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Abstract: We studied an agent-based model of collective problem solving in which teams of agents search on
an NK landscape and share information about newly found solutions. We analyzed the e�ects of team mem-
bers’ behavioral strategies, team size, and team diversity on overall performance. Depending on the landscape
complexity and a team’s features a teammay eventually find the best possible solution or become trapped at
a local maximum. Hard-working agents can explore more solutions per unit time, while risk-taking agents in-
ject randomness in the solutions they test. We found that when teams solve complex problems, both strategies
(risk-taking and hard work) have positive impacts on the final score, and the positive e�ect of moderate risk-
taking is substantial. However, risk-taking has a negative e�ect on how quickly a team achieves its final score.
If time restrictions can be relaxed, a moderate level of risk can produce an improved score. If the highest pri-
ority is instead to achieve the best possible score in the shortest amount of time, the hard work strategy has
the greatest impact. When problems are simpler, risk-taking behavior has a negative e�ect on performance,
while hard work decreases the time required to solve the problem. We also find that larger teams generally
solved problems more e�ectively, and that some of this positive e�ect is due to the increase in diversity. We
showmore generally that increasing the diversity of teams has a positive impact on the team’s final score, while
morediverse teamsalso require less time to reach their final solution. Thiswork contributesoverall to the larger
literature on collective problem solving in teams.
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Introduction

1.1 Teamscano�en search for solutionsmoree�ectively ande�iciently than individualsworkingalone. Businesses
and other institutions devote tremendous amounts of resources to source and train talent in order to build
problem-solving teams (Pessima & Dietz 2019; Tansley et al. 2006; Society for Human Resource Management
(SHRM) 2016). Collective problem solving is of interest to researchers acrossmany disciplines, including organi-
zational psychology, economics, computer science, behavioral ecology, complexity science, andmanagement.
Many roles, including positions in research and management historically performed by sole individuals, are
increasingly being conducted by groups (Wuchty et al. 2007; Gowers & Nielsen 2009; Richard Hackman 2002).

1.2 An important line of inquiry in the study of collective problem solving is the identification of characteristics
that enhance a team’s performance (Brownell et al. 2020; Woolley et al. 2010; Hagemann & Kluge 2017), and
how those characteristics interact with factors such as the complexity of the problem being solved (Lazer &
Friedman 2007; Yahosseini & Moussaïd 2020). These characteristics might include the extent to which the in-
dividual team members are hardworking (and therefore might generate more solutions per unit time) or risk
taking (and therefore might generate more creative and less obvious solutions), as well as the overall size and
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diversity of the teams. Diversity in particular has been suggested to enhance team performance. Grouping
individuals with di�erent ideas and perspectives has been found to generate new knowledge and thus better
performance (Smith & Hou 2015; Gomez & Lazer 2019; Lorenz et al. 2011). These e�ects are rooted in the power
of cognitive diversity, which directs di�erent points of views and interpretations toward problem solving (Page
2008; Gomez & Lazer 2019; Page 2019). We use agent-basedmodeling to study the impact of hard-working and
risk-taking individuals on teamperformance on both simple and complex tasks. We also study the roles of team
size and diversity. Our results indicate that when a team needs to solve complex tasks, both hard-working and
risk-taking agents can improve the quality of a team’s output while the e�ect of taking risk is more substantial.
However, while hard working agents save time, risk-taking agents can dramatically increase the time needed
for a team to find a quality output. Our results also support research indicating that diversity can be beneficial
to team performance.

Operationalizing problem complexity

1.3 Teams face problems of varying complexity levels. Many of the problems teams face in the fields of science,
entrepreneurship, business, and management are quite complex, which means that a solution is likely to in-
volvemany interdependent decisions that must be simultaneously optimized. In other words, a change to one
decision might yield either positive or negative results based on the other concurrent decisions (Siggelkow &
Levinthal 2003; Levinthal & March 1981). Simpler problems, in contrast, are o�en characterized by fewer inter-
dependencies, so that each decision can be treated more or less independently of the others.

1.4 To capture the di�erences in interdependencies between simple and complex problems, we operationalize the
space of problem solutions as an NK landscape (Kau�man & Weinberger 1989; Lazer & Friedman 2007). An NK
landscape is determined by two parameters, unsurprisingly denoted N and K. N , the number of problem
dimensions, can be interpreted as the number of activities (e.g., behaviors, technologies) a solution could in-
volve, each of which could be present or absent.K is the level of interdependency between these activities. A
solution is characterized by the presence of a particular set of activities, and each solution has an associated
“score,” which is interpreted as its quality. Each solution can be viewed as a location on the N -dimensional
landscape. When K is close to zero, the problem is simple, because the contribution of each activity to the
solution quality can be independently assessed. Increasing K makes the problem space more complex, be-
cause the contribution of any given activity depends on the presence or absence ofK other activities. When
K = N˘1, the space hasmaximal entropy, because solutions contain no information about adjacent solution,
so “complex” problems are usually defined by intermediate values ofK.

