequate to the task; however,
as we will argue later, it is wicked systems’ endogenous systemic change that forms the central challenge to
prediction. Andersson et al. (2014) believe thatwicked systems are best understood using narrative, rather than
simulation,methods. Though theymaintain this position (Andersson&Törnberg 2018, p. 124), it isworth noting
that their definition of “sub-wicked” systems (ibid., p. 126) as being small enough in scope that they “fit into
the range of human cognition” suggests that full wickedness is beyond this range. As such, it is hard to see how
exclusively narrative approaches, which necessarily lie in the realm of human cognition, can possibly do justice
to the analysis of truly wicked systems. Simulation and prediction are useful even if the predictions of wicked
problems are o� the mark because of how they can bring in narrative approaches to be analysed beyond the
means of human cognition. That said,modelling used in isolationwithout a narrative or participatory approach
has shown to lead to less useful outcomes in the context of wicked problems (Davies et al. 2015). Equally, policy
decision-making and strategy development for wicked problems have been shown to be insu�icient without
the help of simulation and prediction (Loehman et al. 2020).

1.14 ‘Impossible’, understood strictly, means that any attempt to achieve something correctly stated as being so
will never succeed. For example, with the proof of the four-colour conjecture (Appel & Haken 1977; Appel et al.
1977), it is impossible to draw a set of polygons on a plane such that five colours are necessary to ensure that
no pair of polygons sharing an edge have the same colour. The reasons why prediction in complex systems
is said to be impossible, however, are more practical than they are theoretical. Andersson & Törnberg (2018,
p. 122) describe the unpredictability of complex systems using the language of chaos theory. Though they
refer to interventions in complex systems being unpredictable, chaos theory itself is alreadywell-known for the
“butterfly e�ect”, inwhich, e�ectively, infeasible levels of accuracy areneeded indata about initial conditionsof
a system in order tomeaningfully make predictions beyond the relatively short-term.5 If prediction of a system
is understood as a computational problem, the distinction between theoretical and practical impossibility can
be seenas akin to that of formal undecidability versus intractability, albeit that this generally applies todemand
for computational resource (processing time andmemory) rather than availability of data.

1.15 In the rest of this paper, we develop definitions of various levels of predictability and relate them to the modal
conceptualization of usefulness defined above. We develop arguments that complexity does not make predic-
tion in empirical social-ecological systems undecidable because the search space of models is finite, and sup-
port these argumentswith two thought experiments basedon cellular automata andTuringmachines. Drawing
on Andersson’swork (Andersson et al. 2014; Andersson& Törnberg 2018) and the thought experiments, we then
show how ‘wickedness’ is a significantly greater challenge, while arguing that although it does not make pre-
diction impossible (in the sense of formal undecidability), the intractability is less of an issue than the radical
uncertainty entailed in Andersson’s conceptualization of wicked systems. The discussion considers the impli-
cations for using agent-based models in empirical wicked systems, with particular emphasis on the need to
address endogenous novelty and the kinds of field research that can provide evidence to support that.

Two Thought Experiments and Complications

2.1 The first thought experiment draws on cellular automata (CAs), elementary machines capable of complex be-
haviour, the most familiar of which being Conway’s game of life (Gardner 1970). Cellular automata consist of a
regular grid of discrete cells in a defined space, a finite set of statesK that any cell can have, a neighbourhood
function returning, for any cell i, the set of cells C that are i’s neighbours or i itself, and a transition function
f , which maps the states of all members of C at time t to the state of i at time t + 1. The simplest CAs have a
one-dimensional ‘tape’ of cells (arranged in a ring if the number of cells is finite) each of which can have a state
in {0, 1}, and the neighbourhood function returns the three cells i and either side of i on the tape. These were
named ‘elementary’ CAs by Wolfram (1983b), and there are exactly 256 of them because that is the number of
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di�erent transition functions that can be defined under these constraints, there being eight possible states of
the three cellsC in the domain of f , and hence 28 di�erent ways of specifying the next state of i given the cur-
rent states of members ofC. Importantly, it is then feasible to exhaustively search the space of transition rules
of elementary CAs.

2.2 Elementary CAs satisfy the conditions for complexity outlined in the introduction. The cells are the nodes in
the intricate causal graph, and each cell has a direct causal connection onlywith its immediate twoneighbours.
Martinez (2013) summarizes several classification schemes for cellular automata, but probably the most well-
known is Wolfram’s (1984), which Martinez (2013) names ‘uniform’ (Class 1), ‘periodic’ (Class 2), ‘chaotic’ (Class
3) and ‘complex’ (Class 4). Wolfram’s Class 4 CAs produce themost complex behaviour (Langton 1990). Wolfram
(1983a, 1984) has claimed Class 4 CAs are unpredictable, except by simulation. That is, if you want to know the
future state of a Class 4 CA, then you need to know its current state and transition function, and then you can
find only out what the future state is by running the CA. Uniform CAs resolve into a state that repeats each time
step, and hence do not satisfy the condition of having no absorbing state, whilst periodic CAs repeat a finite-
length sequence of states, and are in that sense predictable in their long-run dynamics. The conceptualization
of complexity outlined in the introduction would include CAs of the ‘chaotic’ and ‘complex’ classes. Wolfram’s
claims about prediction mean we focus on Class 4.

2.3 The second thought experiment is centred on Turingmachines (TMs). A TM is a computing engine comprising a
tape of unbounded length, a read-write head, an internal state, and a state transition table. The tape is divided
intocells, eachcell havingoneofa finitealphabetofpossible values. Thatalphabetmust includea ‘null’ symbol.
The read-write head reads a symbol from the current cell on the tape, writes another symbol back to that cell,
and thenmoves one cell le� or right on the tape. The value written back to the tape depends on the value read,
and the TM’s internal state. The internal states a particular TM can have also belong to a finite set; and typically,
though not necessarily, that set includes the state ‘HALT’. The state transition table of a TM specifies, for each
combination of symbol read and internal state of the TM: the symbol to write to the tape, the next internal state
of the TM, and whether to move the read-write head le� or right on the tape.

2.4 Surprising though it may seem, it is possible to specify an alphabet A, a set of internal states K, and a state
transition table F to build a TM that, together with an appropriately configured initial set of cells on the tape,
can calculate anything computable. Formal undecidability, which forms the basis of the understanding of ‘im-
possibility’ used here, is precisely that condition in which no such specification can bemade.

2.5 The CA thought experiment gives the simplest example of a system claimed to be complex, and demonstrates
that prediction of such a system is nevertheless decidable, and in the very simplest case of elementary CAs,
feasible. The second thought experiment considers the case of a set of TMs all operating on the same tape,
but executing their instructions in a non-computable order. TMs are universal computers. Anything that can
be computed can be computed using a TM, including an ABM.6 In the second thought experiment, however,
each agent is assigned its own TM. If a TM can simulate an ABM, then a TM can simulate a single agent. The
significance of the non-computable ordering of execution is that itmakes a ‘super-Turing’machine because the
whole system cannot be simulated with a single TM. This can be considered a ‘worst-case’ fitting problem for a
complex system.

