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Abstract:Whenplanning interventions to limit the spreadof Covid-19, the current state of knowledgeabout the
disease and specific characteristics of the population need to be considered. Simulations can facilitate policy
making as they take prevailing circumstances into account. Moreover, they allow for the investigation of the
potential e�ects of di�erent interventions using an artificial population. Agent-based Social Simulation (ABSS)
is argued to be particularly useful as it can capture the behavior of and interactions between individuals. We
performeda systematic literature reviewand identified 126 articles that describe ABSSof Covid-19 transmission
processes. Our review showed that ABSS iswidely used for investigating the spreadof Covid-19. Existingmodels
are very heterogeneous with respect to their purpose, the number of simulated individuals, and the modeled
geographical region, as well as how they model transmission dynamics, disease states, human behavior, and
interventions. To this end, a discrepancy can be identified between the needs of policy makers and what is
implemented by the simulationmodels. This also includes how thoroughly themodels consider and represent
the real world, e.g. in terms of factors that a�ect the transmission probability or how humans make decisions.
Shortcomingswere also identified in the transparency of the presentedmodels, e.g. in terms of documentation
or availability, as well as in their validation, which might limit their suitability for supporting decision-making
processes. We discuss how these issues can be mitigated to further establish ABSS as a powerful tool for crisis
management.

Keywords: SARS-CoV-2, Transmission Processes, Epidemiology, Non-Pharmaceutical Interventions, Literature
Study, PRISMA

Introduction

1.1 Since the Covid-19 disease was first identified in December 2019, it has spread almost around the entire world
andbecomea global pandemic causing approximately 75 000 000 cases and 1 600 000deathswithin the first 12
month (Dong et al. 2020). To contain the spread of the responsible SARS-CoV-2 virus, di�erent strategies were
adoptedworldwide,which thenhad tobe revised inaccordancewithnew insights. Moreover, interventions that
were found to be successful in some regions were less expedient in others (Chu et al. 2020; Hale et al. 2020).
This can be due to, for instance, socio-demographic characteristics of the population, cultural di�erences in the
way of life or individual behavior, and country-specific variations in infrastructure and medical care capacities
(Pullano et al. 2020).

1.2 Since the outbreak of the pandemic, many of simulation studies have been conducted to investigate di�erent
aspects of the disease spread, the resulting hospital occupancy, or economic e�ects (Currie et al. 2020; Nicola
et al. 2020). Many of these studies were based on traditional mathematical macromodels that are not capable
of simulating individual behavior (Shinde et al. 2020). In contrast, the microscopic simulation of individual
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interactions and decisions allows for a more in-depth analysis of the e�ects that di�erent interventions have
on transmission processes.

1.3 Agent-basedsimulation iswell-suited for investigating social phenomena, suchas thespreadofdiseasesamong
apopulationof autonomous individualswithheterogeneous characteristics andbehavior (Gilbert 1999;Davids-
son 2002). The related research area is o�en referred to as Agent-based Social Simulation (ABSS). Similar to
other approaches for fighting Covid-19 (e.g. Chen et al. 2020 and Nguyen et al. 2020), ABSS makes use of Arti-
ficial Intelligence to imitate human-like behavior and decision-making. This, for instance, allows for assessing
di�erent potential interventions in a cost- and time-e�icient way. With regard to the Covid-19 pandemic, ABSS
enables the consideration of di�erent risk or age groups, individual progress of the disease,medical conditions,
and compliancewith interventions, but also the definition of personal contact networks such as households or
workplaces, as well as daily routines. Thereby, ABSS can contribute to a better understanding of the pandemic
and identifying suitable interventions for containing the spread of the virus (Squazzoni et al. 2020).

1.4 In order tobetter understandhowABSScanbeused inpandemics,weperformeda systematic review to identify
agent-basedmodels of Covid-19 transmission, which canbeused to investigate the introduction,management,
or removal of di�erent interventions. We provide an analysis of these models including a comparison of the
interventions that can be investigated, inputs to the transmission model, characteristics of individuals, and
modeled disease states.

1.5 The research questions that we aim to answer with this study include the following:

• For what purpose has ABSS of Covid-19 transmission been used during the pandemic?

• How is the behavior of individuals modeled and how do they make decisions?

• What population size and geographical area are simulated?

• How are transmission processes between individuals modeled?

• How are disease states and the progress of the disease modeled?

• Which interventions are investigatedandhowdo researchers assess the feasibility of these interventions?

• How is the trustworthiness of the models and the generated results ensured, e.g. for the use by decision
and policy makers?

Search Strategy and Selection Criteria

2.1 Since most research on simulating the spread of Covid-19 is not yet formally published, we decided to also
search preprint repositories. We used the COVIDScholar.org search engine, which applies natural language
processing to identify and to collect research papers related to Covid-19 from di�erent relevant publishers,
databases, and preprint repositories such as PubMed, arXiv, andmedRxiv. The search string included the terms
“simulation”, “agent”, and “transmission” 1. To complete the findings, we performed both iterative forward and
backward snowballing to find additional relevant articles (Wohlin 2014). The review has been conducted ac-
cording to the PRISMA guidelines (Liberati et al. 2009), and the flow diagram of the selection process is shown
in Figure 1.
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Figure 1: PRISMA flow diagram of the literature review process.

2.2 Articles were included in the review based on the following eligibility criteria:

• Published in English;

• Published in a journal or proceedings, or available as preprint in a recognized archive (i.e. PubMed, arXiv,
medRxiv);

• Uses an ABSS model that allows for investigating the spread of Covid-19, i.e. a micro-level model where
the identity and status of each individual can be tracked throughout the simulation;

• Article describes the simulation model and the transmission process;

• For each model and each team of authors, only the latest version of the preprint or, if existing, the peer-
reviewed article is included;

• Uploaded or published earlier than October 1, 2020 (articles published a�er this date are considered if a
preprint was published before).

2.3 Information regarding the presented simulation models was extracted from the articles using a list of charac-
teristics that was developed and extended based on a first review of all identified articles (see Appendix I). The
assessment was conducted based on the articles and, if available, on supplementalmaterials such as technical
descriptions that were published with the article. As most models were not available for download, the source
code was not reviewed for further insights in themodels’ functionalities. Whenever the assessment of a partic-
ular feature was ambiguous, the article was discussed among all authors. The detailed results of the analysis
are shown in Appendix II and a list of all reviewed articles can also be found in Appendix III.