1.5 The NK landscape was originally developed to study the complex combinatorial search involved in evolution-
ary dynamics (Kau�man & Weinberger 1989). The model has been used by biologists to study development in
epistatic gene networks (Schank & Wimsatt 2012), genomic coevolution (Kau�man & Johnsen 1991), and im-
mune systemmaturation (George & Gray 2000). Locations on the landscape represent genomic fitness in these
models, whereby the parameter K determines the ruggedness of the fitness landscape. A complex problem
landscape is rugged and containsmany good locations (“peaks”) separated by low-score “valleys.” Lower inter-
dependency between dimensionsmakes a problem simpler, represented by a smoother landscape. Themodel
is quite versatile and has been widely adopted in other fields, including economics (Khraisha 2020), manage-
ment (Westho� et al. 1996), and political science (Shugars 2020). The subject of collective problem solving has
been widely studied through the use of the NK model (Lazer & Friedman 2007; Shore et al. 2015; Barkoczi &
Galesic 2016; Yahosseini &Moussaïd 2020), so that team’s aim is to find the highest peak in the landscape in the
shortest amount of time. A number of previous studies have used the NK landscapemodel to study the factors
that impact a team’s success in collective problem solving, focusing on aspects such as problem complexity
(Levinthal 1997; Rivkin 2000; Lazer & Friedman 2007), communication network structure (Fontanari 2016; Lazer
& Friedman 2007), landscape exploration strategies (Chao&K. 2008; Yahosseini &Moussaïd 2019), and diversity
(Gomez& Lazer 2019). For example, Lazer & Friedman (2007) studied the communication connectivity level and
showed that sparse communication networks could be more e�ective in solving complex problems, because
they allowed teams to maintain a diversity of solutions for longer. Yahosseini & Moussaïd (2020) investigate
di�erent landscape exploration strategies and found that the approach of tackling problems sequentially (like
a relay race) is more e�ective when the problem is simple. For complex problems, teams of independent indi-
viduals who tackle the problem independently and then choose the optimal solution tend to perform better.

1.6 In ourmodel, we focus on the e�ect of the agent’s behavior in the exploration of the landscape. Several studies
have designed di�erent exploration strategies andmeasured the e�ect of each strategy on team performance.
Exploration strategies can traditionally be categorized into twomain categories: adjacent search and big jump
search (Baumann et al. 2019). For example, Chao & K. (2008) shed light on the appropriate “balance” between
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adjacent search and big jump search in a new product-development portfolio. The result showed that environ-
mental instability shi�s the balance toward adjacent search strategy, while as the environment becomesmore
complex, the balance should shi� toward a big jump search. The exploration strategies investigated in ourwork
include the generation of di�erent numbers of solutions per unit time by an agent (multiple adjacent search)
and the generation of solutions that are very di�erent from the current solution of the agents (big jump search).

1.7 While previous studies have investigated di�erent search strategies, including big jump search and adjacent
search, we did not find any study that investigated variation in the extent to which those search strategies were
implemented. We filled this gap by investigating the e�ect of di�erent adjacent and big jump search levels
on team performance when teams face simple and complex problems. We have also created agents that can
combine both adjacent and big jump search strategies and investigated how those agents a�ect team perfor-
mance. We investigated the e�ect of team size on the performance of both search strategies. In addition to the
exploration strategy, we studied the e�ect of diversity on team performance. We have also studied the e�ect
of background knowledge and search behavior diversity on team performance. Although previous research
has investigated the e�ect of di�erent types of diversities on team performance, including functional diversity
(Hong & Page 2004), ability and knowledge diversity (Gomez & Lazer 2019), and skills diversity (Horwitz & Hor-
witz 2007), they ignored addressing the e�ect of search behavior strategies diversity on the performance of
a team of problem solvers. We fill this gap by comparing diverse teams’ performance that includes both hard-
working and risk-taking agentswith non-diverse teams. Another type of diversity thatwe addressed in ourwork
is the background knowledge diversity of teammembers. To our best knowledge, no study has been conducted
to investigate the e�ect of teams’ background knowledge on teams’ performance with di�erent search strate-
gies. We studied the e�ect of teams’ background knowledge on the time it takes for teams to reach their final
solution, which has never been addressed before.

1.8 In ourmodel, as inprevious studies of collectiveproblemsolvingonNK landscapes, individuals search the land-
scape independently and communicatewith each other and share solutions. An individual will adopt someone
else’s solution if it is demonstrated to be superior to their own.

Working hard, taking risks, and diversity

1.9 This paper takes the perspective of amanager hoping to assemble a team that canwork together to solve chal-
lenging problems, understanding that some problems may be more complex than others. We focus on teams
made up of agents who exhibit di�erent levels of hard work and risk-taking and compare their performance in
solving both simple and complex problems.

1.10 Creativity and working hard are among the factors that determine team performance (Suh & Shin 2008). Cre-
ativity is considered as taking risks and generating new ideas (Amabile et al. 1996). For example, when an orga-
nization encourages its employees to take risks andwork creatively, the employees produce uncommon useful
ideas which lead to better results (Amabile et al. 1996; Suh 2002). Taking risks generates successful innovations
that have a huge impact on team performance (Wang & P. 2010).

1.11 Working hard is positively related to team performance (Holmes & S. 2002; Brown & Leigh 1996) and is one of
the highly anticipated behaviors of employees working at organizations. Hardworking behavior is related to
factors including work ethic, morality, gender, marital status, and education (Elçi et al. 2011). Some studies
recognize hardworking employees based on the number of hours that they work (Tremblay 2002) while other
studies consider hardworking as expending great e�ort on a task (Elçi et al. 2011; Miller et al. 2002). Therefore,
in a fixed amount of time, a hardworking employee is the one who completes more jobs.

1.12 For our baseline problems, we assume, as do previous authors, a process of local search in the landscape. That
is, they addor subtract oneactivity at a timeandassess thee�ect of their changeon thequality of their solution.
Hardworking agents are assumed to search the landscape in an identical manner, but more e�iciently. That is,
they can assess more solutions per unit time. This type of individual learning, which involves the avoidance of
large jumps in the landscape, may be considered risk averse (Frey et al. 2017), or at the very least uncreative. In
contrast, wealso consider risk taking agents. “Risk” is generally considered amultidimensional construct (Renn
1998) that can involve high levels of uncertainty regarding the link between actions and outcomes (Dietz et al.
1996). Risky behaviors involve the possibility of positive reward but a high probability of substantial loss (Nigg
2017). We consider risk taking behavior in problem solving as a large move in problem space the simultaneous
addition or deletion of several activities at once. Such a move may also be considered in terms of creativity:
the ability to consider a solution “outside the box.” Empirical studies have indicated that people’s desire to
take risks is reduced when a problem space becomesmore complex (Yahosseini & Moussaïd 2019; Lorenz et al.
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2015). In this study, we aim to learn whether risk averse behavior when an individual faces complex problems
is beneficial or not.