2.6 The thought experiments use their respective system specifications (i.e. CA or asynchronous TMs) to generate
a dataset from a complex system, and then imagine that the means by which that dataset has been generated
have been lost. They then try to regenerate and predict future states of the lost system by searching the space
of all such systems, rejecting points in that search space if they do notmatch the data. Besides considering the
decidability of searching the space (which essentially amounts to whether it is finite), we evaluate the useful-
ness of the possible resulting predictionswith respect to four kinds of predictability, outlined in Table 1. Each of
these predictabilities can be evaluated at the individual and whole-system level, making eight options in total.
Individual-level invariable predictability is possibly (rather than necessarily) useful because it would require a
stakeholder to be concernedwith the individual in question. These predictabilities are based on the states pre-
dicted at the individual and whole system levels by models of the target system that match the data provided.
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Table 1: Table showing the four predictability conditions used in the two thought experiments, and their useful-
ness at the whole system and individual levels. Note that the distinction between Possibly Useful and Possibly
Not Useful is aesthetic rather than semantic as (in modal logic) they are equivalent statements.

Predictability Description Usefulness
Invariable
Predictability

All matching models predict
exactly the same state.

Possibly Useful (individual
level); Necessarily Useful
(whole system level).

Omissive
Predictability

At least one state is not pre-
dictedby anymatchingmodel.

Possibly Useful.

Asymmetric
Unpredictability

Any state is possible, but not
all states have the same num-
ber of matching models pre-
dicting them.

Possibly Not Useful.

Symmetric
Unpredictability

All states are predicted by the
same number of matching
models.

Necessarily Not Useful.

2.7 System-level invariable predictability is obviously the ideal. This can be achieved when there are enough data
that there is only one matching (deterministic) model remaining from the set of models searched. Decreasing
the size of the set of models searched using prior knowledge is another option. System-level omissive pre-
dictability is, as indicated, not necessarily useful. For example, even if a large number of the possible system
states are ruled out by predictions of the matching models, but all of those states are not significant to any
stakeholder, the knowledge is unlikely to be useful. However, sometimes excluding one significant state from
possible futures o�ers su�icient information, such as for extremely undesirable states.

2.8 The distribution of outcomes of asymmetric unpredictability is not a probability distribution in the case of de-
terministic models except in a Bayesian sense. Figure 1 shows this with an example set of predictions for a
hypothetical CA with four possible states 1, 2, 3, 4 for each of four cells. Here, only one of the matching transi-
tion functions F1...F8 is the ‘actual’ transition function (i.e. the original data generator from which data were
collected and then used to find the matching transition functions), and CAs are deterministic: the bottom-le�
cell doesn’t have a 5

8 probability of being 0 at time T , except that (in the absence of any other information) this
is a reasonable ‘degree of belief’ that that cell is 0 at T given that five of eight matching transition functions
make that prediction.

Figure 1: Di�erent levels of predictability of four cells in a CA withK = {0, 1, 2, 3} (cells coloured according to
K) and eightmatching transition functionsF1...F8. Looking across the depicted predictions across these eight
functions, the top le� cell is invariably predictable (always state 0); the top right cell is omissively predictable
(never state 3); the bottom le� is asymmetrically unpredictable (state 0 occursmore o�en than any other state);
the bottom right is symmetrically unpredictable (all states occur twice).

2.9 Figure 2 shows how the various predictability conditions in Table 1 are related to each other. It also highlights
one argument for why prediction in complex systems should be possible: whole-system asymmetric and sym-
metric unpredictability should be ruled out by path dependence, which is stated explicitly by Thurner et al.
(2018, p. 317) to be a possible inherent property of complex systems. In other words, if we find ourselves in a
position where all possible states of a system are predicted by matching models to have non-zero probability,
wemight question whether that system is complex.
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Figure2: Decision tree (inUMLactivitydiagramstyle) depictinghoweachof fourpropositionsaboutpredictabil-
ity at the individual (cell) and whole system levels can be determined. Dashed arrows link the individual and
whole system levels; diamonds represent decision points, with arcs labelled according to the conditions that
must apply to follow them. In case of ambiguity, arcs from diamonds not labelled ‘[else]’ are shown with a
thicker line.

2.10 Rathermoremundanely, system-level asymmetric andsymmetricunpredictability require there tobeat least as
many matching (deterministic) models as there are states in the system. In the nondeterministic model case,
the number of states in the system needs to be smaller than the product of the number of models and the
number of alternative options generated by the stochasticity in each.

Thought experiment 1: Predicting cellular automata

2.11 Table 2 provides a summary of the prediction problem outlined in this thought experiment.

Table 2: Summary of the CA thought experiment

Given

At least two consecutive snapshots of the CA’s space
The set of states each cell can have
The neighbourhood of each cell
Synchronous order in which cells compute their states

Hidden The transition function cells use to compute their states
Predict The states of the CAM steps a�er the last snapshot
Outcome Given enough data: invariable predictability, but exhaustive

search is infeasible for all but the simplest CAs

2.12 Imagine that someone has built a Class 4 (i.e. ‘complex’) CA that produces some interesting behaviour, but then
forgotten the transition function. Luckily, they saved some images of that behaviour over N ≥ 2 time steps,

JASSS, 24(3) 2, 2021 http://jasss.soc.surrey.ac.uk/24/3/2.html Doi: 10.18564/jasss.4597



they can remember the neighbourhood function returning C given cell i, and they also recall the set of states
K. They are nevertheless curious about what the state of that CA would have beenM steps later. As Langton
(1990) points out, the space of transition functions is huge. Given there are#K states that a cell can have, and
#C neighbouring cells, then the number of possible transition functions#F is given by Equation 1.

#F = #K(#K#C) (1)

Equation 1 generates 256 elementary CAs, but in more complex cases it produces numbers that are extremely
large from the point of view of someone hoping to explore the space exhaustively using current computing
technology. For example, allowing the state of cell i to be a�ected by its four immediate neighbours (#C = 5,
recalling that by convention a cell is a member of its own neighbourhood) means #F = 232 ≈ 4.29 × 109,
whilst changing the number of states (#K) from 2 to 3 (with#C = 3) means#F = 327 ≈ 7.63× 1012. In a two
dimensional grid of square cells, with#K = 2 and#C = 9 (i.e. cell i and its eight immediate neighbours), the
family of CAs to which Conway’s game of life belongs,#F ≈ 13.4 × 10153. Multiplying the estimated number
of atoms in the known universe by the Planck time since the big bang yields a smaller number. These numbers
are nevertheless finite, and can be exhaustively explored in theory if not in practice. Searching the space of
transition functions exhaustively is therefore intractable in the general case, but not undecidable.

2.13 It is reasonable to assume that having recorded enough time steps (i.e. forN large enough), the absent-minded
personwouldhave su�icient information tonarrowdownthenumberofpossible transition functions that faith-
fully reproduce the images generated by the CA to one. Ultimately, they would find the forgotten transition
function of that CA, and by simulating it, they would generate the image the original would have producedM
steps later. As the image was generated by simulation, we are not contradicting Wolfram by asserting that the
image is our prediction for an image the forgotten transition function would have originally generated. Were
the individual later to find the transition function they initially used, this prediction could even be verified.

2.14 Suppose N is not large enough to identify a single transition function that reproduces the N -long sequence
of images, and instead there is a set of matching transition functionsG. We are interested in predictions for a
finite subset of the image containing L cells at time T = N + M . Table 3 then provides a specification for the
four predictabilities in Table 1 at the individual cell and whole image levels.

Table 3: Instantiation of Table 1 for the CA thought experiment.
Un/Predictability Cell Image ofL Cells
Invariable All of the matching transition

functions in G predict the
same member of K for this
cell at time T .