2.4 The consideration of articles published in English language, the limitation of the study’s time period to October
2020, and the inclusion of non peer-reviewed articles may have introduced bias and a�ected the results. How-
ever, even though preprints do not necessarily fulfill the same requirements as a scientific article, they provide
a complementary perspective on existing modeling approaches.

Classification of the Articles

3.1 To answer the research questions, 72 attributes were extracted and analyzed for the di�erent models. These
include both simple attributes, where the existence of a particular functionality is mostly assessed as either
true or false, and more complex attributes where a textual description is provided on how and to what extent
the model implements or corresponds to the attribute. All classifications that are presented in this study refer
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to both how the model has been used in the article and what the authors claim the model can be used for. In
Table 1, an overview of all attributes is presented. A more comprehensive codebook can be found in Appendix
I, which also includes a definition of each attribute, as well as the coding of the assessment.

Category Attributes
Article Authors, Date published, Peer-reviewed
Purpose NPI introduction, NPI adaptivemanagement, NPI removal, PI introduction, PI adaptiveman-

agement, PI removal
Non-pharmaceutical in-
terventions (NPI)

Lockdown, Curfew, Limitation of public gatherings, Limitation of private gatherings, Quaran-
tine/Isolation, Social/physical distancing, Face masks, Closure of schools, Closure of univer-
sities, Closure of all workplaces, Closure of o�ices, Closure of leisure, Closure of shopping,
Mobility restrictions/travel bans, Contact tracing

Pharmaceutical inter-
ventions (PI)

Vaccination, Treatment

Input Census data, Mobility data, GIS data
Output #infections, #deaths, #hospitalized, Infection chains, Economic e�ects
Transmission model Progress of disease (State), Progress of disease (Time since infection), Age or age group, Lo-

cation, Distance, Density, Contact or exposure time, Protection, Other
Attributes of individuals Age or age group, Gender, Workplace, Profession, Household, Location, Contacts, Contact

rate, Protection, Health status, Other
Disease status Susceptible, Exposed, Infected, Infected without symptoms, Infected with symptoms,

Severely ill, Critically ill, Dead, Recovered
Model characteristics Name of the model, Number of individuals, Region, Framework, Accessibility, Agent

behavior, Validation, Calibration

Table 1: Attributes that were used to assess and classify the models presented in the surveyed articles. There
are two di�erent types of attributes: those that consist of binary classifications, i.e. whether or not a particular
feature is part of the model, and those that are more complex and consist of nominal categories or individual
textual descriptions of a feature. In this table, the non-binary attributes are underlined.

3.2 For each article, the names of the authors, whether or not the article has been peer-reviewed, and the date
when it was first published are provided. For articles that were uploaded to open-access archives, the upload
date of the latest version is provided, however, this cannot be later than December 1, 2020, when this studywas
conducted.

3.3 We distinguish between di�erent purposes of the models. This can be the investigation of the spread of the
virus as well as of the e�ects of non-pharmaceutical (NPI) or of pharmaceutical interventions (PI) over time.
Moreover, we distinguish between the introduction, adaptive (dynamic) management, and removal of these
interventions. There is a total of 16 di�erent NPIs and two PIs that were simulated, e.g. lockdowns, facemasks,
or vaccinations.

3.4 In terms of the input data that are used for initializing the model, we distinguish between three di�erent types
of data: socio-demographic (census) data,mobility data onmovement patterns, and spatial GIS data of an area.
Accordingly, we also analyze the output data providedby themodels, e.g. in terms of the reported performance
measures such as number of infected, hospitalized, or deceased individuals, but alsomore comprehensive out-
put data such as infection chains or economic e�ects.

3.5 The transmission model, which defines how transmissions occur between individuals, can include di�erent
attributes and factors when determining the contagion probability. In our study, we identified a total of eight
common factors that might positively or negatively a�ect the probability of an individual being infected when
meeting an infected individual, e.g. the progress of the disease, the distance between the individuals, or the
exposure time. In addition, this study also investigateswhat personal attributes are used to describe properties
of individuals. In total, there are ten di�erent personal traits that were used in the models, e.g. age, health
status, or the wearing of protective equipment such as face masks.

3.6 Compartment models are o�en used to model individual disease progress and disease states (Brauer 2008).
Each phase of the disease describes the condition of the individual, e.g. the need of medical care or the occur-
rence of symptoms, but also its capability of infecting others. This study assesses nine di�erent disease states
ranging from susceptible to deceased with di�erent infection states.

3.7 Finally, we summarize other relevantmodel characteristics that cannot be assigned to the previously described
categories. This includesmore technical properties of themodels, e.g. thenumber of simulated individuals, the
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used framework, or the accessibility of themodel via download, but also information on how agent behavior is
modeled and how themodel has been calibrated and validated.