1.13 Foley & Riedl (2015) studied the e�ect of risk taking on team performance using an NK landscape with di�er-
ent social network topologies. They found that although many agents converge to local maxima when they
are in an e�icient communication network structure, increased levels of risk-taking helps agents escape from
local maxima and leverage the benefits of e�icient communication without converging on local maxima. How-
ever, as risk-taking agents jump to more distant areas of landscape rather than practicing hill climbing, their
performance is impaired, especially when they use a less connected communication network.

1.14 In addition to studying teams composed solely of hard working or risk-taking agents, we also consider hybrid
teams consisting of a mix of individuals, as well as hybrid individuals who exhibit both hard working and risk-
taking characteristics.

1.15 Finally, we consider the impact of diversity on team performance by exploring how variation in background
knowledge and search behavior within a team contributes to a team’s problem-solving performance. Diversity
hasbeendeterminedasan important factor for the successof collectivebehaviors (Santoset al. 2012; Aplin et al.
2014). More specifically, the cognitivediversitywhich refers to variety inperspectives andmethodsof approach-
ing problems usually lead to a superior result (Page 2008). There are several modeling studies that investigate
the e�ect of diversity on team performance using the NK landscape. For example, Fontanari (2016) defined
di�erent types of agents based on their propensity toward social learning and compared the performance of
homogeneous heterogeneous teams. The type of diversity that we addressed in our work is about the back-
ground knowledge and search behavior diversity of teammembers. Following Gomez & Lazer (2019), we define
the background knowledge of an agent as its initial solution in solution space in our agent-based simulations.
Teams with diverse background knowledge will have a wide range of initial solutions among their members,
while more homogeneous teams will have initial solutions that are highly correlated among the team’s mem-
bers.

1.16 We studied two types of search behaviors in our study: hardworking and risk-taking search behavior. A team
with search behavior diversity contains both hardworking and risk-taking agents in the team. We compared the
outcome of diverse teams with the outcome of di�erent non-diverse teams.

Model

2.1 The collective problem-solving process is modeled as a search on a smooth or rugged NK landscape imple-
mented by a team of networked agents. Agents continue to search for solutions with higher scores than their
current solution. During the simulation, agents explore the landscape and communicate their current solutions
with their network ties. An agent always employs one solution (a location on the landscape) and is assumed to
know the value of that solution and be able to communicate it to others. Multiple agents can simultaneously
employ the same solution.

2.2 Agents’ communication network is a ring lattice with degree four. This type of modestly-connected network
structure facilitates e�ective problem solving for both simple and complex problems. Previous research has
shown that when facing simple problems, teams that communicate using a fully connected network reach to
the globalmaximummuch faster (Lazer & Friedman 2007)while the excessive connectivity can reduce the team
performance on complex problems (Fang et al. 2010; Lazer & Friedman 2007). Agents are assumed to commu-
nicate with full transparency and share information without error and without cost.

2.3 Each solution is represented as an N -dimensional binary vector, with a corresponding score (see below for
details). At the beginning of each simulation run, each agent is randomly assigned an initial solution. The sim-
ulation unfolds in discrete time steps, during which each agent, in random order, considers whether to adopt a
new solution using either social or individual learning. In the remainder of this sectionwe describe each aspect
of our model in detail.

Agent behavior

2.4 Agents use a strategy of conditional social learning, adopting the solution of others if it is demonstrably better
than their own solution, and relying on individual learning otherwise. This learning strategy has been shown to
beadaptiveunder awide rangeof scenarios (Ehn&Laland2012). At each timestep, anagent compares the score
of its current solution to those of its network neighbors (social learning). The agent then adopts the solution
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with the highest score if it is better than its own current solution. In the case that none of its neighbors has
a better solution, the agent engages in individual learning to consider one or more new solutions. It adopts a
new solution if that solution is better (has a higher score) than its current one, otherwise it retains the solution
it employed at the beginning of the time step (see Figure 1). A major advantage of using social learning is to
avoid the costs of conducting individual learning. This is why in ourmodel, agents learn from each other (social
learning) first and if they fail, they try individual learning. We have also done a sensitivity analysis to compare
the orderedmodel (first social learning and then individual learning) with reverse-orderedmodels. The results
summarized below and presented in detail in the Appendix.

Figure 1: Flowchart indicating decisions for an agent’s behavior at each time step. The first decision is repre-
sented by the diamond-shaped box.

2.5 Agents employ one of several behavioral strategies for individual learning related to hard work and risk taking
(Figure 2).

Figure 2: Example of di�erent agents behavior strategies.N = 5 in this example. In each runof individual learn-
ing Normal agents generate one solution by only altering one dimension of their current solution. Hardworking
agents generateH solutions by altering one randomly chosen dimension of their current solution. Risk-taking
agents generate one solution by repeating the procedure of randomly choosing a dimension and altering itR
times. Hybrid agent generate a solution by taking risk and then generateH solutions by altering just one di-
mension.

2.6 Hardworking agents: Hardworking agents explore the landscape by checking several of their immediate adja-
cent locations, altering one element of their currentN -dimensional solution several times. In otherwords, they
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generate multiple solutions that each have a Hamming distance of 1 from the agent’s solution at the beginning
of the time step. The number of new solutions that a Hardworking agent generates in each time step is the
agent’s hardworking level,H > 1. At each time step, a hardworking agent examines the scores associatedwith
each of the new solutions, compares them against one another and with their current solution, and selects the
solution with the highest score.

