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Abstract: Changes in agricultural systems are a multi-causal process involving climate change, globalization
and technological change. These complex interactions regulate the landscape transformation process by im-
posing landuseandcover change (LUCC)dynamics. Inorder tobetterunderstandand forecast theLUCCprocess
we developed a spatially explicit agent-based model in the form of a Cellular Automata: the AgroDEVS model.
The model was designed to project viable LUCC dynamics along with their associated economic and environ-
mental changes. AgroDEVS is structured with behavioral rules and functions representing a) crop yields, b)
weather conditions, c) economic profits, d) farmer preferences, e) adoption of technology levels and f) natural
resource consumption based on embodied energy accounting. Using data from a typical location of the Pampa
region (Argentina) for the period 1988-2015, simulation exercises showed that economic goals were achieved,
on average, each 6 out of 10 years, but environmental thresholds were only achieved in 1.9 out of 10 years. In a
set of 50-years simulations, LUCC patterns converge quickly towards the most profitable crop sequences, with
no noticeable trade-o� between economic and environmental conditions.

Keywords: Land Use Change, Agent-Based Models, Cropping Systems, Emergy, Cell-DEVS

Introduction

1.1 In agroecosystems, land-use and cover change (LUCC) is driven by simultaneous responses to economic op-
portunities, institutional factors and environmental constraints (Lambin et al. 2001). Di�erent methodological
approaches are used for assessing LUCC by capturing the dynamic process influenced by complex interactions
between socio-economic drivers and biophysical conditions. For example, the spatially explicit LUCC models
assess location suitability for di�erent land uses and allocate changes to grid cells based on suitability maps
(Verburg et al. 2004a). Another modelling approach has been developed for capturing the behavior of the real
actors of land-use change: individuals and/or institutions (“agents”) become the objects of analysis, modelling
and simulation, paying explicit attention to interactions between these agents of change (Castella & Verburg
2007). In thismodelling approach, farmers’ responses to environmental, economic and sociological constraints
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for deciding on LUCC are crucial for assessing the agricultural system sustainability. Suchmodels are known as
agent-basedmodels (ABM). 1

1.2 The ABM approach provides a flexible paradigm for studying emergent patterns in complex systems (Cook
2009). Particularly, in agricultural systems the ABMs are capable of capturing the individual agent behavior
in response to several constraints scenarios (e.g., climate, socio-economical). In addition, it is possible to de-
velop ABMs into spatially explicit frameworks for exploring the LUCC process over time. Examples may include
spatial interactionmodels, cellular automata (CA) anddynamic systemmodels (Evans&Kelley 2004). However,
when ABM are used to cope with complex systems the development of models o�en tends to get forced to the
ABMparadigmevenwhen certain dynamics are not necessarilywell expressed in the ABM realm. In this context,
the Discrete Event Systems Specification (DEVS) modelling and simulation framework (Zeigler et al. 2000) of-
fers a universal paradigm for modelling hybrid models (continuous, discrete time, discrete event) that are able
to scale up through the interconnection of models of very di�erent nature, including the ABM approach. In the
case of environmental systems there exists a considerable modelling experience based on the DEVS formalism
(Filippi et al. 2010). Notably, when ABM needs to be combined with spatially explicit dynamics, the Cell-DEVS
formalism provides means to attain this goal within the DEVS framework (see Wainer 2006 and Kazi & Wainer
2018 for experiencesonCell-DEVSapplied to environmental dynamics). DEVSenforces the formal specifications
and strict separation betweenmodel specification, abstract simulator algorithm, and experimental framework.
This greatly facilitates modelling and simulation so�ware development e�orts, as modelling, simulation and
experimentation techniques can progress in parallel but along independent paths, preserving their compos-
ability into integrative solutions. For instance, Zapatero et al. (2011) developed a DEVS-based so�ware solution
where GIS technology, Cell-DEVS models, DEVS distributed simulation and Google Earth visualization were or-
chestrated to build a fire spread simulation application relying on pre-existing components. More background
on applying DEVS to express ABMs in the simulation of artificial societies can be found in Lee et al. (2015); Yun
& Moon (2020); Yun et al. (2015).

1.3 Although the ABM approach is widely used to explain land use change and future policies impacts, the de-
velopment of LUCC simulation models coupled with environment impact assessment is still incipient in agri-
cultural systems (Kremmydas et al. 2018). The first generation of ABM was related to agricultural economics
(Balmann 1997), followed by several studies to simulate the performance of individual farms and their spatial
interactions (Berger 2001; Happe et al. 2008; Schreinemachers et al. 2007). It has been recently recognized that
the incorporation of material and energy flows during land-use conversion are increasingly needed to explore
socio-economic dynamics and land-use change (Lee et al. 2008). Some ABMs also include other aspects such
as policy implications (Happe et al. 2006), environmental processes (Schreinemachers & Berger 2011), or orga-
nizational andmarket dynamics (Bonabeau 2002).

1.4 In this work we study the Pampa region in Argentina, which in the last decades went through an agricultural in-
tensification process that led to an expansion of the area sownwith soybean, replacing pastures and perennial
crops (Pengue 2009; Paruelo et al. 2005). Although this landscape homogenizationwas accompanied by an im-
mediate economic benefit, it also exacerbated social, environmental and economic impacts of the agricultural
systems. In the Pampa region, where climate, technological innovations, and socio-economic contexts a�ect
agricultural production, the ABMapproach for LUCCmodelling has not been frequently addressed (Groeneveld
et al. 2017). An exception is the model of Bert et al. (2011) (the PAMPASmodel) designed to gain understanding
about both structural and land use changes in the Pampas. Although we use a modelling approach similar to
the PAMPASmodel in terms of agent behavior, PAMPAS does not include anymodelling e�ort to assess the sta-
tus level of natural resources a�ected by the LUCC simulated process (in the work of García et al. 2019 it was
used to capture linkages at the climate/water/crop nexus in the Argentine Pampas).

1.5 In thiswork, wedeveloped anABMmodel called AgroDEVS, implementedwith theCell-DEVS cellular automata-
oriented formalism that relies on the Discrete Event Systems Specification (DEVS) modelling and simulation
framework. The goal of AgroDEVS is to integrate into a single model the main driving forces (i.e., climate, agro-
nomic management, and farmer decisions) for explaining LUCC as well as the environmental and economic
consequences of these changes. This integration is developed into a decision-making tool that canbe extended
and improved to specific policy contexts. AgroDEVS aims to simulate LUCC aswell as economic profit and fossil
energy use (as a proxy of the environmental condition), both at the individual (agent) and collective (landscape)
scales.

Materials and Methods
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Region under study and cropping system description

2.1 AgroDEVS was applied to simulate LUCC dynamics in Pergamino, a typical location in the Rolling Pampas (Fig-
ure 1), the most productive subregion of the Pampas where most of the annual cropping is concentrated (Hall
et al. 1992). The Pampa is a fertile plain originally covered by grasslands, which during the 1900s and 2000swas
transformed into an agricultural land mosaic by grazing and farming activities (Soriano et al. 1991). The pre-
dominant soils are typical Arguidols and the annual rainfall averaged 950mm (Moscatelli et al. 1980). AgroDEVS
simulates LUCC using the most frequent crop types in the Pampa region (Manuel-Navarrete et al. 2009): (1) the
wheat/soybean double-cropping (W/S); (2) maize cropping (M ), and spring soybean cropping (S). In this pa-
per, the terms "crop"; “crop type” and "land use" (i.e. cropping systems) were used interchangeably as well as
“farmer” and “agent”. The agronomic decisions (i.e. genotype selection, fertilizer management, pest control,
sowing date, and soil type)were representative of themost frequent situation for each of the cropping systems.