Results

4.1 Based on the previously defined criteria, the following 126 articles were identified and further investigated: Ab-
dollahi et al. (2020); Ahmedet al. (2020); Akay&Barbastathis (2020); Akbarpour et al. (2020); Alagoz et al. (2021);
Aleta et al. (2020); Almagor & Picascia (2020); Alsing et al. (2020); Azzimonti et al. (2020); Bahl et al. (2020); Bar-
rett et al. (2020); Bhattacharyya & Vinay (2020); Bicher et al. (2020); Bisin & Moro (2020); Biswas & Sen (2020);
Block et al. (2020); Bossert et al. (2020); Bouchnita & Jebrane (2020); Braun et al. (2020); Brootherhood et al.
(2020); Buhat et al. (2020); Cencetti et al. (2021); Chang et al. (2020a,b); Chao et al. (2020); Churches & Jorm
(2020); Coletti et al. (2020); Cremonini & Maghool (2020); Cuevas (2020); D’Orazio et al. (2021); Davids et al.
(2020); Dignum et al. (2020); Eilersen & Sneppen (2020); Elbanna et al. (2020); Espana et al. (2020); Fang et al.
(2020); Ferguson et al. (2020); Fiore et al. (2020); Firth et al. (2020); Gardner et al. (2020); Gasparek et al. (2020);
Gaudou et al. (2020); German et al. (2020); Giacopelli (2020); Goldenbogen et al. (2020); Gomez et al. (2020);
Gopalan & Tyagi (2020); Grauer et al. (2020); Gressman & Peck (2020); Gutin et al. (2020); Head et al. (2020);
Hellewell et al. (2020);Herbrich et al. (2020);Hernández-Orallo et al. (2020);Herrmann&Schwartz (2020);Hinch
et al. (2020); Hoertel et al. (2020); Huang et al. (2020); Jackson (2020); Jalayer et al. (2020); Jenness et al. (2020);
Kai et al. (2020); Kano et al. (2020); Karaivanov (2020); Karatayev et al. (2020); Karin et al. (2020); Kartha &
Pathan (2020); Kerr et al. (2020); Klôh et al. (2020); Kolumbus & Nisan (2020); Koo et al. (2020); Kretzschmar
et al. (2020); Kucharski et al. (2020); Kwon et al. (2020); Leng et al. (2020); Li et al. (2020); Lorch et al. (2020);
Mahdizadeh Gharakhanlou & Hooshangi (2020); Maheshwari & Albert (2020); Mahmood & Dabdawb (2020);
Mahmood et al. (2020); Manout et al. (2020); Manzo & van de Rijt (2020); Marquioni & de Aguiar (2020); Mar-
tos et al. (2020); McCombs & Kadelka (2020); Michaels & Stevenson (2020); Milne & Xie (2020); Mohsen & Alarabi
(2020); Müller et al. (2020); Nadini et al. (2020); Nande et al. (2020); Narassima et al. (2020); Neilan et al. (2020);
Ng et al. (2020a,b); Núñez-Corrales & Jakobsson (2020); Peak et al. (2020); Pescarmona et al. (2020); Phillips
et al. (2020); Pollmann et al. (2020); Rajabi et al. (2020); Rechtin et al. (2020); Reich et al. (2020); Rockett et al.
(2020); Rosenstrom et al. (2020); Scabini et al. (2020); Silva et al. (2020); Situngkir (2020); Small & Cavanagh
(2020); Son & RISEWIDs Team (2020); Thompson et al. (2020); Topirceanu et al. (2020); Tuomisto et al. (2020);
Wagner et al. (2020); Wallentin et al. (2020); Wang et al. (2020); Wells & Lurgi (2020); Wells et al. (2020); Wilder
et al. (2020); Willem et al. (2020); Xiao et al. (2020); Xue et al. (2020); Yang et al. (2020); Zhang et al. (2020); Zhao
(2020).

4.2 Out of these 126 articles, 47 articles (37.3%) havebeenpublished in peer-reviewed journals or proceedings. This
includes journals fromdi�erent disciplines suchasmedicine, biology, computer science, andmulti-disciplinary
journals. The remainingarticlesweremostlypublishedviapreprint repositories, suchasarXiv andmedRxiv. The
earliest article included in this study was published on February 2, 2020while the latest article is scheduled for
publication on February 15, 2021 (a preprintwas uploaded to arxiv.org inMay 2020). Only 10 articles (7.9%)were
made available as preprints or published prior to April 2020. Considering the early phase of the pandemic, the
high number of non-peer-reviewed publications is unsurprising. On one hand, it was the primary goal of the re-
searchers to provide useful simulationmodels on the short-term, rather thanwriting high-quality publications.
It can be assumed that such publications will follow once the peak of the pandemic is over. On the other hand,
especially in the beginning of the pandemic, available data and insights on the spread of the virus changed al-
most on a daily basis, thus requiring the adaption of models. Hence, due to long reviewing times of scientific
publications, the publication of preprints seemsmore feasible as these can be updatedmore easily.
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Figure 2: Analysis of the purpose of the models in terms of the interventions that can be simulated. Visu-
alization of the percentage share of models that can be used for investigating di�erent applications of non-
pharmaceutical and pharmaceutical interventions. Models can support one or multiple interventions. In the
review, no models were identified that support the adaptive management or removing of pharmaceutical in-
terventions.

4.3 The general purpose of all models is to estimate the spread of Covid-19 over time. Their specific purpose can
be distinguished in two ways: by the modeled interventions – i.e. no interventions, non-pharmaceutical in-
terventions (NPI), or pharmaceutical interventions (PI) – and by their application, i.e. introduction, adaptive
management, or removal of interventions. The vast majority of the models (119, 94.4%) were used for simulat-
ing the e�ects of one ormultiple NPIs, whereas eightmodels (6.3%) support the simulation of PIs. Out of these,
twomodels (1.6%) consider PIs only, whereas the othermodels also includeNPIs. Fivemodels (4.0%) donot ex-
plicitly simulate any interventions, just the spreading of the virus. As illustrated in Figure 2, 115 models (91.3%)
of the 119 models that simulate NPIs can be used for analyzing the introduction of NPIs; eight models (6.4%)
for the adaptive management, i.e. dynamic introduction and removal based on certain criteria; and 28models
(22.2%)were used for the simulation of exit strategies and removal of NPIs. In total, 35 of the 126 analyzedmod-
els (27.8%) havemultiple purposes and can simulate di�erent combinations of interventions and applications.
As most of the investigatedmodels were developed in the beginning or early phase of the pandemic, the focus
on the introduction of NPIs is not surprising. During this time, it became clear that the rapid spread of the virus
was a challenge to hospital capacity and, thus, had to be contained by means of interventions. However, the
small number of models for simulating the e�ects of vaccinations on the spread of the virus is surprising. Even
thoughWHO stated already in February 2020 that a vaccine might be available within 18 months, we could not
identify any agent-basedmodels that can be used for simulating di�erent vaccination strategies.

4.4 There are two di�erent PIs whose e�ects were investigated by the analyzed models: preventive vaccinations
and acute treatments. In contrast, there is a variety of NPIs that have been simulated. As shown in Figure 3,
most articles (60, 47.6%) analyze the e�ects of quarantining and isolation of (potentially) infected individuals,
followed by 56 articles (44.4%) that analyze social distancing. For both these NPIs, about 90% of the articles
indicate that a clear positive e�ect is achieved with respect to limiting the transmission. This also includes, for
instance, voluntary home quarantine once an individual experiences symptoms or when a certain number of
personal contacts have been infected. Testing (33.3%) and tracing (31.0%) are o�en analyzed together, such
that tracing of contacts results in thembeing tested and quarantined if necessary. More than half of the articles
that implement either of these two NPIs (54 articles, 42.9%) include both of them (28 of 54, 51.9%). Testing,
usually in combination with quarantining, seems to be the NPI with the clearest positive e�ect, according to
the reviewed papers.
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Figure 3: Percentage share of models that support the simulation of non-pharmaceutical and pharmaceutical
interventions. The color represents the authors’ conclusions regarding the e�ectiveness of the intervention for
containing the spread of the virus based on experimental results: positive e�ect (green), unclear or neglectable
e�ect (orange), negative e�ect (red). Models that allow for the analysis of a particular intervention without
presenting any experiments aremarked in grey. This classification can be used as an indicator to identify those
inventions whose benefits are controversial, i.e. lockdown and closure of schools.