2.7 Risk-taking agents: A risk-taking agent generates a new solution to consider by making a certain number of si-
multaneous changes to its’ current solution. These agents compare the new solutionwith their current one and
adopts the solution with the higher score. In other words, a risk-taking agent generates only one new solution,
but with a Hamming distance of greater than one from its current solution. In this way, these agents are able to
explore relatively distant locations in the landscape. The risk-taking level of a risk-taking agent, R > 1, refers
to the number of binary elements that an agent flips in generating its new solution.

2.8 Normal agents: In each individual run, a normal agent explores the landscape by selecting exactly one ele-
ment of its solution andaltering it, comparing the newly generated solution to its current solution andadopting
whichever has a higher score. In other words, a normal agent is defined byH = R = 1.

2.9 Hybrid agents: Hybrid agents are both hardworking and risk-taking (so that H > 1 and R > 1). In each in-
dividual learning run, they take a large jump (similar to risk taking agents) and then explore several locations
adjacent to their jump destination (similar to hardworking agents).

2.10 A team eventually converges so that all agents reach agreement at the best solution its members have found.
Due to random exploration, risk-taking agents will eventually find the global optimum, but this can take an
arbitrarily long amount of time. Tomodel more realistic conditions under which agents would eventually have
to settle on a “good-enough” solution, we implemented a stopping time. Simulations ended when either (A)
a team reached the global maximum (the best possible solution) or (B) 200 time steps had elapsed. Under
almost all the conditions we considered, teams converged on their final score well before 200 time steps (see
theAppendix). We can thus consider the time required for teams to reach their final score as ameasureof search
e�iciency.

The NK landscape

2.11 This section explains howa score is assigned to a solution in theNK landscape. It is worth emphasizing that this
is an o�-used modeling paradigm, and the algorithm described here is not unique to our model (see Csaszar
2018 for a helpful primer on NK landscapes). Each solution element is a binary value, and thus, there are 2N

possible solutions on the landscape. Two locations in the landscape are defined as adjacent if their associated
solutionsdi�erbyexactlyoneelement (that is, theirHammingdistance is 1). Each solution is assigneda solution
score at the beginning of every simulation run, which remains fixed throughout the duration of the simulation.
In the case of no interdependency (K = 0), the contribution of each solution element to the solution score is
independent and only relies on its own state (0 or 1). Otherwise, the contribution of each element depends on
its own state (0 or 1) as well as the states ofK other elements (randomly selected and fixed for the duration of
the run) when there are dependencies (0 < K < N ). In this study, we fixed the dimensionality atN = 20, and
considered simple problems with K = 0 and complex problems withK = 10.

2.12 A solution can be represented as a vector thusly:

S = [s1, s2, . . . sN ], si ∈ {0, 1} (1)

To compute the score of each solution, we created an interdependency vector (Vi) for each solution element
si at the beginning of each simulation. Each interdependency vector contains the solution element and theK
other elements on which it is interdependent (these are randomly assigned at the beginning of each simula-
tion). In the case of no interdependency (K = 0), each interdependency vector contains only one element (the
solution element).

2.13 The score of each interdependency vector determines the contribution valueof a solution element. To compute
the score of an interdependency vector (Vi), we treated the consecutive elements of the vector like a number in
base 2 and then converted that to a number in base 10. This number represents the position index in the score
list. The score list is a list of randomnumbers generated at thebeginning of each run fromauniformdistribution
in the range of 0 to 1000. The value that was selected (by the position index) from the score list is the score of
each interdependency vector.
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2.14 For example, considering N = 5 and K = 2, an example solution could be S = {1, 0, 1, 1, 0}. If the first
element is randomly assigned interdependency on elements 2 and 5, then the interdependency vectors for the
first element would be:

V1 = {1, 0, 0} (2)

In our example,V1 = 100. We next convert 100 into a number in base 10 and obtain 4. If the score list for our
simulation is {12, 20, 70, 55, 33, 14, 7, 11}, the score contribution for the first element of the solution is element
4 of the score list (with indices starting at zero), which is 33 in this case.

2.15 To compute the total score of a solution, we take the average scores of all interdependency vectors of a solu-
tion. In accordancewith prior work (Lazer & Friedman 2007; Barkoczi & Galesic 2016), we raised all scores to the
power of 8 to widen the score distribution and better distinguish high scores from lower scores. To allow com-
parison of scores across simulation runs, we normalized the scores in [0, 1], with one being the highest possible
score in a given run.

Diversity

2.16 Each agent was initialized with a random problem solution (a location on the NK landscape). We operational-
ized team background knowledge diversity,D, as the number of unique (randomly generated) solutions from
which agents were initialized, so thatD could vary between one and n. We assumed that less diverse teams
shared backgrounds, and thereforewould begin to tackle a problemusing similar initial solutions (even though
their subsequent search in problem space was uncorrelated). We first generatedD seed agents, each assigned
to a random initial solution. Thenwe createdn/D−1 copies of each seed agent, wheren is the total team size.
WhenD is large the team is highly diverse, since a higher number of agent’s initial solutions is independent of
the other team members. A minimally diverse team occurred whenD is minimum, since most agents started
with the similar solution.

2.17 The other type of diversity that we have studied is search behavior diversity. The search behaviors we have
studied in this work are hardworking, risk-taking, and hybrid search strategies. Non-diverse teams contain only
one type of agent (either risk-taking, hardworking, or hybrid agents). However, diverse teams contain more
than one type of agent. We have compared the performance of diverse teams with non-diverse teams.

Experiments and Results

3.1 For the solution space, we used a landscape ofN = 20. Unless otherwise stated, all teams had n = 100 agents.
For hard-working and risk-taking teams, we varied the levels of the H and R traits from 1 (normal) to 20. We
considered teamperformance in termsof bothmaximumscore and the time to reach that score, for both simple
(K = 0) and complex (K = 10) problems. We repeated all simulations 100 times and considered the mean of
the final score and final time as the simulation outcome. Simulations terminated when a team reached the
global maximum or a�er 200 time steps. NetLogo code for the model is available in: https://www.comses.
net/codebases/4ff8683a-50e0-4c05-bda0-0c69f1dd63f9/releases/1.0.0/.