Figure 1: Location of the study site (Pergamino, Buenos Aires) within the Pampa region. (1) Rolling Pampas, (2)
SubhumidCentral Pampas, (3) Semiarid Central Pampas, (4) SouthernPampas, (5)MesopotamianPampas, and
(6) Flooding Pampas. Thin isolines are isohyets (mmper year); thick isolines aremean annual temperature (°C).
Adapted from Viglizzo et al. (2004).

Cellular Automata-basedmodelling and simulation approach

2.2 For themodelling activitywe followeda scenario-basedanalysis, exploring agriculturalmosaic dynamics. Then
we adopted an agent–based modelling (ABM) approach, by identifying both landscape and agent-specific de-
scriptors as parameters (fixed) or attributes (variable). We defined parameters as any fixed condition for de-
scribing the behavior or the condition of a model element. On the other hand, the attributes represent the
system changes during themodel run period. Lastly, we adopted a formal model-based simulation framework
to specify mathematically both the parameters and attributes due to di�erent behaviors. For this purpose, we
encoded AgroDEVS using the Cell-DEVS formalism. Cell-DEVS is an extension for Cellular Automata of themore
generic Discrete EVent System Specification (DEVS) formal modelling and simulation framework. On the one
hand, the DEVS formalism permits to express and combine any kind of dynamical system (continuous, discrete
event, discrete time) in a mathematical form that is independent of any programming language. On the other
hand, Cell-DEVS provides the modeler with a meta-language tailored to facilitate the expressing of systems
where the spatial arrangement of “cells”, and their behavior, plays a key role. By adopting the DEVS-based ap-
proach, AgroDEVS becomes readily linkablewith other DEVSmodels developed by others for di�erent domains
(e.g. climate, biology, sociology, and economics), potentially using heterogeneous techniques (e.g. di�erential
equations, equilibrium models, optimization models, stochastic processes). In Figure 2 we summarize these
concepts. Atomic DEVS are the smallest units of behavior. They can be interconnectedmodularly through input
and output ports to compose hierarchies of more complex systems called Coupled DEVS (Figure 2b). Cell-DEVS
features an automatic composition of Atomic DEVS models in the form of anN -dimensional lattice. Each cell
gets interconnected only to other cells belonging to a neighborhood shape defined by themodeler (Figure 2a).
Cell-DEVS features a rule-based compact language to model the behavior of each cell in relation to its neigh-
borhood, influencing each other.
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Figure 2: Modular and hierarchical composition of systems with DEVS and Cell-DEVS. a) Cellular Automata ori-
ented Cell-DEVSwith a Von Neumann neighborhood (cross-like greyed cells). b) Composition of DEVS and Cell-
DEVSmodels.

2.3 Behavioral rules are used in the Cell-DEVS language to define the change of attributes that are local to each
cell. These variables can express properties for that unit of space (e.g., in the 2-dimensional case it can be an
agricultural plot). When the modeler uses such variables to express also the attributes of “agents” located at
cells, then the ABM approach can be merged into the system. In the case of AgroDEVS each agent (namely, a
farmer) remains fixed tohis or her plot, and rules are used to express changesboth for thephysical environment
and the for farmer, which eventually a�ect each other. In this work, we adopted the CD++ simulation so�ware
toolkit,which is capableof interpretingCell-DEVSandDEVSmodels andof simulating them. CD++ implementsa
genericDEVS“abstract simulator”, consistingof a standardizedalgorithmic recipe that specifieshowtosimulate
any DEVSmodel independently of any programming language of choice. We believe this generic, reusable and
extensible DEVS-based approach provides AgroDEVSwith very desirable scalability and sustainability features.
The full model represents the collective (i.e., landscape-level) function that emerges from the aggregation of
all farmers’ outcomes. It also depends on exogenous variables (e.g., climate, crop (output) prices, and produc-
tion costs) as well as endogenous variables (e.g., the farmer’s technological level, the outcomes of neighboring
farmers, and each farmer’s performance history). The model proved particularly well suited to reproduce em-
pirical situations where (a) there are changes in the relative production/output prices between potential land
uses, (b) there is a specific climate regime that impacts on crop yields, or (c) there are varying aspiration levels
for the farmers (Gotts & Polhill 2009).

2.4 In Appendix E we provide more technical details about the model specification approach, its modelling lan-
guage, rule specification, simulation framework and experimentation environment.

Model verification, validation and sensitivity analysis

2.5 We submitted AgroDEVS to a systematic verification and validation process (Wilensky & Rand 2007). Firstly,
a code walk-through (Stern 2003) was performed to review the model formulation and to ensure that all de-
sign concepts and specifications are correctly reflected in the code. In addition, AgroDEVS was run with very
few farmers in the grid (9-16) and results were examined closely (e.g., following dynamics of specific farm-
ers, inspecting the outliers). The intrinsic complexities and uncertainties on both the magnitude and the na-
ture of the forces drivingland use change, lead to expanding the scope of the straightforward evaluation be-
tween simulated and observed patterns in the model validation phase (Bert et al. 2014; Le et al. 2012; Nguyen
& de Kok 2007). Our model development process seeks to validate the ABM through a process of continuous
adaptation using feedback from the stakeholders (Ligtenberg et al. 2010). Specifically, AgroDEVS development
entailed a continual discussion process with stakeholders (data not shown) from the study area in order to
review both the rules and the assumptions of the model that initially came from the literature review. This
approach directly engages stakeholders in model development by embedding it within the social process of
policy development (Moss 2008). This changes the validation problem into an advantage: the agreement of
participants or stakeholders may be an indicator of the validity of a simulation model (Troitzsch 2004). In
AgroDEVS, the evaluation of the simulation is guided by the expectations, anticipations, and experience of
the community that uses it for practical purposes (Ahrweiler & Gilbert 2005), and this supports the view that
the very meaning of validity is dependent on the purpose of the simulation models under examination (Küp-
pers & Lenhard 2005). Moreover, it is possible to develop a model that fits the data perfectly with a model
structure that does not capture any real processes (Cooley & Solano 2011). Due to the complex nature of ABMs
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(e.g., nonlinear responses to parameters) a broad single-parameter SA (Appendix A) was performed (Railsback
& Grimm 2015). This type of analysis assesses the e�ect of each parameter over a wide range of values, as
opposed to the traditional local analysis, in which each model input is varied by a standard small amount
(Ligmann-Zielinska et al. 2020; Railsback & Grimm 2015). The goodness-of-fit of each simulated LUCC was cal-
culated using 1) Normalized RMSE: v = RMSE/Observed mean %Total area; 2) Probability of a Match:
PM = #matches/(#matches+#mismatches); and 3) Index of Observed Fit: IOF = (2× PM)− 1.

2.6 PM are the chances that a simulation can correctly predict theorder of anypair of observations. Thenumberof
matches (#matches) is calculated by counting the set of ordered pairs of observations thatmatch the predicted
ordered pairs of a simulation (Thorngate & Edmonds 2013). IOF is an index that derives from the calculations
of the PM. Its values range from IOF = +1 (all observationsmatch predictions), through IOF = 0 (half of the
observations match), to IOF = −1 (none of the observations match predictions).