4.5 The closure of di�erent types of facilities – such as schools, universities, workplaces, leisure, and shopping –
is another well-studied NPI. In total, 32 articles (25.4%) analyze closure of at least one type of facility and 18
articles (14.3%) the closure of multiple types of facilities. The closure of schools, including preschools, is most
common (19.1%), followedby all work-places (9.5%), universities (7.1%), ando�ices (7.1%). A distinction ismade
between workplaces in general and o�ices where employees can work from home. As a compromise between
remote learning and opening schools for all children, some countries have discussed shi� operation. Here, the
class will be divided into groups and that alternate between remote learning and being at school. Through
this, keeping social distance is facilitated, the number of potential contacts is reduced, and the consequences
of a potential infection are lower. In our study, we found that most interventions are simulated in an “all or
nothing” manner, i.e. schools or workplaces are either entirely closed or opened for all. Hybrid forms or shi�
operations, which seem most promising, are usually not modeled. This is, probably, due to the di�erentiated
and more sophisticated modeling that is required. It is also interesting to note that some interventions that
have been frequently applied in reality, such as curfews and limiting the size of public and private gatherings,
were studied in very few articles. A reason for this could be that the modeling of individual behavior needs to
bemore detailed and the time step resolution finer than in most of the analyzed simulation models.

4.6 Apart fromthesimulationmodel itself, thequalityandcredibilityof the results also stronglydependon thequal-
ity of input data that are used to configure and adapt the model to the circumstances or the environment that
is to be simulated (Bonabeau 2002). Viral transmission between individuals depends on socio-demographic at-
tributes such as age and household size as well as on movement behavior. It can be assumed that simulations
making use of real data on the behavior and characteristics of individuals are more successful in generating
credible results. In total, 55 of the analyzedmodels (43.7%) apply real-world census data for generating an arti-
ficial population such that the socio-demographic features of the modeled individuals correspond to those of
the population of the simulated region or country. Overall, 28 models (22.2%) make use of real-world mobility
data, e.g. cellphone data, for generating movement profiles between di�erent locations, such as home, work-
place, and leisure activities. To adequatelymodel neighborhoods anddistances, 13models (10.3%)useGISdata
for generating a realisticmodel of the environment. It should benoted, however, that simulations not using real
input datamay still be useful for getting a general understanding of the e�ects of di�erent interventions under
di�erent circumstances.

4.7 Formodeling disease states,most of the analyzedmodels adapt variations of the SIR compartmentmodel (Ker-
mack&McKendrick 1927). As shown in Figure 4, the progress of the disease is described by a number of discrete
states, i.e. susceptible individuals that can be infected, di�erent incubation and severity states a�er an infec-
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tion occurred, andpotential outcomes a�er an infection such as recovery or dead. Altogether, 123 (97.6%) of the
analyzedmodels include a susceptible state whereas the remaining simulations only focus on already infected
individuals. In total, 80models (63.5%) consider an incubation period a�er being exposed to the virus in which
individuals carry the virus but neither infect others and nor show symptoms. When becoming infectious, 60
models (47.6%) distinguish between being symptomatic or asymptomatic, which can either be consecutive or
exclusive. In addition to the classical SIR model, 43 models (34.1%) define states for severely ill and 29 models
(23.0%) for critically ill individuals that require hospital or ICU treatment. A state for deceased individuals is
considered by 51 models (40.5%).

Figure 4: Disease states of the compartment models used for representing the progress of the infection. The
most commonstates include thoseof the traditionalSIR (susceptible, infected, recovered) compartmentmodel.
However, a variety of extensions of the classical SIRmodel could be identified with additional states that allow
for a more detailed representation of the disease progress.

4.8 Due to the identified di�erences in the applied diseasemodels, the purpose and application area of themodels
di�er. When investigating the e�ects of di�erent interventions, one might also be interested in the impact on
the healthcare system. However, the majority of the models do not consider individuals becoming severely ill
such that they require hospital or ICU treatment. Moreover, mostmodels do not include the risk of reinfections.
In the early phase of the pandemic, it was assumed that antibodies would prevent a second infection, yet new
studies showthat there is a riskof reinfection,whichmightbedue tomutationsof thevirus, amild first infection,
or as antibodies disappear.

4.9 Traditionally, state transition in SIR models is implemented by means of transition rates and probabilities of
disease transmission. In agent-based simulations, personal attributes or circumstances can be used to calcu-
late individual transition probabilities. Figure 5 provides an overview of attributes used in the transmission
models of the investigated simulations. In 34 models (27.0%), the likelihood of infecting others upon contact
varies depending on the specific disease state of the infecting individual, e.g. whether an individual is asymp-
tomatic or symptomatic, or on the current location where the contact takes place. The time since the infected
individual itself was infected or the age or age-group of either the infecting or infected individual both a�ect
the transmission probability in 22models (17.5%) respectively. Other common factors that a�ect the likelihood
of transmission are the distance between the individuals (17.5%), the density of people at a location (13.5%),
or contact time (7.1%) once a contact occurs. It should be noted, however, that when investigating the e�ect
of social distancing, somemodels only consider encounters as contacts within a certain distance. Here, the ac-
tual distance between the individuals does not necessarily a�ect the transmission probability. To simplify and
combine di�erent factors that might a�ect the infection probability at specific locations, e.g. at workplaces
or during outside activities, 35 models (27.8%) include location-specific transition probabilities. In 37 models
(29.4%), uniform transmissionprobabilities are applied such that the likelihoodof infecting others is always the
same, despite individual factors such as the location, health condition, or contact duration, or no detailed de-
scription of the transmission models are provided. The e�ect that di�erent mutations of the virus might have
on the transmission process has not been investigated or discussed in any of the articles. The stage of infec-
tion and the time since infection obviously have amajor impact on the likelihood of infecting other individuals.

JASSS, 24(3) 5, 2021 http://jasss.soc.surrey.ac.uk/24/3/5.html Doi: 10.18564/jasss.4601



However, other widely discussed factors, such as the distance between individuals, which is also used as an in-
dicator for tracking contacts using smartphone apps, are only considered by a smaller number of models. This
is because most models lack a fine-grained representation of the actual position of individuals. Instead, most
models make use of contact networks or gathering points to simulate interactions between individuals. This
limits the models’ suitability to simulate some types of interventions, e.g. the introduction of tracing apps.