Individual characteristics

The impact of hardworking agents on team performance

3.2 Increasing a team’sH level makes the team faster and slightly increases the team’s final score (Figure 3A & C).
Increasing theH level 20-fold improved the final score, increasing it from 0.42 to 0.52 in a scale of zero to one.
Although these e�ects are positive, they are very weak. The drop from simple to complex problems causes a
massive drop in solution score, and even H = 20 is able to recover only a small amount of that loss. When
teams are large enough, even a team with the lowestH level (normal agents) can reach the global maximum
in response to a simple problem. However, whenH levels are increased, teams require less time to reach their
final solution (Figure 3C). Other than increasing the H level of the team, replacing team members with more
hardworking ones slightly improves team score. Also, the time that it takes for a team to reach its final outcome
decreases as the number of hardworking agents (H level of 5) increases in a team (Figure 4C).

JASSS, 24(4) 10, 2021 http://jasss.soc.surrey.ac.uk/24/4/10.html Doi: 10.18564/jasss.4704

https://www.comses.net/codebases/4ff8683a-50e0-4c05-bda0-0c69f1dd63f9/releases/1.0.0/
https://www.comses.net/codebases/4ff8683a-50e0-4c05-bda0-0c69f1dd63f9/releases/1.0.0/


Figure 3: Increasing theH level andR level, increases the team’s score when teams facing complex problems
(purple). Increasing theR level, decrease the team scorewhen teams face simple problems (blue). IncreasingH
level makes a team require less time while increasingR level increases the time a team needs to reach its final
solution. The pale purple and blue dots show the result of a single simulation. The bold purple and blue points
that are connected to lines show the average result of 100 simulations. The plots on the top show the score of
teamswith di�erentH levels (A) andR level (B) when they face complex and simple problems. The plots in the
bottom show the time steps that it takes for teams with di�erentH levels (c) and R level (B) to reach their final
outcome when they face complex and simple problems.

3.3 Risk-taking teamsexplore the landscape throughamuchwider approach. Theymightbecomestuck in ahillside
or a local maximum for a while looking for a more elevated location, but they eventually escape from it. They
usually find a better solution, which allows the simulation to run for a longer time and enables the agents to
continue exploring. It is worth mentioning that as risk-taking agents conduct random explorations, they even-
tually rise from any plateau and find a globalmaximum; however, this process can take an arbitrarily long time.
In this study, the simulation was restricted from persisting for more than 200 time steps.

3.4 In addition to addressing the e�ect of di�erent levels ofR on team’s performance, this study also examines the
impact of increasing the number of risk-taking agents on team performance. To this end, we replaced di�erent
numbers of normal agents (R = 1) with risk-taking agents withR level of five (R = 5) in a team of 100 normal
agents (Figure 4B & D).

3.5 The simulation results indicate that increasing the number of risk-taking agents in a team increases the final
score when teams face complex problems. In the context of simple problems, teams with di�erent numbers of
risk-taking agents are able to find the global maximum, however, increasing the number of risk-taking agents
increases the required time for a team to reach its final solution. Increasing the number of risk-taking agents in
a team, increases the time it takes for a team to reach their final solution in the contexts of simple and complex
problems.
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Figure4: Replacingmorenumberof normal agentswithmore risk-takingor hardworkingones, increases teams’
final score. Havingmore of the hardworkingmembers in a teammakes the team faster while it takes longer for
teamswithmore risk-takingmembers to reach their final solution. The topplots displays the e�ect of increasing
the numbers of hardworking (H = 5) agents (A) and risk-taking (R = 5) agents (B) in teams on a team’s score.
The bottomplots demonstrate the e�ect of increasing the numbers of hardworking (H = 5) agents (C) and risk-
taking (R = 5) agents (D) in teams on the time it takes for them to reach their final solution. Each simulation
run is indicated as a point in a pale color. The bold points connected to a line indicate the average value of a
hundred simulations.

Risk-taking agents vs. hardworking agents

3.6 In the context of a complex problem, both havingmore risk-taking and hardworking agents in a teamhas a pos-
itive e�ect on the team’s score. However, the e�ect of havingmore risk-taking agents ismore substantial. Hard-
workingagents aremore likely tobecome trapped in the localmaximumbecause they simply explore their local
environment. In comparison to risk-taking teams, hardworking teams usually reach a relatively lower score. As
a result, they take less time to reach their final solution. In general, in the context of a complex problem, tak-
ing risks has a positive e�ect on team score. Hardworking agents have a slightly positive e�ect on team score
and decreased the required time for a team to reach the final solution. In the context of simple problems, all
teamsare able to reach the globalmaximum. However, havingmorehardworking agents in a teamhelps a team
reach the final solution faster, and having more risk-taking agents in a team makes the team reach the global
maximum in a greater amount of time.

Hybrid agents

3.7 The teams of hybrid agents express better performance in comparison to teams of normal, hardworking, and
risk-taking agents. Score improvement can be attributed to the contribution of both hardworking and risk-
taking characteristics in hybrid agents behavior. Requiring less time can be attributed to the hardworking part
of hybrid agents; a hybrid team becomes faster when the H level of the hybrid agents is increased.

3.8 Almost all of the teams are able to reach the globalmaximumwhen they face simple problems. The only teams
that are not able to reach the global maximum are risk-taking teams with higher levels of R (R = 10). This is
because they takeunnecessary large jumps,whichdoesnothelp them find theglobalmaximum ina reasonable
amount of time. As teams become more hardworking, they reach the global maximum of simple problems
faster. Increasing the level ofR thus has a negative e�ect on required time for teams to converge to a solution
(Figure 5).
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Figure 5: The team of hybrid agents demonstrate the superior result that teams of hardworking or risk-taking
agents. The top figures compare the score of teams with di�erent levels ofH and R when they face complex
(A) and simple (B) problems and bottom plots compare the time of teams when they face complex (C) and sim-
ple problems (D). Each dot represents a simulation and the black triangles represent the mean result of the
simulations.