Results

Model description

3.1 Themodel description follows theODDprotocol “ODD” (Overview, Design concepts, andDetails) to standardize
the published descriptions of individual-based and agent-basedmodels (Grimmet al. 2010). We describe in the
following subsections 1) themodel’s purpose, 2) the systemvariables and 3) the process overview to emphasize
the main message of the model outputs. The remaining items of the ODD protocol (initialization conditions,
submodels description, input data, modelling approach, and design concepts) can be found in the Appendixes
B to F.

Model’s purpose

3.2 The main modelling purposes (see Edmonds 2017) of AgroDEVS are 1) Prediction, as there is a need to be able
to anticipate aspects of the agricultural system that are not currently known; and 2) Explanation, as the model
tries to identify the causal interactions between themain driving forces of LUCC phenomena (prediction alone
does not provide insights on the internal dynamics driving the evolution of system processes).

System variables

3.3 AgroDEVS maps farmers onto a regular grid in order to initialize the simulations. The model consists of two
entities: 1) the landscape and 2) the agents that operate on the landscape. Each entity has its own set of fixed
parameters and attributes that evolve throughout simulation cycles. The landscapeparameters are a) the num-
ber of agents and b) the owner/tenant agent ratio and the landscape attribute is the overall outcome from the
integration of all individual agent attributes results within the simulated landscape. The agent parameters are
a) the land rental price (RP ) for the tenants, and b) its location on the grid. The attributes for each agent are a)
the technological level (TL), b) the crop type allocation (or land use,LU ), c) the economic profit (P ), d) the re-
newability level (RL) of the embodied energy (emergy) consumption (see Appendix C Renewability level calcu-
lations section for an emergy concept explanation), e) the aspiration level (AL), f) the environmental threshold
(ET ), and g) the weather growing condition (WGC).

Process overview

3.4 AgroDEVS simulations advance with an annual time step, representing a single cropping cycle (CC) (Figure 3).
Crop yields under di�erentWGCwere previously simulated (Appendix B, Table 2) using theDSSATmodel (Jones
et al. 2003). We used local management data for defining resource level in each TL (e.g., fertilization regime,
genotype) as well as five contrasting historical weather records for defining the di�erentWGC levels.
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Figure 3: AgroDEVS Control flow and Data flow integrated diagram for each cropping cycle (CC) for a single
agent. The stagesand their actionsareencoded in the formofCell-DEVS rules. Ovals andhexagons showagents’
attributes andattributes calculatedduring eachCC, respectively. Squareboxesdenote calculationsperformed
at each stage (for more details of each step see Appendix C). Rectangles represent goal fulfillments, diamonds
are conditional rules, and parallelograms are an agent’s decisions. Solid and dotted lines denote Control flow
and Data flow, respectively. Red borders highlight when the agent performs a neighborhood analysis, and grey
background indicates that the calculated value shall be used in the next cropping cycle.

3.5 At the start of the AgroDEVS simulation process (Figure 3, Stage 1), each initial agent’s configuration (LUt) is ex-
posed to a climate-related growing condition levelWGC that ranges from very favorable to very unfavorable
for high crop yield achievement. Then, based on 1) the previously simulated crop yields, 2) the crop price, 3) the
production cost of each TL, 4) the land rental price and 5) the crop type allocation into the farm household,
AgroDEVS calculates the farmer’s Pt: the profit P for the current time t, or similarly, for the current cropping
cycleCC. At this first step, AgroDEVS also calculatesRLt (see Appendix C forRL calculation details) as amea-
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sure of the renewable energy consumption of the cropping cycle. At the next stage, the initial agent’s aspiration
level (ALt) is adjusted bymeans of the currentWGCt level resulting in a new climate-adjusted aspiration level
(CALt) (Figure 3, Stage 2). Then, AgroDEVS uses Pt andRLt values calculated in Stage 1 for assessing the ful-
fillment of both the environmental (ET ) and economic (AL) goals (Figure 3, Stage 3) of each agent. An agent
will keep its crop type allocation once the Pt value is greater than or equal to itsCALt at eachCC, while non-
fulfillment of environmental threshold (ET ) does not alter its crop type allocation decision. AgroDEVS assesses
whether the farmer can upgrade or downgrade its TL for the next CC, according to their economic perfor-
mance in the current CC (Figure 3, Stage 4). For this adjustment, AgroDEVS defines a set of di�erent working
capital thresholds (WCT ) in order to access di�erent TL values. TheWCT fulfillment is assessed using Pt.
If Pt is lower than the respectiveWCT , the farmer must lower its TL (and vice versa). Eventually, agents can
remain at the lowest TL, regardless of its Pt value (i.e., no agent is forced out of business). During this stage,
AgroDEVS also adjusts the farmer’s aspiration level (AL) for the nextCC. This setting is basedona) the farmer’s
perception of theWGC level of the next CC, and b) the agent’s failure or success at achieving the AL in the
previousCC, respectively. Values of 1) crop prices, 2) adjustment factor of the aspiration level due toWGC, 3)
adjustment factor of the aspiration level due to TL, and 4) working capital threshold for TL are shown in the
Appendix B, Tables 4 to 7, respectively).

Simulation results for Pergamino 1988-2015

LUCC patterns

3.6 The simulated LUCC patterns replicated the overall trend towards soybean-dominated landscapes observed
in the region since the mid-1990s. The ordinal pattern analyses (OPA) showed a similar, relatively high PM for
maize, wheat/soybean, and soybean, evidencing themodel’s capability to predict ordinal (higher/lower) values
of crop type cover. However, the accuracy in predicting the magnitude of these changes was lower (Figure 4).
Based on the RMSE method, the goodness-of-fit of the wheat/soybean simulated cover was the lowest among
the three-crop types, resulting in a significant overestimation of this cropping area. Themodel underestimated
simulatedsoybeancover. Inaddition, thev values (i.e., theRMSErelative to theobservedmean)was remarkably
higher for wheat/soybean than in both maize and soybean.
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Figure 4: Observed (O) and simulated (S) land use cover, expressed as % of Total Area, for the
Pergamino 1988-2014 simulation. The goodness-of-fit of each simulated LU change pattern are 1) v =
RMSE/Observed mean %Total area; 2) Probability of a Match: PM = #matches/(#matches +
#mismatches); and 3) Index of Observed Fit: IOF = (2× PM)− 1.

Profit, renewability, and technological levels

3.7 Profit (P ) and renewability level (RL) values for the Pergamino simulation correlated without any significant
trend throughout the study period (Figure 5). Remarkably, in only four years of the simulated period, the sim-
ulated landscape exhibited higherRL values than the ecological threshold (ET > 50%RL). Inter-agent vari-
ability in the simulated landscape depicted a range of decisions (in terms of crop type allocation) that resulted
in a great variability on average P values during the simulation (Figure 6, Panel A).
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Figure 5: Landscape profit (P ) and renewability level (RL) for the Pergamino 1988-2014 simulation. BothP and
RL have theoretical limits defined by the best or the worst conditions for economic return (Profit) or environ-
mental conditions (renewability of energy use). These limits are shown in solid and dotted lines for P andRL,
respectively.