Figure 5: Analysis of the factors that are included in the transmission models to determine the probability of
infecting other individuals a�er being in contact. Visualization of the percentage share of models that consider
the respective factor when determining individual transmission probabilities. Overall, 29.4% of the models
either do not describe the transmission mechanisms or make use of a uniform probability that is equal for all
individuals and contacts.

4.10 In addition to the described individual disease states,manymodels add further traits to individuals tomake the
populationmore heterogeneous and similar to an actual population. As shown in Figure 6, common attributes
include age or age group (44.4%), assigned household (42.1%), workplace (35.7%), and the individual’s current
location (35.7%). Somemodels define specific networks of other individuals that the agent can orwill have con-
tact with (39.7%). This contact network is sometimes stratified into household contacts, workplace contacts, or
randomencounters. Despite 15.9%of the articles claiming to simulate facemasks or other personal protection,
only 13models (10.3%) include an attributewhether or not individuals arewearing protection. In the remaining
models, the simulation of the e�ect of protective equipment consists of changing global transmission probabil-
ity parameters or assuming that the entire population is wearing protective equipment. In 16 models (12.7%),
no description of personal attributes is provided.

Figure 6: Analysis of the attributes and traits that are used to describe individuals. In all, 12.7% of the models
do not describe any attributes or claim that all individuals are identical except for their disease state.

4.11 For interventions to be successful, it is essential that individuals comply with them. In most simulations, it is
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assumed that all individualswill complywith any given interventionwithout exceptions. In reality, however, in-
dividuals tend to violate restrictions, such as limitations of gatherings, lockdowns, or the requirement to wear
a facemask. To simulate obedience and disobedience to norms, more advancedmodels are required that con-
sider personality traits as well as needs of individuals. However, our results show that personality traits are not
among the attributes that are used to describe and characterize individuals.

4.12 As outlined by Squazzoni et al. (2020), the modeling of realistic human social behavior is crucial for simulating
the dynamics of the Covid-19 pandemic. One major challenge is the modeling of decision-making processes
and the actions that result from an individual’s perception of a situation, as well as the individual’s attributes.
Approaches and architectures that can be used for modeling agent behavior di�er greatly and range from ho-
mogeneous reactivebehaviorpatterns,whicharemore rule-based, to sophisticateddeliberationprocesses that
are based on individual needs or the perceived utility of possible actions (Russell & Norvig 2016). As shown in
Figure 7, there are di�erences in how the behavior of the individuals is modeled. This includes how sophisti-
cated theunderlyingdecision-making is andwhetherornot auniformbehaviormodel is used for all individuals.
Of the articles studied, both Kai et al. (2020) and Pollmann et al. (2020) present two di�erent versions of their
models with di�erent agent behavior, which have also been included in this analysis.

Figure 7: Classification of models according to how agent behavior and actions are implemented. Most articles
present models with random behavior. This might be fully random, with an equal likelihood of infection any
individualwithin thepopulation, or randomwithingivensocial networks, spatial networks, orboth. Somemod-
els implement more dynamic decision-making, e.g. by means of individual schedules, need models, or utility
functions. A distinct classification cannot be given for some articles, e.g. due to a combination of approaches
or lack of description.

4.13 In total, 19 models (15.1%) consist of very simplistic behavior models where individuals randomly infect other
individuals in the population. In these models, there are neither social networks nor spatial networks. Hence,
there is an equal probability of infecting any individual within the population as there is no representation of
locations, contexts, or interpersonal relationships. Overall, 95 models (75.4%) make use of either social net-
works (37.3%), spatial networks (16.7%), or both (7.1%) to model the individual behavior. Here, agents can
only infect other individuals, either when they meet due to a social relation (e.g. household members or co-
workers), or as they visit the same location at the same time (e.g. gatherings at home, at work, or at a shop).
Most of the solely spatial models are random walk models, where individuals randomly wander in a specific
area and transmission might occur once their distance falls under a certain threshold value (e.g. 2 meters). In
all, 18models (14.3%)makeuseofmore explicit behavioral patterns that aremostly derived fromempirical data
or pre-defined (static) schedules for each individual, for instance, based on its age, personal status, or employ-
ment status. Only 6 models (4.8%) include more advanced dynamic or adaptive behavior models. Here, the
agents perceive their current situation and assess potential actions to identify the one that is most rewarding
or suitable.

4.14 The range of interventions that can be analyzed using the di�erent models is strongly limited by design. A high
degree of randomness in contacts between individuals facilitates the simulation of large populations. However,
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in the real world, the probability of people meeting or interacting depends greatly on their location, their rou-
tines, and their contact networks. Simple random walk models might be su�icient to get a first impression of
the potential dynamics of the pandemic. However, it limits the possibilities of simulating interventions such
as quarantining or closure of certain facilities. Models consisting only of social networks are well-suited for
simulating transmission processes in households or at workplaces. However, it cannot be simulated when two
individuals are at the same location at the same time, thus being able to infect each other. Likewise, limiting
the model to the representation of spatial networks does not allow for the representation of fixed households
or work colleagues, which are relevant transmission hotspots. For an in-depth analysis of how di�erent inter-
ventions a�ect the behavior and individuals and thus the spread of the virus, more sophisticated behavioral
models are required that adequately represent daily routines and activities. However, this is only provided by
a fewmodels.

4.15 In 82 articles (65.1%), a specific country or region is simulated. As shown in Figure 8, themost studied countries
are the United States of America (22 articles), the United Kingdom (11), China (7), and Italy (6). Theremight be a
bias towards English-speaking countries due to the limitation of the study to articles that arewritten in English.
Other than geographical locations, settings studied included hospitals (Huang et al. 2020; Martos et al. 2020),
campuses and universities (D’Orazio et al. 2021; Gressman & Peck 2020), general indoor areas (Cuevas 2020),
and the Diamond Princess (Fang et al. 2020; Jenness et al. 2020), a cruise ship that was quarantined in the Port
of Yokohama in Japan in February 2020 due to a Covid-19 outbreak on board.

Figure 8: Countries that are simulated by the studies presented in the articles. When only a particular city has
been simulated, the corresponding country is highlighted in this map. Some models simulate multiple coun-
tries or cities. The simulations focus on the United States of America, the United Kingdom, China, and Italy.
Countries that are di�icult to see on the map include Kuwait and Singapore.
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Figure 9: Analysis of the number of agents that are simulated. Visualization of the percentage share of models
that use a certain number of agents. In total, 25.4% of themodels do not provide information on the number of
agents that can be simulated.