Team characteristics

Team size

3.9 Increasing team size improves the team score (Figure 6A & B). This is because the higher the number of agents
in a team, the more of the landscape they are able to explore. As a result, larger teams are able to find peaks
with higher scores.

3.10 Increasing team size increases the time it takes for the normal and the hardworking teams to find their optimal
solution, but it decreases the time for risk-taking teams (Figure 6C). One reason for this result is that it takes a
larger team longer to converge to a lower number of solutions. Converging plays a crucial role in a team’s de-
termination of a final solution for teams that don’t take risks such as normal and the hardworking teams. Team
members in such teams explore their immediate adjacent locations in the landscape. When they converge to a
limited number of locations due to social learning, their final location is the most elevated peak among those
limited locations and their instant adjacent locations. Enlarging a team, increases the number of solutions that
arepossible tobeexploredby teams that don’t take risks. The teams’ score gradually improveswhen risk averse
teams explore the landscape. Therefore, it takes longer for them to reach their final output. However, for a risk-
taking team, the convergence does not limit the individual learning to local areas. Therefore, converging does
not play an important role in risk-taking teams’ identification of their final solution. Also, risk-taking teams can
potentially explore the entire landscape regardless of the current solution of its agent. They take large steps
and their score improvement pattern is not necessarily gradually. Enlarging a risk-taking team increases the
probability of reaching a better solution faster.
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Figure 6: Increasing teamsize, increases the teamscore. While it takes for larger teamsof normal andhardwork-
ing agents to reach their output, enlarging a team makes risk-taking teams faster. The orange line represents
teams of risk-taking agents (levelR = 5), the blue line represents teams of hardworking agents (levelH = 5)
and the pink line represents teams of normal agents (levelH = 1,R = 1). The top figures compare the score
of teams of di�erent sizes(from 10 agents to 100 agents) when they face complex (A) and simple (B) problems.
The bottom plots compare the time it takes for a team to reach its final output for teams of di�erent size when
they face complex(c) and simple problems (D). Each simulation run is indicated as a pale color point while the
bold points that are connected to the line indicate the average result of a hundred simulations.

3.11 The time it takes for teams with di�erent sizes to reach their final solution is related to how widely they can
explore the landscape in a given amount of time. Although in comparison to smaller teams, larger teams reach
higher scores, for any given score that both smaller and larger teamsare capable of reaching, larger teams reach
that score earlier than smaller teams (Figure 7). The amount of time that risk-taking teams need to reach their
final solution is substantially greater than that of teams that don’t take risks, partly because the former are less
likely to get stuck on local maxima and continue to explore the landscape. More importantly, risk-taking teams
usually reach a substantially higher score in the long run. This indicates that if a high score needs to be achieved
in a short amount of time, a hardworking team is ideal. However, if it is possible to lower the priority of required
time, a risk-taking team has an advantage.
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Figure 7: This plot compares the performance of small (10 agents) with large (100 agents) teams of normal,
hardworking (H = 5) and risk-taking (R = 5) agents. This score-time map expresses the score that each team
reached by a time step when teams face complex problems. Each point is the average score of 100 simulations
on each time step.

Team diversity

3.12 Increasing team size has a positive e�ect on team score (Figure 6). However, in this model, enlarging the team
leads to an increase in the team’s background diversity. This is because each agent we add to the team initiates
the simulation from a randomly-selected location in the landscape. To extract the e�ect of size from diversity,
we kept team size constant while varying the level of diversity, D. The results demonstrate that independent of
size, teams with greater diversity achieve higher scores (Figure 8A). This is because agents spread to the wider
portion of the landscape due to the higher initial diversity.

3.13 In the context of complex problems, although increasing the diversity improves teams’ scores, it does not have
a substantial e�ect on the required time to find the final solution for teams that don’t take risks. (Figure 8C). This
is because agents of those teams climb their closest peak. Increasing the diversity leads those teams to climb
more peaks in the landscape in a parallel way. Therefore, they have a higher chance to choose a higher peak to
climbwhile it almost takes the same amount of time for them to climb the peak. Risk taking agents explore the
landscape by taking large steps. More initial diversity increases the probability of havingmore steps in di�erent
directions. That helps the team to find its final solution in less time.

3.14 In the context of simple problems, all teams were able to reach the global maximum (Figure 8B), however the
more diverse teams were able to find the global maximum faster (Figure 8D). There is only one peak in the
landscape and a more diverse team has a higher probability of having agents in more elevated locations. That
means they need less change to reach the global maximum. This is why higher diversity makes teams faster at
converging to a globally optimal solution when they face simple problems.
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Figure8: Thee�ectsofdiversity. In the context of complexproblems, increasing thediversity improves the score
and slightly decreases the time it takes for teams (specially for risk taking teams) to reach their final solution.
For simple problems, more diversity likewisemakes teams faster. All teams contain 100 agents. Le� plots show
the score (A) and time (C) that it takes for teams of normal, hardworking (H = 5) and risk-taking (R = 5) to
reach their outcome when they face complex problems. Right plots show the score (B) and time (D) for teams
when they face simple problems.

3.15 In order to compare the performance of diverse teamswith non-diverse teams regarding search behavior diver-
sity, we studied the performance of a team consisting only of risk-taking agents (R = 5), a team that consisted
only of hardworking agents (H = 5), and teams that contained di�erent ratios of both hardworking (H = 5)
and risk-taking agents (R = 5). We indicated already that, when facing a complex problem, having more risk-
taking agents in a team increases the final score (see Figure 4B). The simulated result of diverse teams that
contained both hardworking and risk-taking agents shows that a diverse team can reach a score which is even
higher than that of the score of a team that contains only risk-taking agents (see Figure 9A). This is because, in
a corporation, risk-taking agents find elevated locations, and hardworking agents can find the adjacent peak of
said elevated location.