3.8 The interquartileP range (25–75% percentile) varied between 94 and 556 US$/ha (Figure 6, Panel A). However,
theRL interquartile range was not as high as the observed in P (Figure 6, Panel A). The relative homogeneity
between each cropping production system, in terms of external inputs, generated a remarkably low variabil-
ity inRL terms during the whole simulated period. In this case, the interquartileRL range varied from 37.9%
to 43.5% with a median value of 41.2%, almost ten percentage points lower than the environmental threshold
(ET ) of 50% (Figure 6, Panel A). While in terms of RL, the variability between agents was significantly lower
than those observed for P , it was possible to detect both maximum and minimum RL values showing the
model capability to simulate a wide area of decisions during the simulated period. Minimum average value for
an agent outcome in terms ofRL was 29% and the maximum RL average value for an agent was 49.4% (Fig-
ure 6, Panel A), a condition of very close agreement with the environmental threshold (ET ). Agent behavior in
AgroDEVS was also assessed by inspecting the intra-agent variability, using both P andRL during the simula-
tion period (Figure 6, Panel B). The interannual coe�icient of variation ofP showed amedian value of 57%,with
an interquartile range between 49.8% and 264.5% (Figure 6, Panel B). TheRL interannual variation was signif-
icantly lower than P , exhibiting a median coe�icient of variation of 18.9% and an interquartile range between
16% and 22% (Figure 6, Panel B).
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Figure 6: Inter-agent and intra-agent variability of the Pergamino 1988-2014 simulation, and the Ecological
threshold (ET ) and economic aspiration level (AL) goal agreements. Panel A shows the average profit (P ) and
renewability level (RL) of the agents in the Pergamino 1988-2014 simulation. The horizontal solid line shows
the overall average ofP andRL (n = 625). The extremes of thewhiskers represent the 25% and 75%quartiles,
and the numbers show the minimum and maximum P and RL average values for all agents. Panel B shows
the coe�icient of variation of Profit (cv P ) and of Renewability Level (cvRL) for all 625 agents. The horizontal
solid line shows the overall average of cv P and cvRLV (n = 625), the extremes of the whiskers represent the
25% and 75% quartiles, and the numbers denote the minimum and maximum cv P and cv RL values. Panel
C shows the average percentage of agreement (% goal agreement) for all 625 agents of the Pergamino 1988-
2014 simulation. The horizontal solid line shows the overall average ofET andAL goal agreement (n = 625),
the extremes of the whiskers represent the 25% and 75% quartiles, and the numbers show the minimum and
maximumET andAL goal agreement values.

3.9 An assessment of the simulation results was carried for both the environmental (ET ) and economic (AL) goal
agreements exhibited by agents throughout the simulation period (Figure 6, Panel C). The goal agreementmet-
ric indicates the percentage of years during which an agent fulfills each of the goals (environmental and eco-
nomic). The agents exhibited an interquartile range of economic (AL) goal agreement between 32% and 64%
with a median of 60% andmaximum andminimum of 71.4% and 17.2%, respectively (Figure 6, Panel C). These
values are noticeably higher than theRL goal agreement that showed amedian of 17.9%with an interquartile
range between 7% and 25% (Figure 6, Panel C). The agent’s capability for adjusting theAL, based on both the
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current climate condition (WGC) and the AL fulfillment in the previous agricultural cycle, could explain the
better goal agreement when compared against RL, which is a fixed parameter. When inspecting the extreme
values forRL goal agreement, it was possible to identify a single agent exhibiting a maximum value of 46.4%.
This means that, under the same economic and climate conditions, this agent was able to fulfill nearly 1 out of
2 years theRL threshold (ET ) by means of its crop type allocation decisions.

3.10 Lastly, the model outcome was also assessed by inspecting the final distribution of the three di�erent techno-
logical levels (TL) across all 625 agents of the Pergamino simulation (Figure 7). The closely related observed
and simulated agent distribution underline themodel’s ability to represent the process of agricultural intensifi-
cation evidencedby a higher proportion of farmers using a technological levelwith higher levels of inputs. Both
observed and simulated TL distribution patterns exhibit a dominance of the high TL. However, the model re-
tains a greater percentage of agents at the lowest level (TL low) than in the observeddata. It is possible that the
model structure, which allows agents to remain using the lowest TL despite not reaching theminimumwealth
to face those costs, is an explaining factor for the overestimation of Low TL at the end of the simulation.

Figure7: Initial (i) 1988, final simulated (S) andobserved (O) frequencyvaluesof agent technological level (Agent
TL) among agents.

Long-term scenarios

LUCC patterns

3.11 Theobjectiveof the long-termsimulationswas toassess themagnitudeof thee�ectof the tenure condition (i.e.,
anowneror tenant-dominated landscape) andclimate (i.e., five contrasting climate regimes) onbothLUCC (Fig-
ure 8), andP andRLoutcomes (Figure 9). AgroDEVS simulations showed that the variability in climate regimes
altered thepatternof crop typedominanceat theendof the simulationcycles (Figure8). In termsof LUCC,under
constant climate regimes (Figure 8: L, A andHPanels) the simulated landscape is always stabilized at higher val-
ues of soybean (S) cover, followed by thewheat/soybean double-cropping (W/S) andmaize (M ). On the other
hand, under variable climate scenarios (Figure 8: V andRPanels) the long-term simulations showed the highest
crop type dominance represented byW/S instead of S, althoughM remained at the lowest cover throughout
the simulated period. Tenure e�ect on LUCC dynamics was clearer under constant average climate regime (Fig-
ure 8: Panel A; 10O/90R). Under this scenario, the landscape dominated by tenants exhibited a much stronger
S dominance, compared toW/S orM . Instead, under the same climate scenario but dominated by owners
(Figure 8: Panel A; 90O/90R), the model simulated a di�erent LUCC dynamic, showing an earlier stabilization
point for LUCC (ca. year 2) and very similar final cover values for the three analyzed crop types. Oppositely, the
model showed similar LUCC dynamics in owners or tenants-dominated landscapes, under a constant unfavor-
able (Figure 8: Panel L) and constant favorable (Figure 8, PanelH) climate regimes. In variable climate scenarios,
the regular see-saw climate change pattern (Figure 8, Panel V) showed less di�erences in LUCC pattern due to
land tenure regimes with respect to the random climate pattern (Figure 8, Panel R). The inclusion in the simu-
lation scenario of climate dynamics without a definite pattern (i.e., random) resulted in the increase of double
croppingW/S dominance, and this e�ect was much stronger for the condition of a landscape dominated by
owners, achieving in this condition the highest crop type dominance among the 10 long-term scenarios (Figure
8: Panel R; 90O/10R).
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Figure 8: Simulated land use cover, expressed as % of Total Area, for the long-term simulations. The land uses
are soybean (full line); double cropping wheat/soybean (dotted line) andmaize (dashed line). The Panels show
the ten scenarios composed by land tenure regime (10O/90T: 10% of owner agents and 90% of tenant agents;
and 90O/10T: 90% of owner agents and 10% of tenant agents) and climate regime (L: constant unfavorable; A:
constant average; H: constant favorable, V: a see–saw pattern of very unfavorable-average-very favorable; and
R: a random regime.