All members ofG predict the same image at time T .

Omissive At least one member of K
never appears in this cell using
any member ofG at time T .

At least one of the#KL possible images never occurs using
any member ofG at time T .

Asymmetric All members ofK are possible
in this cell at time T , but with
unequal proportions across all
members ofG.

All of the #KL images are possible at time T , but with un-
equal proportions across all members of G. Note that the
facts that each image is realized by at least one member of
G ⊆ F , and that at least one such state must occur more
o�en than any of the others, means that #F > #KL, and
hence, from Equation 1, #K#C > L. For L large enough,
systemic asymmetric unpredictability is not possible. In ele-
mentary CAs, this happens whenL > 23.

Symmetric All members ofK occur in this
cell at time T with equal pro-
portions across allmembers of
G.

All of the #KL images occur at time T with equal propor-
tions across all members ofG. To have a uniform distribution
over the possible states at the systemic level,#G = u#KL,
where u is a positive integer.

2.15 Though searching the space of transition functions might require morematter and time than the universe pro-
vides, the complexity of CAs, which has been argued for frequently, is not a theoretical obstacle to prediction.
To demonstrate the principle and provide an explicit counter-example to the claim that complex systems are
unpredictable, Figure 3 shows the output from a simulation that runs an elementary CA to get some data, and
then tries to ‘find’ the transition rule used by exhaustively exploring all 256 transition rules, eliminating those
rules that are not consistent with the data, and then plotting the predictability of cells using propositions 1
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(green), 3 (orange) and 4 (red).7 (Individual cell omissive predictability is not an optionwhen there are only two
states.)

2.16 The cells shown in light blue in Figure 3 are ‘data’ cells, and there are two consecutive timesteps in which data
are recorded. Aminimumof two snapshots is needed todetermine the transition rule using amethod that relies
on eliminating rules that donot reproduce later snapshots given earlier ones. The first snapshot hasmanymore
cells in it than the second. The width of the second snapshot is controlled by a parameter max-data, which in
the run in Figure 3 is 21.

2.17 In the simulation depicted, the ‘real’ transition rule used to generate the data is rule 110 using ‘Wolfram code’
(Wolfram 1983b); this rule is one of themost complex, proven capable of universal computation by Cook (2004).
In the light-shaded regionof the image (depicting theLcells) therearenevertheless cells colouredgreen through-
out the run, illustrating that in this run at least, some cells are invariably predictable, even several time steps
a�er the data.

Figure 3: Checking the predictability of an elementary CA. Time runs vertically from the top of the picture; the
purple cells showing the simulation of the ‘real’ CA under transition rule 110, using shade to represent a cell in
state 1 or 0. The light blue (cyan) cells show the data, also using shade to represent a cell in state 1 or 0. Below
the data cells, colour is used to show predictability (green: invariably predictable; orange: asymmetrically un-
predictable; red: symmetrically unpredictable), and shade to indicate theL cells forming the subset of interest
(lightest shade), and cells a�ected by the edge of the simulation (darkest shade) to allow evaluation of pre-
dictability in the finite and infinite CA case, the latter meaning that the darkest-shaded cells should be ignored.
In this particular run, all but four of the 256 rules have been eliminated because they do not fit the data in the
cyan cells.

2.18 In Figure 4, the value of max-data is increased from 1 to 40, using 100 replications of each setting (4,000 runs
in total), to show the relationship it has with the number of rules eliminated (n-eliminated). Of particular
interest is the case where 255 rules are eliminated, as this shows when the ‘real’ rule (110) has been found, and
all cells are invariably predictable. The results show that the majority of runs result in a singleton setG when
max-data is around 20, with max-data needing to be more than 8 for this outcome to have occurred at all.
Values of max-data between 30 and 40 rarely result in more than two members of G, with a single member
being found in a clear majority of cases.
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Figure 4: Heatmap showing the number of rules eliminated as max-data is increased from 1 to 40 with 100
replications per setting. Grey pixels indicate none of the replications resulted in the corresponding max-data /
n-eliminated combination, with colours from pink throughwhite to cyan showing numbers ofmatching runs
in the range [1, 100] as indicated in the scale above the heatmap.

2.19 Another point observable from Figure 3 is that the nature of the interdependencies of the cells means that,
depending on the data provided and whether the CA is on an bounded grid, there is an inherent limit in how
far ahead the prediction can be generated. For there to be no such limit, the CA must be bounded (in the case
of the 1D CA depicted, the ‘tape’ of cells is joined at the ends so that it forms a ring), and at least one of theN
snapshots must show the state of all cells in the tape. Otherwise,M is e�ectively limited as per Equation 2 by
#C, L and the number of cells in the largest snapshot over the N timesteps, d∗, with t∗ ∈ [1, N ] being the
latest time step at which a snapshot of size d∗ appears.

M ≤ d∗ − L

#C − 1
− (N − t∗) (2)

Although interdependencies such as this are a feature of complex systems, with respect to prediction, the limi-
tation in how far ahead a CA can be predicted is a question of data availability.

Complication: Asynchrony

2.20 Table 4 summarizes the prediction challenge caused by what might appear to be a trivial complication to the
CA. Note that in contrast with table 2, the transition function is nowgiven, butwe don’t know the order inwhich
the cells compute their states.

Table 4: Summary of the asynchrony complication

Given

N consecutive snapshots of the CA’s space
The set of states each cell can have
The neighbourhood of each cell
The transition function cells use to compute their states

Hidden (Non-computable) order in which cells compute their states
Predict The states of the CAM steps a�er the last snapshot
Outcome Simply computing the prediction itself rapidly becomes infea-

sible.

2.21 In the CA thought experiment, each cell computes its state at time t based on the states of it and its neighbours
at time t − 1. Breaking that assumption builds asynchronous cellular automata, in which it is possible for the
state of a cell at time t to dependon the state at time t computed by a neighbour thatmade the calculation prior
to the cell in question. Critically, for our purposes, it must be impossible to write an algorithm that determines
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the order in which cells compute their state at time t. Asynchronous CAs have been studied formany years (e.g.
Ingerson & Buvel 1984; Schönfisch & de Roos 1999), with the argument that many of the ‘emergent’ e�ects of
synchronous CAs are artefacts of synchrony. Even so, there are special classes of asynchronous CA that have
been proven capable of universal computation in a similar manner to that of the rule 110 ECA (Yamashita et al.
2020).

2.22 It is not di�icult towrite an ABM that behaves in an analogousway. Suppose NetLogo used a true randomnum-
ber generator8 instead of the pseudo random number generator it uses in the ask command. Then, consider
an instruction like the following:
ask turtles [

forward [pcolor] of patch-here
ask patch-here [

set pcolor [color] of myself
]

]

This makes the colours of the patches and the distances moved by turtles other than the first asked sensitive
to what previous turtles asked have done. In real-world situations, people only act in synchronized ways by
agreement, such as at tra�ic lights.