3.16 The diverse team can reach a higher score without increasing the time it takes to reach the final solution (see
Figure 9B). Having a fewhardworking teammembers (10 hardworking in a teamof 100 in this instance) in a team
with a majority of risk-taking agents can substantially decrease the required time for finding the final solution
(see Figure 9B both for complex and simple problems).
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Figure 9: The e�ects of search behavior diversity. A) In the context of complex problems, a diverse team can
reach to a score that neither the risk-taking (R = 5) nor hardworking (H = 5) teams are able to reach. B) Only
having 10 hardworking (H = 5) agents in a team of 90 risk-taking agents (R = 5) can substantially decrease
the required time for finding the final solution. The pale color points represent the result of each simulation run
while the points that are connected to a line shows the average result of a hundred simulations. The zoom-in
plots are available in the appendix (Figure 14).

Discussion

4.1 This study has explored how several characteristics of teams a�ect their performance in collective problem-
solving tasks. Team performance depends heavily on the problem complexity being dealt with. When facing
simpleproblems, all teamsusually reach thehighest possible score. However, the factor thatmost substantially
shapes teams’ superiority is the amount of time it takes them to reach their final output. For complex problems,
however, both the quality of the final output and the time it takes for a team to reach that output matters.
Boosting ahardworking culture or replacing teammemberswithmorehardworkingones canhelp a team reach
an output by spending less time searching, regardless of the problem complexity. It also slightly improves the
quality of the final result.

4.2 Boosting risk-taking culture in a team or replacing teammembers with those who aremore willing to take risks
is not recommended when a team has time limitations and is in a hurry. However, if a team is facing complex
problems and is able to reduce time limitations, a moderate level of risk-taking can substantially improve the
final output quality. Although both working hard and taking risks lead to improved final scores in the context
of complex problems, the e�ect of taking risks was substantially larger than the e�ect of working hard. This is
because risk-taking agents are better at escaping from local maxima. Teams of hybrid agents who express both
hardworking and risk-taking behaviors can provide a high-quality output faster. They provide a better output
because of their risk-taking behavior, and they reach their final output faster because of the hardworking traits
of its members.

4.3 We also addressed two collective characteristics of teams: team size and diversity. Increasing the size of a team
improves the output quality, although it might have a di�erent e�ect on the time it takes for a team to reach
the final solution, according to the dominant type or culture of a team. For a risk-taking team, a larger team
require less time to find the final solution, while hardworking or normal teams require more time to reach the
final output. We also compared teams with di�erent levels of background diversity, and found that greater
background diversity improved the output quality and decreased the time it takes for teams to find their final
solution. It is important to recognize that we have assumed that the communication dynamic is exactly the
same in both adiverse andnon-diverse team, andassumption thatmaynot always hold (Taras&Rowney 2007).

4.4 Having the search behavior diversity in a team with a proper ratio of hardworking and risk-taking team mem-
bers, a team can reach to a score which have never been accessible by teams that only contain risk-taking or
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hardworking agents. In the future works the optimum ratio of hardworking and risk-taking agents in teamwith
search behavior diversity should be studied. The optimum ratiomight be related to the complexity of the prob-
lem that a team face. It alsomight be related to the connection degree of the agents ‘communication network.

4.5 For situations in which a team of collective problem solvers faces complex problems, it could be advantageous
to either encourage amoderate level of risk-taking culture or replace teammemberswith thosewhowould take
more risks. This processwould substantially improve theoutcomequality; however, itwould take longer for the
team to reach the outcome. To speed up team progress, enlarging the team and recruiting teammembers with
di�erent anddiverse backgrounds in addition to amplifying thehardworking culture (or recruiting hardworking
members) would be solutions that have an impact on the problem-solving process.

4.6 When a team of collective problem solvers faces simple problems, taking risks may be disadvantageous, as
risks both reduce the overall solution quality while increasing the time that required for the team to reach the
final solution. If a team is capable of reaching the desired outcome, enlarging the teamwould not decrease the
required time; however, amplifying the hardworking culture, replacing teammembers withmore hardworking
ones, and increasing the background diversity are among the factors that could help the team to reach the
outcomemore rapidly.

4.7 Our results suggest several general points that individuals assembling or managing problem-solving teams
might take into account. First, consider the case where managers are confident that a problem is su�iciently
simple that a teamwill eventually hit upon thebest solutiongivenenough time. In this case, their goal shouldbe
to minimize this search time. Our results indicate that a relatively small team of hard workers will outperform
a larger team or a team dominated by risk-takers focused on outside-the-box solutions. In particular, teams
where individuals have diverse backgrounds are likely to be especially e�ective.

4.8 Second, consider the case where the problem-solving team faces a complex problem, and the team manager
is not confident that reaching the best possible solution is even possible. Here, themanagermust weigh speed
against solution quality. If the team is under time pressure and needs to find a good-enough solution in a very
short time, assembling a small teammembers of hard workers is once again recommended. If time is less of a
concern and the best possible solution is desired, incorporating risk-takers into the team is warranted. We find
that amoderate level of risk taking can substantially improve the final result, although it requiresmore time for
the team to reach a final solution. Enlarging a risk-taking team helps the team to reach the final solution in less
time.

4.9 It is important to note that when a team is dealing with a complex problem, both hardworking and risk-taking
strategies can improve the outcome quality of the team. However, the improvement that a risk-taking strategy
can provide is substantially higher than the improvement cause by working harder, at the cost of increased
time to a good-enough solution. Although taking risk is a time-consuming problem-solving strategy, it can
substantially improve the output quality of a team. Adding a few hardworking team members to a team of
risk-takingmembers can decrease the required time for solving the problem. Finally, increasing the diversity of
background knowledge always improves team performance in terms of both speed and quality of solution.