Profit and Renewability level

3.12 The variability between long-term scenarios was lower for both P andRL than for the simulated LUCC (Figure
9). Regarding the variability inducedby the climate regime, the simulated landscapeswere stabilizedat increas-
ing P -values, as climate scenarios were better (Figure 9: Panels L, A, and H). This e�ect of profit improvement
occurred in both tenant- and owner-dominated landscapes. In this latter case, the stabilizedP valueswere due
to the di�erential income associated with non-payment of land rental.
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Figure 9: Simulated profit P (US$/ha) and renewability levelRL (%) for the long-term simulations. The Panels
show the ten scenarios composed by land tenure regime (10O/90T: 10% of owner agents and 90% of tenant
agents; and 90O/10T: 90% of owner agents and 10% of tenant agents) and climate regime (L: constant unfavor-
able; A: constant average; H: constant favorable, V: a see–saw pattern of very unfavorable-average-very favor-
able; and R: a random regime).

3.13 Although the simulated landscape configurations were clearly di�erent (Figure 9), the RL variability among
long-term scenarios under constant climate regimes (when stabilized) showed very small changes (less than
10%) between the maximum and minimum RL final values (Figure 9, Panels L, A, V). When analyzing the sce-
narios under variable climate regimes (Figure 9, Panels V; R) a regular pattern of both RL and P variations
was observed when climate evolved in a regular way (Figure 9, Panel V). Moreover, the random climate regime
(Figure 9, Panel R) showed the highest interannual variability for both RL and P . Unlike what is observed in
simulations under constant climate, in the case of variable climate scenarios, the model showed its sensitivity
to weather growing conditions (WGC) in bothRL andP , even a�er the LUCC stabilization. A clear evidence of
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this sensitivity is thehighly variableRLandP simulatedpatternsunder the randomclimate scenarios (Figure9,
Panel R) evenwhen the simulated landscapewas stabilized in a configurationdominatedby thewheat/soybean
double-cropping (Figure 9, Panel R).

Discussion

4.1 Determiningpatternsof landuse change is undoubtedly amultifaceted challenge. When relyingon simulations,
several factors come into play such as climate influence on crop yield, the farmers’ decisions, economic prices
and costs, and the cognitive description of farmer behaviors (Hare & Deadman 2004). Thus, the construction
of a LUCC simulation model entails necessarily the coupling of social and environmental models (Müller et al.
2013). In this paper, we developed an ABM expressing several of these characteristics. AgroDEVS simulations
wereable to reproduceobservableLUCC trendsof themost representative cropping systems in the regionunder
study. An ABM validation process has the peculiarity of being subjected to conflicts between achieving accu-
racy in matching the outcome of a simulation or in the processes simulated (Brown et al. 2001). This trade-o�
is usually solved based on the research goals. In the case of LUCC simulation models, both aspects are impor-
tant. Predicting the LUCC trends is extremely important in decision making by policy makers (Verburg et al.
2004b). However, this information should be supplemented through an understanding of the underlying LUCC
processes involved. This is required to identify potentially unsustainable land use regimes and correct them.
AgroDEVS’ results show that its structure is able to detect the overall trend on land use changes. This is done
through clear and explicit modelling that reflects key process dynamics such as the climate influence on crop
yields, farmer decisions and the landscape emergent properties due to farmer interactions at smaller scales.

4.2 The contribution of the model developed in this work can be assessed by analyzing carefully the LUCC simula-
tion results for Pergamino 1988-2015, while considering the trade-o�s between output accuracy and processes
understanding. Although the model was able to simulate the land use change dynamics of the three crops an-
alyzed (i.e., the ordinal fit is always higher than 0.7), the adjustment based on the distance between observed
and predicted (i.e., the v value) could be improved by the inclusion of other variables or exploratory processes
(e.g., agricultural policy decisions not considered; the dynamics of prices and costs, etc.). However, the current
model structuremaintains the relative profit between activities which is highly sensitive to environmental con-
ditions (WGC). Thus, the distance between the observed and predicted LUCC can be used as a predictor of the
di�erence between what could have been a LUCC trend (based solely on the response to the environment in
order to maximize profit, i.e., LUCC simulated) and another path that did not strictly follow the parameters of
maximizing profit (i.e., LUCC observed). Notably, the region studied has been frequently subjected to decisions
in agricultural policy (e.g., di�icultmarketing of some crops, imposition of export taxes) that strongly influence
the changes in land use throughmechanisms not directly related to profit activity (Porto & Lodola 2013).

4.3 From the formalmodelling and simulation point of view, the DEVS approach (and its related Cell-DEVS spatially
specific flavor) o�ered several salient features, already discussed in the model description section. Notably, in
the context of socio-environmental systems, there is a feature that stands out. Namely, the input-output port-
based hierarchical modularity permits the design of interdisciplinary models by composing complex systems
through the interconnections of simpler ones. For instance, in AgroDEVS, the DEVS Atomic Model representing
climatedynamics canbe replacedbyanother,moreaccurateor sophisticatedDEVSmodeldevelopedbyexperts
in theclimatedomain,without requiring toalter the landscape (Cell-DEVS)portionof the system. This approach
is consistent with a current trend towards Systems of Systems-orientedmodelling and simulation (Zeigler et al.
2012). This is especially relevant for socio-natural-economic systems, whose domain-specific submodels are
constantly subject to revisions, improvements or replacements. Regarding the use of Cell-DEVS to spatially
represent farms, abstract cellular landscapeshavealreadybeenused inother ABM-LUCCmodels (e.g. FEARLUS,
AgroPoliS, PampasModel; Polhill et al. 2010; Happe et al. 2004; Bert et al. 2011). Results fromAgroDEVS indicate
that this approach has proven to be an e�ective and simple way of spatially modeling agricultural systems.

4.4 Incorporatingenvironmental assessment inLUCCsimulationmodels is a verydesirable feature that isbeginning
to be explored (Veldkamp&Verburg 2004). The analysis of environmental impacts onmanaged ecosystemshas
o�en been applied based reductionist approaches, identifying changes very accurately, but reducing the rele-
vance of the results by not addressing an integrated or holistic approach for ecosystems modelling (Shanmu-
ganathan et al. 2006). The AgroDEVS structure acknowledges the need for a systemicmodelling by including an
emergy (embodied energy) renewability level as a proxy for assessing ecosystem functioning of the cropping
systems studied, an approach that has been tested before with agricultural systems both in the studied region
and inother agricultural ecosystems (Agostinhoet al. 2010;Dewulf et al. 2005; Ferraro&Benzi 2013). Concerning
the use of environmental work, the simulated ecosystems did not show a clear dynamic of increase or decrease
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in its reliance on energy from the economic system. Moreover, the results from the simulations, both in the
Pergamino 1988-2015 and the long-term runs, also failed to show a clear trade-o� between the environmental
performance (assessed through renewability level) and economic performance (assessed through economic
profit) in the studied systems. The simulated dynamics showed that the systems reduced their dependency on
exogenous emergy (i.e., fossil energy) to the extent that environmental conditions improved, and thus natural
resources becomemore important. Clearly, this happens because at increasing levels of technology, increased
use of external emergy is roughly proportional to the increase in capturing endogenous emergy associatedwith
growth conditions (WGC) that improve crop yields. The high emergy return seems a characteristic of the farm-
ing systems of the Pampas region at the field scale (Ferraro & Benzi 2015, 2013); but the AgroDEVS simulations
showed that this pattern is maintained at the landscape scale due to the emergent properties that arise from
the integration of individual farmers behavior.