2.23 The scale of the computational problemposedby asynchrony for prediction should not be underestimated. For
the purposes of illustration and comparison with the synchronous CA, imagine that we have somehow deter-
mined that rule 110 was the only rule that matched some data from an asynchronous variant of an elementary
CA, and we now wish to predict the future state of the CA. Though there are various ways asynchrony can be
implemented (Fatès 2013), a simple asynchronous variation of an elementary CA that is convenient for calcu-
lating the computational cost of prediction would haveR cells arranged in a ring (such that cell 1 has cellR as
its ‘le�’ neighbour, and so cellR has cell 1 as its ‘right’ neighbour). Each step t, theR cells would calculate their
next state in a random orderOt, such thatOtj is the cell computing its next state. Let the functionΩt(i) return
the index j onOt at which cell i ∈ {1, 2, ...R} computes its state. IfΩt(i) < Ωt(k) then cell i computes its state
before cell k in step t. The state of cell i at time t is then given by the state of cell i at time t− 1, the state of cell
i−1 at time t ifΩt(i−1) < Ωt(i) and time t−1otherwise, and the state of cell i+1 at time t ifΩt(i+1) < Ωt(i)
and time t− 1 otherwise.

2.24 Since each orderingOt is not computable, all R! possible orderings of the R cells should be explored. Worse,
since the state at time t + 1 depends on the specific state realized at time t, to predict aheadM steps from the
last snapshot at timeN , the number of orderings to explore is (R!)M . This is exponential in both the number
of cells9 and the number of steps ahead to predict. IfR andM are both 10 (a small CA a short time ahead), the
number of orderings to explore to accurately calculate the probability each cell has state 1 at time N + M is
roughly 4× 1065.

Thought experiment 2: Asynchronous networks of Turing Machines

2.25 Table 5 summarizes the prediction challenge in this thought experiment, which is based on several Turing Ma-
chines (TMs) operating asynchronously. This combines the challenges outlined in Tables 2 and 4 with more
sophisticated computing power at the micro-level.

Table 5: Summary of the TM thought experiment

Given

N consecutive snapshots of the TM’s tape
The alphabet of symbols each cell in the tape can have
The number of agents p
The size of the agents’ internal state set#K

Hidden

The transition function each agent uses to compute its next
state, move, and write a symbol to the tape
The initial position on the tape of each agent
The initial internal state of each agent
(Non-computable) order inwhich agents compute their states

Predict The states of the tapeM steps a�er the last snapshot
Outcome Omissive predictability, but exhaustive search is infeasible,

and handling the order being non-computable may mean
asymmetric unpredictability is observed from the simulations
even if this is not true of the underlying system.
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2.26 Agent-basedmodels, insofar as they are defined, are computer simulations featuring a ‘su�iciently large’ num-
ber of agents each with their own attributes and simulated behaviour that can change their own attributes as
well as those of other agents and, if included, a simulated, spatially-explicit environment (Polhill et al. 2019).
The interactions of the agents form networks. Networks of autonomous agents acting in a shared physical en-
vironment can be considered to be like a set of TMs all operating on the same tape. Even though multiple TMs
o�er no more computing power than a single TM, writing a single TM that performs the same computation as
themultiple TMs sharing a tape relies on knowing the order in which each of themultiple TMs act (ormore pre-
cisely, that the order in which the TMs act is TM computable) (Copeland & Sylvan 1999). If this order is random
(say, each of themultiple TuringMachines performs one step of computation each time a decay of a radioactive
element is detected), the state of the tape at some point in the future is not computable in the general case.10

2.27 Despite not being able to compute the exact state of the tape at some point in the future, in this thought exper-
iment, we imagine having N tape snapshots, and want to assess the predictability of the tapeM steps later,
where each ‘step’ is the execution of a single instruction by one of the TMs.

2.28 Turing Machines, like cells in cellular automata, have a finite set of internal states K. However, the internal
states are not ‘visible’ in this thought experiment. A TMalsohas a tape comprising an infinite number of discrete
locations to which it reads and writes symbols from a finite alphabetA, whichmust include a ‘null’ symbol (∅).
The null symbol inA is the default entry in a cell on the tape, which can only contain non-null symbol fromA if
the symbol is entered in the (finite) initial state of the tape, or if it is subsequently written by the TM. The tape
is used to build theN snapshots in the thought experiment. Note that although a TM has an unbounded tape
length, it is better to think of it as adding locations (with default state ∅) as needed. The portion of the tape
from the le�-most to the right-most non-null symbol is finite initially, and the machine can only move le� or
right one location in each step. Each of theN snapshots will be of finite length, therefore.

2.29 As noted in the introduction to this section, the transition function of a TM is a table of size #K × #A, each
entry of which specifies: the symbol fromA to write to the tape at the current location; the next state fromK
the TM should enter; andwhether tomove the read head le� or right one position on the tape. Each entry could
thus be any of 2#K#A possibilities, and hence the number of possible state transition tables#F is as shown
in Equation 3.

#F = (2#K#A)#K#A (3)

There is a population of p agents all reading andwriting to the same tape in this thought experiment. Wewill as-
sume p is known. The size of the transition table search space is#F+p−1Cp, using nCr to represent the number
of combinations ofn things taken r at a time. 11 However, for the sake of simplicity, it will su�ice for the purpose
of demonstrating that the space to search is finite to say that the size of the search space of state transition
tables, sF < #F p.

2.30 In this thought experiment, we do not have information about the TMs in any of the N snapshots – neither
about their state K, nor about the position of their read-write heads on the tape. For the purposes of this
thought experiment, wewill allow ourselves the luxury of knowing the size of the TMs’ state set#K used in the
original snapshots.12 Someof theoptionswehave toexplore toexhaustively cover theways inwhich theoriginal
snapshots might have been generated therefore pertain to the initial conditions. Let the le�-most location on
a tape x be whichever is the lesser of the le�-most non-null symbol and the le�-most location of a TM’s read-
write head; and the right-most location y be whichever is the greater of the right-most non-null symbol or TM’s
read-write head. The length of the tape is then 1 + y−x. If the length of the tape at the first of theN snapshots
is l1, then for each of the possibilities in the transition function search space, the number of initial conditions
to explore, sI ≤ (l1#K)p; the inequality being a simplification for similar reasons to that for sF , albeit that in
some combinations of state transition table, the order of assignment of initial condition to agent is important.

2.31 A furtherdimensionof uncertainty arises fromthe fact that theorder inwhich thepagents executed instructions
when generating theN snapshots is not computable. However, in each of theN − 1 steps, exactly one of the p
agents executed an instruction, and so there are pN−1 possible schedules to be explored. Let s be the number
of options that need to be examined to find out what the state of the tape might beM steps a�er the last of
the N snapshots. Then Equation 4 provides an upper bound for s that is, though intractably large to explore
exhaustively, not infinite, and hence not undecidable.

s < (sF sI)ppN−1 (4)

Some combinations of state transition table and initial condition will never generate the tape states shown in
theN snapshots nomatterwhat theorder of execution is. Looking across the setZ of state transition tables and
initial condition pairs, a number, g(z ∈ Z) ≥ 1, of the pN−1 possible schedules reproduces the snapshots. The
tapes at timeT = N +M for each of these state transition table and initial condition pairs could be of di�erent
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lengths, depending on how the agents’ state transition tables a�er timeN a�ect the le�-most and right-most
non-null symbol or read-write head position at time T . Hence, when considering the predictability, this should
be in relation to an imaginary tape that starts at the le�-most position of any tape generated by a member of
Z under a matching ordering, and ends at the right-most position; tapes not beginning and ending at these
locations having ∅ in all locations that need to be added to ensure they do. Let the length of the resulting tapes
be LT . Table 6 then summarizes the predictability and unpredictability conditions at the individual cell and
whole tape (‘system’) levels.