4.16 In Figure 9, an overviewof the number of simulated agents is provided. Altogether, 94 articles (74.6%) state how
many agents were simulated and the number ranges from six to 60 000 000. From those models that provide
information on the population size, sevenmodels (7.3%) consist of less than 500 agents and 12models (12.8%)
of more than 5 000 000. The median of simulated agents is 30 000. The considerable di�erence in population
size results from amultiple of the aforementioned aspects. Usually, a trade-o� needs to be made between the
level of detail of themodeled individuals, as well as the complexity of their behavior, the time step size, and the
number of simulated individuals. A simulation of individuals with a sophisticated needs model that consists
of rather narrow time-steps, e.g. 1 hour ticks, needs to be limited in the number of individuals with respect to
the time and resources required to execute the model. Finding a suitable balance between level of detail and
number of individuals strongly depends on the interventions that are studied.

4.17 In addition to the described attributes, some other observationsweremade during the analysis of the included
articles. For instance, there are significant di�erences in the extent and rigor of the models’ documentation,
such that some articles had to be excluded from this review due to a lack of information on the model’s fun-
damental functionalities. This concerns both peer-reviewed and non-peer-reviewed articles, and includes the
assumptions that were made regarding the behavior of individuals or Covid-19 transmission dynamics. Stan-
dardizedprotocols that describe the structureof themodel, e.g. theODDprotocol (Grimmet al. 2020), are rarely
used and only 29.4% of the models are available for download. Though some studies reused existing models,
the majority of articles developed newmodels.

4.18 In a literature study by Heath et al. (2009), it was shown that 65% of the investigated articles presenting agent-
based models were lacking a thorough validation. Thus, with respect to the trustworthiness of the models
and the generated results, we also investigated whether and to what extent the simulations were validated. As
shown in Figure 10, the majority of the articles do not elaborate on how the presented model or the generated
results were validated. The remaining articles (16.7%) primarily make use of real-world data for assessing the
validity of their models by, for instance, comparing the transmission dynamics and the course of the pandemic
asobserved in the simulation todata fromreality. This includesdata fromreportsor surveys, e.g. on thenumber
of infections, hospitalization, or death rates, as well as other epidemic parameters, such as the doubling period
or reproduction number (R0). When analyzing phenomena that have not been broadly studied, the availability
of real-world data might be limited; thus, it is challenging to validate the models. Hence, four models (3.17%)
compare the behavior of their model against othermodels. The suitability of this approach for validating simu-
lation models has been, for instance, described by Axtell et al. (1996) and Sargent (2015). Finally, three models
(2.4%) apply systematic testing and experimentation for assessing the quality of their results and two models
(1.6%) involve domain experts, e.g. epidemiologists, for validating their models and results.
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Figure 10: Approaches that were used to validate the models presented in the articles. The majority of the
articles (75%) do not discuss the validation of the presentedmodel.

4.19 However, as stated by (Beisbart 2019), even results of models that do not comply with the highest validation
standards can still provide valuable insights for decisionsmakers. This is especially relevant in crisis situations,
where other approaches for generating insights are limited. Here, simulations can provide di�erent potential
explanations for specific phenomena or observations, that can be used by experts to conclude the real expla-
nation.

Discussion

Challenges and opportunities

5.1 To support decision making, the results generated by simulation experiments need to be reliable. In ABSS, the
design of the simulated population may be a threat to the reliability of the results. In case where the charac-
teristics or behavior of the artificial population do not represent those of the real population in an adequate
way, the simulation results’ ability to draw conclusions regarding mechanisms in the real-world system might
be limited. Our review showed that 71 articles (56.3%) mention the inclusion of any real-world input datasets,
e.g. on individuals, mobility behavior, or geodata. Due to reasons of privacy, for instance, such data are o�en
not available on the individual level, and artificial populations need to be generated based on aggregated data
instead. Still, to adequately represent the real-world environment and to be able to draw conclusions regard-
ing the real world, socio-demographic, and behavioral data for the simulated population are required for the
model development. However, the sole use of real-world data is not su�icient to ensure the transferability and
applicability of the simulation results, as it depends strongly on the quality, source, relevance, and extent of the
used data.

5.2 In addition to data on the simulated phenomenon, expert knowledge is valuable in order to verify model as-
sumptions and the generated results. In this review, some simulation models were developed solely by com-
puter scientists, engineers, or experts from other technical disciplines. To calibrate the model to observations
from the real world, indicators like the basic reproduction number are used. Cross-disciplinary author collec-
tives and the incorporation of medical experts for verifying the plausibility of assumptionsmade regarding the
transmission process seem to be promising steps towards the development of crediblemodels. However, a cer-
tain degree of uncertainty remains as some of the underlying mechanisms of the pandemic are still unknown
and data are not available.

5.3 In contrast to humans, artificial agents are usually modeled to behave rationally. When simulating the intro-
duction of interventions, results might bemisleading due to such rational obedience to restrictions. In the real
world, it can be observed that humans disregard and violate restrictive interventions such as curfews or the
obligation to wear masks. Such deviations from the intended behavior can either be modeled by means of
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probability distributions or through the explicit representation of personality traits. Either way, data are re-
quired concerning under what circumstances and to what extent individuals tend to disobey restrictions.

5.4 When developing an ABSS model, a trade-o� has to be made between complexity of the individuals and the
number of individuals that are simulated. Incorporating multiple personal and environmental variables into
the individual decision-making process requires additional computation time. This can be counteracted by
reducing the number of simulated individuals or by increasing the size of the time steps. In this study, the
analyzedmodels consist of six to60000000agents. More sophisticatedmodelsof humanbehaviorweremainly
found in the models that consist of a smaller number of individuals. The decision regarding howmany agents
to include depends on the purpose of the simulation. When simulating a specific city to identify a suitable
intervention, onemight want to simulate individuals living together in households, commuting to workplaces,
and leisure activities combinedwith a sophisticated transmissionmodel. In contrast, when analyzing the e�ect
of travel restrictions for a country, individual commuting routines might not be of high relevance. Still, the
e�ect they have on the overallmovement of individuals needs to bemodeled correctly to generate realistic and
applicable results. With respect to the scalability of the model and the e�iciency of computation, such models
might choose to implement contacts between individuals based on a network approach. Moreover, di�erent
models can be combined so that results from more detailed simulation at city level can serve as inputs for
country-wide or transnational simulations.