4.5 In the context of changes in agricultural policy in the area under study, the results of AgroDEVS seem to indicate
the need for policy options that alter the relative prices of crops, to avoid the predominance ofmonocultures or
systemshighlydependenton the soybeancrop. In this context, theAgroDEVScapability for identifyingpotential
trade-o�s between di�erent agroecosystemdomains (i.e., economic, environmental) is extremely important in
the diagnosis of agricultural sustainability (Tittonell 2014). Policy options, which have direct e�ects on model
variables such as prices, can be readily tested into AgroDEVS for their repercussions on farm incomes and LUCC
emergent patterns. Moreover, there is always the chance to include other variables in themodelling exercise. In
the interest of better representing the heterogeneity amongst di�erent farmer’s decision logics in AgroDEVS, fu-
ture e�orts could be aimed at exploring the farmers’ decision-making process. This exercise could expose new
relevant variables that improve the representation of agents’ behavior. However, this inclusion would require
a new setting and amore complex numerical validation. The cost-benefit balance of these additions should be
analyzed carefully to avoid incurring in an overfitting, conspiring against the understanding of the true under-
lying phenomena under study (Brown et al. 2016).

Conclusion

5.1 The model presented in this work represents an e�ort to integrate, within a complex system simulation, the
e�ects of weather on crops, the farmer decision logic, and the cropping system profit as main LUCC drivers.
AgroDEVS simulations based on real landscape data showed that LUCC direction was better represented than
its magnitude, in terms of the land cover dynamics. The long-term simulations showed a dominance of crop-
ping systems that included soybean crop, and this dominance was stronger for monospecific soybean crop in
scenarios under constant climate. The double croppingW/S dominated mainly in scenarios under a variable
climate. When assessing the farmer condition e�ect (i.e., tenure and climate) on LUCC, tenure resulted inmuch
less e�ect on LUCC than the weather conditions (WGC). Finally, simulations showed no trade-o�s between
environmental and economic outcome both in simulation used to validate themodel and long-term scenarios.
The results suggest that LUCCmodellingand its environmental andeconomic consequences is feasible anduse-
ful using anABMapproach. TheAgroDEVS simulations allownot only to speculate on the LUCCdynamics, but to
gain a greater understanding of the underlying processes involved. Future research should focus on improving
the model structure to include di�erent agent behaviors (e.g., multiple agent’s profiles) as well as social and
political factors both for predicting the LUCC direction and to assess their relativemagnitudesmore accurately.
Moreover, incorporating di�erent productive regions of Argentina into AgroDEVS could expand the conclusions
achieved in this paper, revealing di�erences in LUCC dynamics at an ecorregional level.
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Model Documentation

The AgroDEVS model was developed with the Cell-DEVS language for advanced cellular automata-based sys-
tems. The AgroDEVSweb-based experimentation interface was developedwith PHP andMySQL. The base sim-
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ulator is CD++, a general purpose discrete-event simulator written in C++ by several generations of developers.
The version recommended for this work is: https://github.com/SimulationEverywhere/CDPP_ExtendedState
s-codename-Santi.To access the model please contact the authors.

Appendix A. Sensitivity Analysis

In a long-term simulation (28 years), we tested the e�ect of 1) crop prices, 2)WGC, 3) the Owner/Tenant agent
ratio and 4) rental price. We run AgroDEVS varying one parameter at a time over a range of values (Table 1),
while keeping the other parameters at their reference value (i.e. the initialization conditions of the Pergamino
1988-2015 simulation; for more details see Appendix B). The range of values for the crop prices was extracted
from historical data and are the lowest and highest price of each crop for the years 2001-2020.

Sensitivity analysis

TheWGC scenarioswere created by alternating 50%of the campaignswith historical values (i.e. actual weather
for that year) and the other 50%with the WGC level desired. Thus, five scenarios were created comprising 50%
of historical values and 50%WGC (V U , U ,R, F and V F ). The owner/tenant agent relation ranged from 10%
of the agents being owners and 90% tenants to 90% owners and 10% tenants in increments of 20% (i.e. 10/90,
30/70, 50/50, 70/30, 90/10). The rental price ranged from US$/ha 221,6 to US$/ha 775,6 (Table 1).

Table 1: Model parameters, units and range for sensitivity analysis. The reference value is related to the
Pergamino 1988-2015 simulation

Parameter Units Reference value Range for SA
Soybean Price US $/tn 277 141 - 346.4
Maize Price US $/tn 141 69.76 - 185.28
Wheat Price US $/tn 153 100.28 - 249.23
WGC - - 50% V U - 50% V F

O/T agent ratio - 63/37 10/90 - 90/10
Rental price US $/ha 443.2 221.6 - 775.6

The sensitivity analysis showed that the model is sensitive to wheat and soybean price changes in terms of
profit. When the price of one of these crops rises, the land use cover that dominates the grid isW/S. This crop
sequence has a high profit potential, and thus explains the change in profit observed. However, if the soybean
price drops below the reference value the farmers cannot compensate with another LU and the profit drops.
In terms of renewability, themodel was not sensitive to changes in crop prices and all crops behaved similarly.
Only a large increase in wheat price caused a 20% reduction in theRL (Figure 10).
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Figure 10: Changes in profit (above) and renewability (below) related to the Pergamino 1988-2015 simulation
under increasing crop prices. Each dot shows the average value of the profit or renewability level of each sim-
ulation run with a di�erent crop price. Profit’s reference value (red dot) = 390.26 US$/ha. Renewability level’s
reference value = 40.47%. The dashed line is the line of identity.

Themodel’s response to di�erent weather patterns was clear in terms of change in profit (Figure 11, le�). Under
favorableWGC, the profit was higher than the reference value. In the best-case scenario (50% of the years un-
derV F weather), the profit was increased by 55%of the reference value. Conversely, under unfavorableWGC
the profit tended to drop. In theworst-case scenario, (50%of the years underV U weather) the profit decreased
38%. This behavior is explained by the quick dominance of amore profitableLU(W/S) andmanagement level
(High) under favorable weather conditions, and the dominance of a defensiveLU such as soybean under unfa-
vorable weather conditions. Themodel showed little response in terms ofRL under di�erentWGC (Figure 11,
right). The results indicate that under favorable weather conditions theRL could drop slightly due to the dom-
inance ofW/S. On the other hand, unfavorable weather conditions would lead to an increase in S, provoking
an increase inRL.

Figure 11: Changes in profit (le�) and renewability (right) related to the Pergamino 1988-2015 simulation under
di�erentWGC scenarios. Each dot shows the average value of profit or renewability level of each simulation
run with a di�erent WGC. Profit’s reference value = 390.26 US$/ha. Renewability level’s reference value =
40.47%.

The model was slightly sensitive to changes in rental cost, leading to profit variation (Figure 12, le�). As ex-
pected, an increase in rental cost diminished the profit in tenants resulting in a decrease in the average land-
scape profit (no dominance of LU was observed here). On the other hand, theRLwas not sensitive to changes
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in rental cost (Figure 12, right). This could be explained by the relatively low fraction of the profit that the rental
cost represents.

Figure 12: Changes in profit (above) and renewability (below) related to the Pergamino 1988-2015 simulation
under increasing rental cost. Each dot shows the average value of profit or renewability level of each simulation
runwith a di�erent rental cost. Profit’s reference value (red dot) = 390.26US$/ha. Renewability level’s reference
value = 40.47%. The dashed line is the line of identity.