Table 6: Table showing the various predictability (invariable and omissive) and unpredictability (asymmetric
and symmetric) conditions for the asynchronous network of Turing machines thought experiment.
Un/Predictability Cell Tape
Invariable For all members ofZ, for all g(z)×pM sched-

ules, this tape location always has the same
member ofA.

All of the LT locations of the tape are invari-
ably predictable.

Omissive At least onememberofAnever appears at this
tape location for all members ofZ and g(z)×
pM schedules.

At least one of the #ALT possible tape con-
figurations never occurs for all members of Z
and g(z)× pM schedules.

Asymmetric All members of A are possible in this tape lo-
cation, but not with equal proportions across
all members ofZ and g(z)× pM schedules.

All of the#ALT possible tape configurations
are possible, but not with equal proportions
across allmembers ofZ and g(z)×pM sched-
ules.

Symmetric All members of A are equally possible in this
tape location across all members of Z and
g(z)× pM schedules.

All of the#ALT possible tape configurations
are equally possible across all members of Z
and g(z)× pM schedules.

2.32 The need to explore all possible initial conditions of the agents, together with conservative transition table
elimination (only one of the possible schedules needs tomatch theN snapshots) make it more di�icult for the
data to be used to eliminate transition-table/initial-condition pairs. This makes it more likely that there will be
variation in the predicted states of individual cells at time T . Further, when making predictions, not knowing
the schedule means all possibilities have to be explored. The definition of LT allows for the possibility that
the tape lengths of di�erent predictions will not be the same. Hence, it is possible that the extreme le�- and
right-most positions ofLT will have ∅ in some cases, and one or more other symbols fromA in others. If so, at
least these positionswill not be invariably predictable, and systemic invariable predictability will not apply. For
similar reasons, systemic symmetric predictability also seems unlikely, as from Figure 2, systemic symmetric
unpredictability is a subset of the cases where all individuals are symmetrically unpredictable. For an extreme
location on the table to be individually symmetrically unpredictable, any option not using one of the extreme
locations on the tape needs to be matched with exactly#A − 1 options using each of the other symbols inA
in that location, with the remaining options all using elements ofA in equal proportions.

2.33 If wemaintain the argument that path-dependencemeans systemic asymmetric and symmetric unpredictabil-
ities are inconsistent with the system under study being a complex system, and regard systemic invariable pre-
dictability as a negligible possibility for the reasons given above, omissive predictability is the only outcome at
whole system level. The situation ismore complicated, however, becauseweexploreall thepM scheduleswhen
making the prediction, when some might be impossible in the real world: non-computability of the schedules
doesn’t necessarily mean all schedules are possible, only that we can’t build a TM to calculate what the actual
schedule is, and hence need to check the outcomes from all the possibilities.13 The predicted results might
therefore be asymmetrically unpredictable even if the original system is complex and path-dependent.
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Complication: Wicked systems

Table 7: Summary of the wicked systems complication

Given
N consecutive snapshots of the TM’s tape
A partial alphabet of symbols each cell in the tape can have
The number of agents p

Hidden

The transition function each agent uses to compute its next
state, move, and write a symbol to the tape
The initial position on the tape of each agent
The initial internal state of each agent
Order in which agents compute their states
The full size of the agents’ internal state set
Additional symbols in the alphabet for the future systems

Predict The states of the tape long enough a�er the last snapshot that
none of the symbols in the partial alphabet appear

Outcome Symmetric unpredictability with an infeasibly large search
space

2.34 Thedi�icultieswithpredicting states of a systemarenotonlydue to complexity. The related literatureon social-
ecological systems describes some systems as ‘wicked’ (Andersson & Törnberg 2018), based on Rittel andWeb-
ber’s (1973) definition of ‘wicked problems’. The concept of ‘wicked problems’ is used by Rittel & Webber (1973)
to explain why conventional, i.e. rational analytical, approaches fail to understand social-ecological systems
in reality, for example, in urban planning. Following Zellner & Campbell (2015) and abstaining from the parts
that are more specific to public policy and planning14, the criteria can be summed as follows: First, there is no
definitive formulation of awicked problem. Second, there is no definite solution to awicked problem, since the
solution may generate cascading waves of repercussions, e.g. positive feedback e�ects, and/or is a symptom
of another problem. Third, there is no clear set of potential solutions nor a well-described set of permissible
operations. Fourth, related to the first criterion, the wicked problem can be explained in numerous ways. Fi�h,
every wicked problem is unique.

2.35 From these criteria, it follows that complexity is considered to be an integral part of wicked problems in the
applied literature (e.g., Batie 2008, Zellner & Campbell 2015 and Head 2008) as well as in systems research (An-
dersson et al. 2014; Andersson & Törnberg 2018). For Head (2008), for example, wicked problems in real social-
ecological systems, e.g. political systems, are determined by complexity (subsystems and their interdependen-
cies), uncertainty (unknown consequences of action and changing patterns) and divergence (fragmentation in
viewpoints). Complexity is thus a necessary, but not su�icient, criterion for wickedness.

2.36 From a systems perspective, Andersson et al. (2014) and Andersson & Törnberg (2018) characterize wicked sys-
tems as ones in which wicked problems arise. Wicked systems combine two system distinct qualities, compli-
catedness and complexity. A complicated system is viewed to have a large number of components that behave
in a well-understood way and have well-defined, but distinctive roles leading to the resulting e�ect. Typical
examples are usually machines such as helicopters or aeroplanes, which have millions of physical parts (San
Miguel et al. 2012). The components of complicated systems are decomposable in that they can be analysed in-
dividually. Complex systemsmay also have a large number of components, but each component is of the same
kind (as in the cells of a CA), or at least, the number of classes of component is considerably smaller than in
wicked systems. However, the interactions among the components lead to collective or systemic emergent be-
haviours that cannot, even qualitatively, be derived from knowledge of the individual components’ behaviour
(SanMiguel et al. 2012). The components of a complex systemare thus not decomposable in theway they are in
a complicated system, since the complex system would lose its emergent features and the single components
their relatedness. Wicked systems combine both qualities, complexity and complicatedness. The interactions
among the components hamper analyses of the the rules of a single component.

2.37 The analysis in the second (TM) thought experiment assumed knowledge of a system that might not generally
be the case in real-world problems: the number of agents p, the alphabet of the tapeA, and set of states agents
might haveK could all be unknown. TheN snapshots might not cover the whole tape. Andersson & Törnberg
(2018, p. 124) emphasize the uncertainty of wicked systems, noting that this includes “ontological uncertainty”.
There are various ways “ontological uncertainty” could be occur, which we expand on below. First, there could
bewhatmight be called ‘representativeontological uncertainty’, inwhich there is no singleway to represent the
system that is obviously ‘right’ or agreed on by everyone. Second, ‘empirical ontological uncertainty’ applies
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where there is disputation over the data to be used tomodel the system. Third, andmore significantly, ‘endoge-
nous ontological uncertainty’ raises the possibility that novel system states emerge as the system evolves.

2.38 In the context of the TM thought experiment, representative ontological uncertainty pertains to such things as
what the alphabet of the tapemight be (beyond those symbols alreadyobservable from the snapshots), orwhat
states agents could have (though really, it is only themaximumnumber of states they could have thatmatters).
If there are a finite number of alternative representations, then the problemof exploring the space of transition
tables thatmatch the data is the product of the problems of exploring each single representation. It is then that
muchmore intractable, but still not undecidable.