5.5 With respect to improving the transparency, access, and rigor of simulationmodels that are used to understand
thepandemicand toassistpolicyanddecisionmakers, Squazzoni et al. (2020) formulate threemajor challenges
that need to be addressed: the Covid-19 prediction challenge, the Covid-19modeling human behavior challenge,
and the Covid-19 data calibration and validation challenge.

5.6 In their prediction challenge, theauthorsoutlinedi�iculties thatmight arisewhen trying topredict thebehavior
of complex systems. It is the modelers’ goal to minimize limitations of their models by scientifically grounding
their assumptions and by calibrating their models with the most accurate data. However, data are o�en not
available, and it is di�icult to validate the assumptions made. Our study showed that nearly all investigated
models aim at predicting how di�erent interventions might a�ect the transmission dynamics. This includes
the simulation of a certain time period, in which one or multiple interventions can be activated at a specific
point in time or when a certain threshold of an epidemic parameter, e.g. a certain number or ratio of infected
individuals, is exceeded. It further showed that the simulated time period, i.e. the horizon of prediction, di�ers
greatly between the models. It ranges from a few days up to two years. Most models, however, predict over a
time period between three months and one year.

5.7 Themodeling human behavior challenge addresses themodeling of complex social dynamics, which is of par-
ticular relevance when simulating infection dynamics of the Covid-19 pandemic, as well as the e�ects of inter-
ventions. That is, because such dynamics emerge from the individual behavior of humans. However, it is chal-
lenging tobuild cognitivemodelsofhumandecisionmakingasactionsmightnotalwaysbe rational and thehet-
erogeneity of individuals needs to be considered. Building soundmodels requires not only socio-demographic
data on the particular attributes, e.g. age, gender, or household, but also cross-disciplinary expertise. Squaz-
zoni et al. (2020) argue thatmodels that cannot be used to examine social dynamics are lacking a crucial aspect
for analyzing and predicting Covid-19 transmissions.

5.8 Mostmodels thatwere investigated as part of this study include rather simplisticmodels of humanbehavior. To
this end, the actions taken by individuals and the transmission of the virus between the individuals take place
randomly. Socio-demographic data are o�en used to generate a population that corresponds to the real-world
population with respect to specific features, e.g. age distribution. However, this information is then primarily
used for the global organization of the model, e.g. the composition of households, determining their occupa-
tion, or as factors in the transmission model for determining the individual probability of infection. Moreover,
interactions inmost models are predetermined as a result of social or spatial network graphs. Only a fewmod-
els include more sophisticated models of human behavior, where schedules, utility, or need models are used
for proactively determining suitable actions based on a given situation and personal features. Social dynam-
ics, as described by Squazzoni et al. (2020), are in fact part of many models. However, they are mostly not the
result of the individual assessment of a given situation; rather, they are the consequence of a predefined social
interaction network. Especially with respect to the simulation of whether or not individuals comply with in-
terventions, more sophisticated decision-makingmodels are required. In particular, compliance with di�erent
measures depends on personal characteristics and circumstances, all of which need to be taken into account.

5.9 Finally, the data calibration and validation challenge especially ariseswhen using simulations for ex ante analy-
ses with the aim of predicting future developments. This is a result of a lack of data and possibilities for gather-
ing it, e.g. as experiments are either impossible or unethical. To this end, the authors suggest the retrospective
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validation ofmodels. However, this might not always be feasible when simulation results are required formak-
ing timely decisions. Squazzoni et al. (2020) also discuss the quality of available data on the Covid-19 pandemic
asmetrics, e.g. the number of cases,might be defined and collected di�erently among di�erent countries. This
a�ects both calibration and validation and it might lead to biased estimations.

5.10 Nearly half of the investigated articles outline how their models have been calibrated. This includes determin-
ing feasible probabilities for transmissionprocesses aswell as for theprogress of the disease, e.g. the likelihood
of being infected, the transmission rate, the probability of developing a severe progress of disease that requires
hospital admission, or the likelihood of dying as a result of the disease. Moreover, calibration is used to adjust
social interactions between individuals, that potentially result in infections and the transmission of the virus.
This is achieved by, for instance, calibrating the overall contact probability and even the specific weights of
edges in network graphs that represent individual transmission or contact probabilities. Approaches that are
used for calibrating models include optimization techniques such as Bayesian optimization, Sequential Monte
Carlo,maximumlikelihoodestimation,minimizationof the sumof squared residuals, andexperimental designs
such as Latin Hypercube Sampling. However, the large number of potentially interdependent model parame-
ters makes the calibration challenging.

5.11 In accordancewith the study by Heath et al. (2009), we also found that themajority of articles (75%) are lacking
a description of how the model was validated. Due to the pandemic situation and as most models aim at the
ex ante analysis of the e�ects of di�erent interventions, the availability of data is strongly limited. In addition,
the use of early available data, whose quality might be questionable, another approach is the comparison of
di�erent models among each other, e.g. in accordance with Axtell et al. (1996) and Sargent (2015). However, as
the validity of these models also is uncertain, the results of these comparisons need to be assessed carefully.

Limitations

5.12 As the Covid-19 pandemic is still ongoing, the work on novel models and simulations continues, thus result-
ing in new publications. This literature review analyzes and discusses the state of publications as of October
1, 2020, approximately nine months a�er the outbreak of the first Covid-19 cases. Due to the high number
of preprints that are included in this study, it can be assumed that some of the presented models are rela-
tively quick responses to the pandemic that were developed without comprehensive funding. However, the
researchers should still be responsible for the validity and completeness. It can also be assumed that the num-
ber of quality-assured publications will increase in the future as a result of extensive peer review processes. In
addition, these future articles might present an updated or extended version of the models.

Implications for practice and future research

5.13 To simulate transmission processes, the underlyingmechanisms that lead to the spread of the disease between
individuals need to bemodeled. Due to the novelty of Covid-19, the understanding of the infectionmechanisms
is still limited. Thus modelers are required to make assumptions on how certain mechanisms work and how
di�erent parts of themodel are interconnected. At a later point, these assumptionsmight prove to be imprecise
or even incorrect, and thus need to be revised. In cases where they have been hard-coded into the model,
future users are not able to adjust them, which severely limits the applicability of themodel. Instead, modelers
and developers should aim at mapping assumptions to model parameters so that they can be easily modified.
This is also relevant with respect to the interpretation of the generated results, as it allows for the analysis and
comparison of di�erent assumptions.