Regarding theO/T relation, the model was sensitive to changes in this parameter in terms of profit (Figure 13,
le�). In the scenarios with a low O/T relation the average profit dropped, while with a high O/T relation the
results showed an increase in profit. This behavior is explained by the increase in the number of farmers who
pay rent and not by any LU or management changes. In terms ofRL, the model was not sensitive to changes
in theO/T relation (Figure 13, right), supporting the results of the rental cost sensitivity analysis.

Figure 13: Changes in profit (le�) and renewability (right) related to the Pergamino 1988-2015 simulation un-
der increasing Owner/Tenant relation. Each dot shows the average value of profit or renewability level of each
simulation run with a di�erent Owner/Tenant relation. Profit’s reference value (red dot) = 390.26 US$/ha. Re-
newability level’s reference value = 40.47%.

Appendix B. AgroDEVS Initialization Conditions

Crop yields are based on simulations using crop models in the Decision Support System for Agrotechnology
Transfer (DSSAT) package (Jones et al. 2003) that have been calibrated for the studied location (Mercau et al.
2007). Crop management of each TL (e.g. genotype, sowing date, fertilizer rate, pesticide use, tillage opera-
tions, and production costs) was used for running the DDSAT crop yield simulations, and was based on local
management data. Crop yield variability during the DSSAT simulated period (1971-2008) was used to obtain
the crop yield under contrastingWGC levels. The fiveWGC levels (very unfavorable, unfavorable, average,
favorable, and very favorable) correspond to di�erent percentiles (i.e. 10, 30, 50, 70, and 90, respectively) of
yields simulated using historical weather records. DSSAT simulations do not account for important factors such
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asweeds, diseases, andpests. Thus, we empirically adjusted the attainable crop yield (van Ittersum&Rabbinge
1997) resulting from DSSAT simulations in order to model actual crop yield. Local data of simulated versus ob-
served crop yield were used for obtaining the adjusting coe�icients (attainable to actual yield) at each TL for
each crop species (Mercau et al. 2001, 2007; Satorre et al. 2005). AgroDEVS reflects three incremental TL: low
(L), average (A) and high (H) technological levels; and three crop types (maize, soybean and wheat/soybean
double-cropping, see region under study and cropping system description section for production system de-
scription). Using DSSAT and historical records of production costs, two of the look-up tables are built: 1) a crop
yieldmatrix (Table 2) and 3) a costmatrix for representing the full crop type (3 levels),TL (3 levels) andWGC (5
levels) combination (Table 3). As for crop yields and production costs, the emergy accounting method is used
for building a third look-up table for representing the full combination of crop types (3 levels), TL (3 levels)
andWGC (5 levels) (Table 4). Historical prices of maize, soybeans, and wheat, as well as production costs (i.e.
fertilizers, seeds, pesticides, and harvest and sale costs), were extracted from the Argentine trade magazine
“Márgenes Agropecuarios” (http://www.margenes.com). In all scenarios (i.e. the Pergamino simulation and
the long-term simulations) we assumed constant output prices equal to median for 2008–2015.

Table 2: Simulated crop yields using DSSAT (expressed in t/ha) for the combinations ofWGC,LU and TL lev-
els. Land use (LU) classes: Maize; Soybean; Wheat/Soybean double cropping. Technological level (TL) classes:
H (High); (A) Average; L (Low); Weather Growing Condition (WGC) classes: Very Unfavorable; Unfavorable; Aver-
age; Favorable; Very Favorable.

WGC

LU TL
Very
Unfavorable Unfavorable Average Favorable Very

Favorable

Maize
L 4.05 6.27 7.45 8.37 9.25
A 4.88 7.78 9.02 10.45 11.59
H 5.40 8.80 10.22 11.94 13.18

Soybean
L 1.89 2.67 3.13 3.72 4.15
A 2.13 3.00 3.53 4.18 4.67
H 2.37 3.34 3.92 4.65 5.19

Wheat/
Soybean

L 3.06 4.34 5.21 5.73 7.11
A 3.53 4.89 6.01 6.55 8.16
H 4.25 5.85 7.30 7.90 9.83

Table 3: Crop production costs (expressed in US$/ha) for the combinations of WGC, LU and TL levels. Land use
(LU) classes: Maize; Soybean; Wheat/Soybean double cropping. Technological level (TL) classes: H (High); (A)
Average; L (Low); Weather Growing Condition (WGC) classes: Very Unfavorable; Unfavorable; Average; Favor-
able; Very Favorable.

WGC

LU TL
Very
Unfavorable Unfavorable Average Favorable Very

Favorable

Maize
L 504 619 680 727 773
A 618 768 832 906 965
H 717 892 966 1055 1119

Soybean
L 262 302 326 356 378
A 329 374 401 435 460
H 395 446 476 514 541

Wheat/
Soybean

L 477 511 528 541 584
A 618 656 675 690 738
H 759 801 822 838 892
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Table 4: Crop renewability values (expressed in%) for the combinations ofWGC,LU and TL levels. Land use
(LU ) classes: Maize; Soybean; Wheat/Soybean double cropping. Technological level (TL) classes: H (High); (A)
Average; L (Low); Weather Growing Condition (WGC) classes: Very Unfavorable; Unfavorable; Average; Favor-
able; Very Favorable.

WGC

LU TL
Very
Unfavorable Unfavorable Average Favorable Very

Favorable

Maize
L 35.5 40.2 42.0 45.8 50.2
A 33.1 37.8 39.6 43.4 47.8
H 31.0 35.6 37.3 41.2 45.6

Soybean
L 43.7 48.4 50.1 53.6 57.6
A 42.2 46.9 48.7 52.3 56.3
H 40.8 45.5 47.3 50.9 55.1

Wheat/
Soybean

L 24.3 28.3 29.9 33.4 37.5
A 23.0 26.9 28.5 31.9 36.0
H 21.8 25.7 27.2 30.5 34.7

Table 5: Median output (crop) prices for the 2008–2015 period.
Land uses (LU) Price (US$/tn)

Maize 141
Soybean 277

Wheat/ Soybean 153

Table 6: Adjustment factorαAL(WGC) of the aspiration level (AL) due to weather growing condition (WGC)
level.WGC classes: Very Unfavorable; Unfavorable; Average; Favorable; Very Favorable.

WGC
Very
Unfavorable Unfavorable Average Favorable Very

Favorable
-0.55 -0.28 0.00 0.22 0.45

Table 7: Adjustment factor αAL(BN) of the aspiration level (AL) due to agent technological level (TL) and
the best neighbor technological level TLt(BN). A positive (or negative) αAL(BN) value indicates an increase
(or decrease) in AL since the best neighbor exhibits a higher (or lower) TL than that evaluated by the agent.
For equal TL values, αAL(BN) = 0. TL classes: H (High); (A) Average; L (Low).

TLt(BN)
TLt

L A H
L 0.00 0.20 0.45
A -0.25 0.00 0.20
H -0.55 -0.25 0.00
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Table 8: Working capital threshold (WCT ) for each technological level (TL) class (expressed inUS$/ha.).WCT
values equal to 60% of the highest production cost for each TL, considering and average indebtedness rate of
40% (AACREA 2014). TL classes: H (High); (A) Average; L (Low).