2.39 Empirical ontological uncertainty would be interpreted as disputation about the validity and appropriateness
of the N snapshots as being the only data by which possible models of the system are rejected. While de-
bate about the alphabet of symbolsA is more a question of representative ontological uncertainty, arguments
about which element ofA should be used in each initial location would be a question of empirical ontological
uncertainty. In general (beyond the immediate context of the TM thought experiment), empirical ontological
uncertainty arises from disputation among domain experts in the wicked system, whose knowledge might be
sought when attempting to model it. One way to address such uncertainty is to run the multiple alternative
modelswith any of themultiple di�erent initial conditionswithwhich they are compatible. Even so, if the num-
ber of alternatives to explore is finite, prediction based on exhaustive search of alternatives is ruled out on the
grounds of tractability not decidability.

2.40 However, if itwasunlikelybefore that invariable system-level predictabilitywouldoccur, it becomesvanishingly
small as the number of alternative representations and initializations to explore increases. On the other hand,
the fact that the di�erent representations will not lead to all symbols on the tape occurring in every matching
run means that cell-level symmetric unpredictability becomes increasingly unlikely too, and with it, systemic
asymmetric or symmetric unpredictability. At the whole-system level, omissive predictability is then by far the
most likely, if not the only, option.

2.41 One feature of wicked systems clear from Andersson & Törnberg (2018) is endogenous ontological uncertainty:
the dynamics of the system itself lead to the creation of novel states, agents, and symbols. Computationally
speaking, this is not the obstacle it might at first appear to be, as the new agents can initially run TM transition
rules that e�ectively make them inactive until they are needed, and the novel states and symbols can be pro-
vided in extended sets, with special transition rules activated under whatever conditions it is that leads to the
updated ontology applying. These add exponentially to the intractability of modelling the system, but do not
make the task undecidable. However, this misses the point. The real issue with wicked systems pertains to the
data available when the prediction is needed.

2.42 To extend the thinking in the second thought experiment, we now imagine a finite alphabetA′ = A ∪ A∗ and
finite set of statesK ′ = K ∪K∗, where nomember ofA∗ appears in any of theN snapshots, and nomember
of K∗ appears as any of the initial states of the TMs. A∗ and K∗ thus represent the endogenous ontological
uncertainty, but we have no data about them in theN snapshots used to determine which models will gener-
ate our predictions. Hence, even thoughwemight narrow down the set of transition functions and orderings of
TM activities that reproduce theN snapshots on the tape, all options for transition functions involving states
inK∗ and reading or writing symbols on the tape in A∗ are open (see Figure 5). Assuming the emergent new
system is expected only to involve states and symbols that are proper subsets ofK∗ andA∗, then even though
strictly speakingwith respect toA′ the whole system is omissively predictable, with respect to the subset ofA∗
that would usefully give us information about the expected new state of the system, the tape is symmetrically
unpredictable. E�ectively, endogenous novelty creates the conditions in which, even if we could exhaustively
explore the space of all possible models we could build to see how they fit the data we have in the present, the
exercise is futile in that Edmonds’s (2017; 2019a) definitionmeans there is nouseful degree of accuracy bywhich
predictions can be made once the symbols inA and states inK are no longer relevant. The emphasis is impor-
tant because there is still potential utility in modelling wicked systems in providing the scope for detecting or
estimatingwhen the current system (A,K and associated transition functions) is shi�ing away from its current
basin of attraction.

JASSS, 24(3) 2, 2021 http://jasss.soc.surrey.ac.uk/24/3/2.html Doi: 10.18564/jasss.4597



Figure 5: The problem of predicting in wicked systems with endogenous ontological novelty. The system for
which data are available comprises TM states K and tape symbols A. Under certain conditions, a transition
function f can pull a TM into a space where can have states inK∗ and write symbols in A∗, with one or more
other functions g leading to a future state/symbol space defined by subsets ofK∗ and A∗. Since theN snap-
shots only contain data onK and A, there is no information to determine functions f and g or any transition
functions in the future system, nor even any basis in the data to suppose such functions exist. All states in the
future system are then symmetrically unpredictable.

2.43 One casewhere the capability to simulate the emergence of noveltywould be useful is in the exploration of sce-
narios involving ‘Transformative Social Innovations’ (Avelino et al. 2019). Social Innovations are “new ways of
doing, organizing, framing and knowing” (Avelino et al. 2019, p. 197), while Transformative Social Innovations
are “Social Innovation that challenges, altersor replacesdominant institutions ina social context” (Avelinoet al.
2019, p. 196), and is an inherently coevolutionary concept. However, other less extreme examples include sce-
narios exploring the introduction of new technology to a system, or new policies, and theways in which agents
might adapt and respond to them. Filatova et al. (2016) argue that regime shi�s can occur gradually, grown
within a system, as well as shocks or perturbations to an existing system. If the only data we have (including
description of the system itself) when modelling pertains to the current system, we are obviously in a di�icult
position if we want to predict what a new systemmight look like.

2.44 Clearly, then, agent-based models of wicked systems need to have agents with the potential to create novelty,
or (minimally) to allow for the possibility that there is an ‘escape’ from the transition rules that dynamically
generate states within the space of the current system. Mitchell’s (2009, p. 13) characterization of complex
systems as having “simple rules of operation” for its agents, cited in the introduction, is insu�icient for wicked
systems insofar as such simplicity does not entail the potential to create new rules and states. Andersson et al.
(2014), however, acknowledge that Edmonds and Moss’s (2005) ‘descriptive’ agent-based modelling style (in
contrast to the SFI-school’s ‘KISS’ – Keep It Simple, Stupid) increases the complicatedness of the systems to
which agent-basedmodelling can be applied towards tackling wicked rather than purely complex systems.

Discussion

3.1 In this article, wehavedefined four levels of predictability, and related them tousefulnesswith respect to possi-
ble system states predicted to occur or not to occur. A�er some general considerations, we have then evaluated
these predictabilities in complex andwicked systems. Figure 6 summarizes those findings. We have also shown
that the search spaces of models of complex systems are finite and that in the very simplest case of an elemen-
tary CA with rule 110, which is classified as ‘complex’ and proven capable of universal computation, the search
space is small enough that we can find the original rule from snapshot data by exhaustive search.

3.2 The network of asynchronous TMs thought experiment in section 2.3 is a worst-case that maximizes the com-
putational power of the interacting agents, and includes an element of non-computability with respect to the
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Figure 6: Summary of the expected predictability of various systems, using similar axes to Andersson et al.
(2014); Andersson & Törnberg (2018), and a colour scheme consistent with Figure 2 – green: invariably pre-
dictable; yellow: omissively predictable; orange: asymmetrically unpredictable; red symmetrically unpre-
dictable. Borders show special cases: for CAs, when insu�icient data are provided; for asynchronous TMs, when
the set of schedules explored tomake the prediction is a superset of the possible schedules; forwicked systems
with endogenous ontological novelty, short-term predictions prior to transitioning.

ordering of their execution on the shared tape. As Copeland& Sylvan (1999) observe, just two TMswriting asyn-
chronously to the same tape couldbe in theprocess of computing anon-computable number. Suchasynchrony
is not infeasible empirically, as in the real world agents act autonomously. This point challenges the idea that
evenamodel thatperfectly reproduceshistorical data canautomatically be trusted tomakepoint predictions in
systemswith analogous properties. Numerical validation cannot, on its own, be trusted as the basis for accept-
ing amodel’s prediction in such systems – we need other criteria, such as assessments of ontological structure
(Polhill & Salt 2017). The implication of this for trusting predictions is that validity pertains to the representation
of the system as well as numerical accuracy.