5.14 Instead of explicitly programming all parts of the simulationmodel or manually setting parameters, thesemay
alsobe induced fromobserveddatausingmachine learning techniques. This includes, for instance, information
on where infections occur, personal factors that influence the susceptibility, and the likelihood of transmission
when having contact with an infected individual. However, data on these mechanisms are still being collected
and only limited information is available.

5.15 To promote the use of simulation results in policy making, it is not only the model building but also the model
description that needs to be improved. In fact, some papers were excluded from the study because of an in-
complete or shallow description of themodel. To be able to adequately interpret simulation results and to use
them as evidence in decision-making processes, the assumptions made by the model, as well as the underly-
ing mechanisms, need to be transparently communicated. This includes not only the possibility to download
the model but also a comprehensive description of its entities and their interactions. This can, for instance, be
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achieved by using the ODD protocol (Grimm et al. 2020). In addition, the thorough documentation of amodel’s
mechanisms, validation of the model – e.g. by including epidemiological experts in the project team – seems
necessary to ensure the correctness and plausibility of model assumptions.

5.16 When comparing interventions that are supported by the simulation models with those interventions that are
discussed in reality, a discrepancy can be observed. Many simulations model lockdown scenarios, however,
complete lockdowns o�en are considered a last resort. Instead, curfews and limitations of public and private
gatherings are common interventions, but only a few models analyze these interventions. This might be due
to the increased complexity of the simulationmodels needed, for instance, in terms of the size of the simulated
time steps or the used human behavior models. Simulating the e�ects of some NPIs requires a more realistic
and individual representation of human decision making and norm obedience as well as a more fine-grained
time step size. However, most of the investigatedmodels consist of rather simplistic behavior models and sim-
ulate on a daily basis. This does not allow for the analysis ofmore advanced NPIs such as curfews or preventive
quarantine.

5.17 The great variety of models identified in this study as well as the small number of reused models, also sug-
gests that collaborations and model combinations might allow for the development of more complex models.
Combinations of di�erent models were not identified in this literature review.

Conclusions

6.1 In this systematic reviewonABSSof Covid-19 transmission,we identified andanalyzed 126 articles that propose
relevant simulation models. The models can be used to investigate di�erent aspects of the ongoing Covid-19
pandemic, including transmission dynamics and interventions for containing the spread of the virus. However,
these models di�er in the interventions that can be simulated, in the extent of the transmission model, the
attributes of the individuals, and the states used for representing the progress of the disease.

6.2 Over 90% of the analyzed articles present simulations of at least one NPI and investigate how this a�ects the
dynamics of the pandemic in terms of infected individuals, mortality, or demand on the healthcare system. In
addition to the parameters that can be used to adapt the model, more than half of the models include some
real-world input datasets of individuals, mobility behavior, or geodata, which allows for adapting themodel to
the real-world conditions of the area that is simulated. By thismeans, local circumstances can bemodeled and
di�erent scenarios of interventions can be investigated prior to their actual introduction. The results generated
by the simulations can provide new information on how transmission dynamics are a�ected under di�erent
circumstances. Thus they provide policy makers with additional valuable insights to be used in their decision-
making process.

6.3 For theconducted literature reviewonABSSmodels for theCovid-19pandemic,wecansummarize the following
key messages:

• ABSSo�ers amore powerful tool to investigate Covid-19 transmission processes between individuals and
the e�ects of interventions compared to traditional macro-level models, e.g. system dynamics or math-
ematical models. Nevertheless, although we identified 126 published ABSS models for Covid-19 in this
review, the full potential of ABSS is yet to be realized.

• A discrepancy can be identified between the needs of policymakers andwhat the simulationmodels im-
plement. There is, for instance, a need to consider di�erent configurations of curfews and restrictions of
gatherings. The analyzed simulations, however, mainly implement tougher general interventions such
as lockdowns and quarantines, which are easier tomodel. Moreover, the e�ects of pharmaceutical inter-
ventions are rarely studied.

• The e�ects of the studied interventions are o�en estimated to be positive, with the exception of lock-
downs and closing of schools and universities, where the e�ects are unclear or negative in 25% or more
of the studies.

• Fewmodels include factors that are generally assumed to a�ect the transmission probability, such as the
distance between the individuals (17.5%), density of individuals at the location (13.5%), wearing protec-
tion (10.3%), and contact time (7.1%).

• Although age is the most commonly modeled attribute of individuals, more than half of the analyzed
models do not consider this attribute in the transmission model, despite it being widely regarded as a
critical factor.
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• Regarding themodelingof disease states,more than50%of themodels donot distinguishbetweenbeing
symptomatic or asymptomatic. Moreover, less than 25% of the models have a state for being critically ill
and requiring hospital or ICU treatment.

• Mostmodels (90.5%) includesimplisticmodelsofhumanbehavior,wheredecisionsandactionsaremainly
random with predefined spatial or social networks. Some models, however, include more sophisticated
models of human decision making that make use of individual schedules, needs, or utility functions.

• As the trustworthiness of the ABSSmodels is a key factor for policymaking, the transparency needs to be
improved. This can, for instance, be achieved by providing more detailed information about the model’s
underlyingmechanisms and assumptionsmade using a standardized protocol (e.g. ODD), and bymaking
the model available for download.

• The validation of simulationmodels whose purpose is prediction is challenging. This is, as required data
are usually not available. In 75%of the investigated articles, there is no information provided onwhether
or how the model has been validated. This is a drawback with respect to the trustworthiness of the gen-
erated results. However, even without su�icient data, validation can consist of systematic testing of the
model, comparing it against othermodels, or expert assessment. Nevertheless, only a fewmodels pursue
such approaches.

6.4 Our analysis showed that simulation can be used to identify potential e�ects or side-e�ects of di�erent inter-
ventions against the spread of Covid-19 in an artificial population. However, the results presented by the arti-
clesmostly allow for understanding the dynamics of the pandemic and to identify factors that potentially a�ect
thesedynamics. Thus thegenerated resultsneed tobe interpreted thoroughly, and their capability of predicting
future developments is limited.

6.5 This study gives an overview of models and their features but does not assess their trustworthiness. This is,
to identify shortcomings in existing models with respect to future research endeavors, as well as to support
decision makers in the identification of appropriate models for a given scenario. We conclude that ABSS is a
powerful tool to investigate Covid-19 transmission processes and to analyze potential interventions. However,
the full potential of ABSS is yet to be realized.
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Notes

1The exact search string used for searching COVIDScholar.org: “+simulation +agent +transmission”.
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