4.10 We have focused on the independent e�ect of each behavioral characteristic and have only minimally con-
sidered the interactions and associations between those characteristics. For example, we have assumed that
working hard has no association with other behaviors, such as getting tired or experiencing burnout. We have
also assumed that the communication dynamic in this model disregards agent type, while in real life a char-
acteristic of one team member might a�ect the way that they interact with other team members. The agents
used in this model do not have a memory, and there are no agents that are “more experienced.” This means
that working hard does not provide any benefits of experience. Future researchmight assess additional e�ects
of risk taking and the hardworking characteristics, as well as their distribution in more complex organizational
structures, such as hierarchies.

Acknowledgments

We thank Suzanne Sindi, Alexander Petersen, and Justin Yeakel for helpful discussion. Computational experi-
ments were performed using theMulti-Environment Computer for Exploration and Discovery (MERCED) cluster
at UC Merced, funded by National Science Foundation Grant ACI-1429783. Our model code extended NetLogo
code written by Joshua Becker, whomwe thank for making his code publicly available.

JASSS, 24(4) 10, 2021 http://jasss.soc.surrey.ac.uk/24/4/10.html Doi: 10.18564/jasss.4704



Appendix

Figure 10: The plot shows the time-score map for 100 runs of teams of 100 Risk-taking (R = 5), Hardworking
(H = 5) and normal agents. Simulations usually reach a plateau before 200 timesteps.

Table 1: The table indicates the correlation coe�icient between team size and team score, as well as the corre-
lation coe�icient between team size and the time it takes for a team to reach its final solution in di�erent types
of teams.

Team Type Size and Time
Correlation Coe�icient

Size and Score
Correlation Coe�icient

Normal 0.98 (p1.99 e-6) 0.91(p 0.0003)

H = 5 0.99 (p3.24 e-10) 0.98 (p3.29 e-07)

R = 6 -0.72 (p0.0183) 0.81 (p0.004)

Figure 11: The le� plot indicates the e�ect of team size on team’s final score and the le� plot shows the e�ect of
team size on the time it takes for teams to reach their final solution when they face simple problems.

The e�ect of di�erent levels of hard work on team performance:
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Figure 12: The plot on the top le� presents the final scores of teams with di�erent hardworking levels. The plot
on the bottom le� demonstrates the time it takes for teams with di�erent hardworking levels to reach their
final solution. The blue line (with triangle as points) represents the time teams facing simple problems, and the
orange lines (the lines with circles as points) represents teams facing complex problems. The plots on the right
are close-up visuals of the orange line depicted in the le� plot. The top right plot presents the scores (average
of 100 runs) of teams with di�erent levels of hard work when facing complex problems. The bottom right plot
presents the time it takes for teams with di�erent levels of hard work to reach their final solution when facing
complex problems.

Comparing orderedmodel of social and individual learning with the reversedmodel:

In align with other similar models, in our model, agents first try social learning and if they could not any better
solution, they try individual learning. This order (first social learning and then individual learning) is selected
because in the real world the individual learning is costly, and it is easier to ask for a better solution from some-
one who already has it.

In the following plot we compared the outcome of reverse order (first individual learning and then social learn-
ing)with ourmodel order of individual and social learning (first try social learning and then try individual learn-
ing). Although the outcome of both orders are not substantially di�erent, the outcome of reverse order is supe-
rior in someof thecases. This isbecause in reverseorderall agentsexplore the landscape ineach run. Therefore,
moreof the landscapewill be exploredand finding abetter solution ismore likely. However, since this approach
is highly costly and non-e�icient in the real-world, we have not used it in our mode.
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Figure 13: The plot on the top le� compares the final scores of di�erent teams with ordered and reversed order
of individual and social learning. The plot on the right demonstrates the time it takes for di�erent teams with
ordered and reversed order of individual and social learning to reach their final solution.

Table 2: The Table indicates the score of di�erent teams (Normal,H5,R5) with di�erent size (10, 20, . . . , 100).

Score/Team
Size

Normal
(K10)

H5
(K10)

R5
(K10)

Normal
(K0)

H5
(K0)

R5
(K0)

10 0.26 0.29 0.42 0.93 0.93 0.93

20 0.26 0.30 0.48 0.96 0.95 0.96

30 0.26 0.34 0.53 0.97 0.96 0.97

40 0.32 0.34 0.58 0.98 0.97 0.98

50 0.38 0.40 0.58 0.98 0.97 0.98

60 0.35 0.39 0.59 0.98 0.98 0.98

70 0.37 0.41 0.61 0.99 0.98 0.99

80 0.36 0.44 0.62 0.99 0.98 0.99

90 0.39 0.46 0.62 0.99 0.98 0.99

100 0.40 0.49 0.63 0.99 0.99 0.99
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Table 3: The Table indicates the required time of di�erent teams (Normal,H5, R5) with di�erent size (10, 20,
. . . , 100).

Score/Team
Size

Normal
(K10)

H5
(K10)

R5
(K10)

Normal
(K0)

H5
(K0)

R5
(K0)

10 8 3 103 11 5 68

20 6 4 102 10 5 39

30 7 5 91 10 5 37

40 8 6 84 10 5 31

50 9 8 88 10 5 27

60 10 9 80 10 5 26

70 11 10 79 10 5 27

80 12 12 74 11 5 26

90 14 13 74 11 5 24

100 15 14 70 11 5 25

Figure 14: Theplots are the zoom-in versionof Figure9. Theplot on the le� compares the final scores of di�erent
teamswith di�erent ratio of hardworking and risk-taking agents in a team. The plot on the right shows the time
required for those teams to find their final solution.
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