3.3 As made apparent by the application of the asynchronous TMs thought experiment to wicked systems in sec-
tion 3, it is endogenous ontological uncertainty that poses the most significant challenge to prediction. The
problem, however, is not one of computability, but of data. Indeed, even in the first thought experiment with
deterministic cellular automata, if theN images do not include all of the statesK, the uncertainty about cells’
states will increase as fewer possible transition functions are ruled out. In much the sameway as the complete
works of Shakespearemake no reference to smartphones, endogenous noveltymeans that presently available
data provide less and less information about the future the further aheadpredictions are required. Generalizing
this thinking from cellular automata shows that, when present states give you no information about relevant
future states (i.e.K ′ = K ∪K∗;K ∩K∗ = ∅ and the states ofN only contain elements ofK), systems can be
unpredictable even if they are deterministic.

3.4 This line of thinking sheds new light on McDowall and Geels’s (2017) commentary on an article by Holtz et al.
(2015) outlining the cases for using agent-based models to simulate societal transitions. McDowall & Geels
(2017) draw on the conceptualization of wicked systems by Andersson et al. (2014) to argue that Holtz et al.
(2015) underestimate thedepthof the challengeof simulating societal transitions, and referenceBai et al. (2016)
in support of the statement that systems change their structure. Holtz et al. (2015) make no claim that the con-
tribution agent-based modelling can make to the transitions discourse is predictive; rather they articulate the
benefits around explicit specifications, capturing emergent dynamics, and systematic exploration of scenar-
ios (pp. 43-44). However, they also give a use case of giving advice to policymakers (ibid., pp. 46-47), which
leads McDowall & Geels (2017, pp. 42-43) to raise challenges in relation to how models are interpreted, used
and trusted in decision-making processes. Our analysis suggests that trust based on fitting conditions in the
current system cannot be generalized to trusting what the models say about the transitioned system. We have
also added weight to thoughts McDowall & Geels (2017, p. 45) express based on Byrne & Callaghan (2014)’s
observations about styles of agent-based modelling that are akin to the SFI-school of complexity – emergence
of structures from agents with simple decision rules – that wicked systems are more complicated than these
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models are suited to. Agent-basedmodels of wicked systems need somehow to address novelty.

3.5 The philosophy surrounding the role, building, verification, validation and use of simulation modelling in gen-
eral (rather than specific toABM)hasbeendebated for over half a century. The epistemological divides areo�en
silo-related. An engineer using ABM has very few philosophical qualms about using it for prediction, but this
paper addresses novelty in ABMs in the context of wicked problems – where many social scientists rather than
engineers are building ABMs. The epistemological tension of building models for prediction within science is
summarized well by Babuska & Oden (2004), andwe direct the reader there for an overview of this debate. The
importanceof this debate for this paper, however, is that absolute (in the senseof beingobjective, or universally
agreed) verification and validation of ABMs need not be achieved for prediction to be useful, even in the case
of introducing novelty in systems.

3.6 InhisNobelPrize lecture reflectingonThePretenceofKnowledge in complex societal systems,Hayek (1974) said,
“The real di�iculty, to the solution of which science has little to contribute, and which is sometimes indeed in-
soluble, consists in the ascertainment of the particular facts.” It is worth considering the degree to which it is
realistic that the information assumed in the search problems outlined in section 2.1 and, since it is intended
as ametaphor for coupledmulti-agent social and environmental systems, especially section 2.3 would ever be
available in empirical situations. Use of cellular automata to model social systems has a long history, particu-
larly in land use and urban systems (Batty et al. 1999; Clarke & Gaydos 1998; White & Engelen 1993) (albeit with
some deviation from the strict definition of cellular automata (O’Sullivan & Torrens 2001)), and a recent review
of calibration and validationmethods (Tong & Feng 2020) suggests it continues to be a popularly-usedmethod.
Spatial data frommapping, aerial photography and satellites o�er rich, time-varying data that can be used for
empirical applications of such models. It does not seem implausible that the N snapshots of data would be
available in the case study, then, but not necessarily in consecutive timesteps. The CA thought experiment also
assumed, however, that the set of statesK and the neighbourhood of each cellC was known. While the states
could perhaps be inferred from the classifications of polygons and/or pixels in GIS data,15 ‘neighbourhood’ is
more than a spatial concept for the purposes of land use change, since the scope of influence on the state of a
cell is not purely that of other cells with which it happens to share a boundary.

3.7 In the asynchronous networks of TMs example, we allowed the state of the whole tape to be available a�er
each time an agent acted, along with the alphabet of symbols on the tape A, the population of agents p, and
the number of internal states of the TMs #K. The initial positions of the agents, and their specific internal
stateswere not provided. If we see the tape as representing the state of the biophysical environment (including
an embodiment of aspects of the agents’ memories), then besides the point raised with respect to CAs that
snapshots will not be available a�er each of a number of consecutive actions, we should also not expect all the
dataatanyone time tobeavailable. Knowing thenumberof internal statesof theTMs is alsounrealistic. Though
the advent of ‘Big Data’ (Gandomi & Haider 2015) might mean lack of data would be regarded with skepticism,
issues with it such as ‘Veracity’ (questionable provenance, accuracy and quality), ‘Volatility’ (limited life-span)
and ‘Variety’ (heterogeneous and unstructured) among other ‘V’s (Khan et al. 2018) do not make it necessarily
suitable for work with ABMs.

3.8 Hayek (1967) response to the lack of data in complex societal systems was to argue for “pattern prediction”:16
recurring well-defined classes of event, and such things as the classes of event that presage their occurrence
or the conditions needed tomake themhappen. These, as Hayek notes, are falsifiable theories, and in ecology,
Grimmet al. (2005) have advocated the replication of patterns as a validation criterion in the specific context of
agent-basedmodels. The thought experiments were deliberately constructed in abstract rather than empirical
systems so that their inherent complexity couldbeevaluatedas adi�icultywithprediction, anddataavailability
and questions about representing the target system not be an obstacle or confounding factor.

3.9 The justification for more complicated agent-based models in empirical contexts has already been argued by
Sun et al. (2016). However, the quality of the complications needed for wicked systems with respect to various
aspects of the model’s ontology highlighted here relates to addressing the issue of novelty. There are several
ways inwhich agent-basedmodels cananddoprovide for novelty. Polhill et al. (2016, p. 319) outline three levels
of systemic change. At the simplest level, ∆E, is a change in the entities simulated, which can occur through
simulation of processes such as the birth and death of agents, and the creation and destruction of links. Amore
substantive change, ∆P , involves changes to the processes. One approach already used in some models is
embedding machine learning algorithms in agents’ decision-making algorithms. These algorithms adjust the
mechanisms by which agents make decisions based on their experiences operating in themodel. Though they
change theway inwhich agents decidewhat to do, they don’t provide for innovationof completely newactions,
which is possible given amodel inwhich actions could be aggregations ofmore elementarymovements around
which agents could reason goal-oriented plans. Themost challenging level of change,∆L, entails endogenous
adjustments to the language used to describe the model itself: the spontaneous creation of new classes of
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entity, new attributes, new relationships, and new institutions for collectives of agent. We are not aware of
any models that provide such functionality, but note work such as that of Gessler (2010) in the Artificial Life
community outlining such an agenda.

3.10 Our observations about prediction in wicked systems are predicated on current data about the system becom-
ing obsoleted by novel states in the future aboutwhich there is no information in the systemas it is now. Knowl-
edge elicitation methods that anticipate what those states might be could be one way to obtain these kinds of
data. García-Mira et al. (2017), for example, use backcasting (Quist & Vergragt 2006) to elicit scenarios for agent-
based models to explore. Narrative approaches can also be used as sources of qualitative data for models.
However, this constitutes an epistemological shi� in the underpinning of the model – is it a scientific artefact
and/or a tool to facilitate dialogue? McDowall & Geels (2017) cautionmodellers to be clear about the di�erence
andmindful of the philosophies of science at play, whilst Gilbert et al. (2018, para. 5.26) observe that there can
be pressure frompolicymakers to understate uncertainties such as those arising from these considerations. Us-
ingknowledge fromstakeholders todeterminepotential future systemstates that form thebasis of agent-based
model designs arguably entails a constructivist philosophical perspective (McDowall & Geels 2017, p. 46). Has-
sanet al. (2013), whoalsodrawattention to the2008-09debate aboutprediction referenced in the introduction,
introduce the social simulation community to the forecasting literature. Hassan et al., whomake no distinction
between forecasting and prediction (2013, para. 2.1), draw on Armstrong (2001), translating his 139 principles of
forecasting into twenty guidelines suitable for evaluating in an agent-basedmodelling context. Critically, many
of these guidelines entail documenting the social processes of building, using and evaluating the model. Doc-
umenting the social processes of model construction and use of data when making predictions records how
a particular community addressed the wickedness of the system they were interested in, and makes explicit
the intersubjectivity (Cooper-White 2014) of any predictions. Ahrweiler (2017, p. 411), in an article concluding
that ABMs o�er what she calls ‘weak prediction’, observes that, “To trust the quality of the simulations means
to trust the process that produced its results. This process is not only the one incorporated in the simulation
model itself. It is the whole interaction between stakeholders, study team, model, and findings.”

Conclusion

4.1 Path dependency in complex systems mean they are predictable at the whole-system level in theory, if not
in practice because of the intractability of exhaustively searching the space of models that might match the
available data. Wicked systems, however, pose a much more significant challenge to prediction, chiefly as a
consequence of endogenous ontological novelty, rather than disputation about ontological structure. Beyond
the short term, the (potential) introduction of novel states in the system about which there are no data at the
time the prediction ismademeans attempts at prediction are futile even if theywere feasible. Though there are
other purposes than prediction for building a model, there is still predictive utility to be had in modelling the
current system and using this to detect transitions as the real world diverges from the states represented in the
model. The social processes of constructing models in wicked systems mean that ‘intersubjective prediction’
is a more meaningful term. Models of wicked systems, however, need to be more complicated than complex
systems, and should include functionality that allows for novelty.
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1At the time of writing, no response to that challenge has been received.
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2Stronger criteria for usefulness could be defined with respect to sets of states, givenmatching criteria that
allowed each set to be defined. A predictionwould then only be possibly useful if it confirmed all members of a
set of states were possible, or all members of a set were not possible. This would go someway to capturing the
“accuracy” aspect of the definition provided by Edmonds et al. (2019a). Theweaker definition used heremakes
the assertion of uselessness of a prediction (such as in section 2.4 on wickedness) stronger, however.

3There is still a certain di�iculty with this understanding of prediction. Imagine a model is used in 2020 to
make a large enough number of “statements” about the situation in the year 2100 thatW (the proportion of
such statements that prove not to be usefully accurate) can be estimated. The status of those “statements”
whenmade in 2020 as predictions cannot be verified until 80 years into the future. In the commonsense world,
predictions can be wrong all the time, but still be predictions. (Wikipedia maintains a list of predictions of the
endof theworld, for example.) Thatwould not behelpful in this article, as the scopeof predictivemodelswould
include random number generators, astrology, and reading tea-leaves.

4The fact that models used in this context are then parts of the system that they are predicting could then
used as an argument against the possibility of prediction, as there is an apparent infinite regress of a model
needing to embed responses to its own predictions in its predictions. However, adaptive control mechanisms
(see Nise (2004)) are already an example of models embedding themselves in the systems they are simulating,
suggesting this isn’t necessarily the obstacle to prediction it might appear. The matter is also touched on by
Nagel (1979, p. 468), who notes that predictions can be ‘suicidal’ when action taken to respond to themmeans
they do not occur. This doesn’t change their status as a prediction. To make the matter explicit, consider the
predictede�ectsof climatechange if humansocieties take insu�icientaction tocurbgreenhousegasemissions,
which are intended to provoke action to avoid them coming true (Hoegh-Guldberg et al. 2018). We would not
argue that these weren’t predictions, nor would we support any definition of prediction for which they did not
qualify.

5Even if chaos theory does not apply to an ABM, the need for infinite precision is highlighted by various
authors discussing floating-point arithmetic (Hegselmann & Krause 2015; Izquierdo & Polhill 2006).

6Building a TM to simulate an ABM, or even a single agent, would be somewhat tedious. The point is that a
TM is computationally equivalent to an agent, and has a structure for the transition table that is convenient for
calculating model search space size.

7Code for this NetLogo model is available in a GitHub repository at https://github.com/garypolhill/
prediction-CA.

8Hardware for true random number generation is available, and websites such as https://www.random.
org/ are available providing access to true random numbers.

9See Stirling’s approximation to n!
10Networks of asynchronous Turing Machines could be simulated using a so-called ‘Oracle Machine’ – es-

sentially a Turing Machine with a ‘black box’ fitted that can magically provide the correct Boolean answer to a
questionposedof it. Here, theOracleMachinewouldbeused to indicatewhether itwas aparticular agent’s turn
to run an instruction. Computer scientists have applied Oracle Machines to the question of whether P ?

= NP
(e.g. Gaßner 2008). Here, however,weare interested in the implicationsof a set-up suchas this for predictability
without the advantage of an Oracle.

11Assuming all agents can follow di�erent instructions, and the order of assignment of state transition table
to agent does not matter.

12This is quite a luxury. Without it, we’d have to start with #K = 1 (or 2 ifK includes HALT) and increase
#K until we were able to replicate the N snapshots. Even having found a replicating case, we would not be
confident that the value of #K found was the value of #K from the original system, and could only rely on
heuristics such as Ockham’s Razor to justify not exploring higher values of #K. However, not knowing #K
could be argued to be a data issue rather than a problemderived specifically from the complexity of the system
we are trying to recover.

13An example of such a situation would be where agent 1 always executes an instruction a�er agent 2, with
agents 2...p triggered on radioactive decay.

14For example, criterion no. 10: The planner has no ‘right to be wrong’, i.e. there is no public tolerance of
initiatives or experiments that fail.

15Given observations by authors such as Chazdon et al. (2016) about definitions of what might seem fairly
trivial land use concepts (in this case ‘forest’), the task of identifying cell state symbol sets to use in a CA of land
use change should not be underestimated.

16We are grateful to Reviewer #2 for pointing us in the direction of this work.
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