TL WCT (US$/ha)
L 252
A 333
H 413

Appendix C. Submodels Description

Profit calculations

P is calculated as the gross income (yield times product price) minus direct costs. Direct production costs in-
clude fixed and variable components. Fixed direct costs do not depend on crop yield (e.g., seed and agrochem-
icals). Oppositely, variable direct costs are yield-dependent (e.g., harvest, marketing fees and grain transporta-
tion). Finally, each farmer P is calculated using the individual crop profit a�ected by each crop type allocation
into the agent farm. Figure 14 is an excerpt of the rule that calculates P : an agent has a defined LU and TL and
is capable of sensing theWGC, and therefore it can calculate itsP bymultiplying its crop type allocation, yields
and prices, and subtracting costs.

Figure 14: Excerpt of the rule that performs agents’ profit calculations. In the cases of yield, price and cost,
#macro involves lookup tables.

Renewability level calculations

AgroDEVS calculates Renewability Level (RL) values by using the emergy synthesis procedure (Odum 1996).
Briefly, the emergy accounting methodology tries to account for both the natural and human-made capital
storages. The emergy accounting method values these storages using a common unit of reference, the solar
equivalent joule (seJ ). Themethod accounts for the environmental support provided directly and indirectly by
nature to resource generation and processing; it focuses on valuation of the intrinsic properties of ecosystems
(Mellino et al. 2015). For further details on emergy synthesis methodology see Brown et al. (2001) and Ferraro &
Benzi (2015). AgroDEVS uses the renewability level as a sustainability metric (Giannetti et al. 2010). RL is then
calculated as the ratio of renewable emergy to total emergy use, as it follows:

RL(%) =
R

(R+N + F + S)
(1)
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where,RL(%): renewability level value,R(seJ/ha−1year−1): renewable flows fromnature,N(seJ/ha−1year−1):
nonrenewable flows from nature, F (seJ/ha−1year−1): imported economic flows, S(seJ/ha−1year−1): ser-
vices.

Therefore, at eachmodel time step (i.e. aCC) each individual farmer renewability level (RL) is used as amea-
sure of environmental impact. In the figure below (Figure 15), an agent uses its LU and TL along with the
sensed WGC to obtain the final farmer’s RL value (by a�ecting the individual crop renewability level with the
crop type allocation into the agent’s farm).

Figure 15: Excerpt of the rule that performs agents’ renewability calculations. In this case, the #macro(emergy)
involves emergy lookup tables.

Agent decisions

Both P andRL values for each agent are related to theAL andET thresholds, in order to trigger the agent’s
decisions. In AgroDEVS, the economic goal (AL) is dynamic and it is basedon the aspiration level adjustment. It
represents thecurrentlydominatingeconomicparadigm,where the receiver (theagent) is themarket actorwho
decides the systemoutcomevalue (Grönlund et al. 2015). Oppositely, the environmental threshold (ET ) is fixed
and it represents a strong sustainability view, where the value approach is grounded in systems science rather
than economic science, where a value focused on the system level is accepted (Grönlund et al. 2015). During
the model simulation process, the fulfillment of the economic goal drives the crop type allocation. Thus, the
LUCC process is triggered when the economic threshold (i.e. aspiration level) is not accomplished.

Aspiration level adjustment

A firstAL adjustment is based on theWGC, as it follows:

CALt = ALt +ALt × αAL(WGC) (2)

where CALt = climate-adjusted aspiration level (US$/ha), ALt = aspiration level (US$/ha) calculated at the
end of the previous CC, αAL(WGC) = adjustment factor of AL due toWGC level for the current CC (see
Appendix B, Table 6 for αAL(WGC) values used in the simulations).

A secondAL adjustment defines the aspiration level for the nextCC and it is based on the learning and adap-
tation model (Bert et al. 2011). If Pt > CALt then the next aspiration level is subjected to an incremental
adjustment using a weighted average, as it follows:

ALt+1 = 0.45ALt + 0.55Pt (3)

where ALt+1 = aspiration level (US$/ha) for the next CC, CALt = aspiration level (US$/ha) a�er current CC
adjustment, Pt = Profit (US$/ha) calculated in profit calculations section.
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Figure 16: Excerpt of an agent’s aspiration level adjustment. In this example, the agents’ profit was larger than
itsAL, so it proceeds to perform an incremental adjustment.

In the figure above we can see an excerpt of the rule for adjusting incrementally the aspiration level using a
weighted average when an agent’s Pt > CALt. When both the agent and its neighbors finish with the cal-
culation of their P , RL and the fulfillment of both economic and environmental goals, the agent proceeds to
adjust its AL for the next cropping cycle. When the economic outcome is lower than the aspiration level (i.e.
Pt < CALt), the agent’s perception is extended to include the influence of the physical (Moore) neighbors,
and theALt+1 is adopted by inspecting the neighbors’ P outcomes. Thus, the farmer adoptsALt+1 using the
neighbors’ P data. If there is at least one neighbor under the condition of Pt > CALt then the farmer selects
its best neighbor (BN ), in profit terms, and the ALt+1 is calculated using both the AL for the best neighbor,
CALt(BN), as well as an adjustment factor due to di�erences in TL between farmers:

ALt+1 = CALt(BN) + CALt(BN)× αAL(BN) (4)

where: ALt+1 = aspiration level (US$/ha) for the next CC, BN = the agent with the highest P value in the
Moore neighborhood (n = 8),CALt(BN) = aspiration level (US$/ha) for the BN in the currentCC,αAL(BN)
= adjustment factor ofAL due toBN technological level (see Appendix B, Table 7 forαAL(WGC) values used
in the simulations).

In the case that PBN ≥ CALt (i.e. no neighbor meets the economic threshold) then the next aspiration level
is subjected to a detrimental adjustment using a weighted average, as it follows:

ALt+1 = 0.55CALt + 0.45Pt (5)

where: ALt+1 = aspiration level (US$/ha) for the next CC, CALt = aspiration level (US$/ha) a�er current CC
adjustment, Pt = Profit (US$/ha) calculated in Profit calculations.

Di�erent values for incremental and detrimental adjustment (0.45 and 0.55 respectively) were applied in order
to simulate the farmer willing to tolerate higher payo�s more rapidly than lower ones, thus showing greater
resistance to downward changes (Gilboa & Schmeidler 2001).

Technological level adjustment

Farmers are also able to upgrade or downgrade their technological level (TL) a�er inspecting their own P out-
come in the CC. The rules for adjusting the TL are based on the working capital threshold (WCT ) which
represents the highest production cost within each TL (Table ??). Rules for TL adjustment are:

TLt+1 = H if Pt > WCT (H) (6)

TLt+1 = A if Pt > WCT (A) and Pt < WCT (H) (7)

TLt+1 = L if Pt < WCT (A) (8)

where, TLt+1 = Technological level for the next CC (H: high; A: average and L: low), WCT (TLi): working
capital threshold (average or high) for TLi (low, average and high).

In Figure 17 we can see an excerpt of the rule for adjusting an agent’s TL. When both the agent and its set
of neighbors are done with calculating their P , RL and evaluating the fulfillment of both economic and envi-
ronmental goals, the agent proceeds to adjust its TL for the next cropping cycle by comparing its P with the
WCT .

JASSS, 25(1) 5, 2022 http://jasss.soc.surrey.ac.uk/25/1/5.html Doi: 10.18564/jasss.4772



Figure 17: Excerpt of an agent’s technological level adjustment. In this case, #macro (wcmax) involves WCT
lookup table (Appendix B, Table 8).

Land use and cover change (LUCC)

Final farmer decision defines the land use configuration. The LUCC process is triggered when the economic
threshold is below the economic outcome and also there is at least one neighbor in the Moore neighborhood
that meets the economic threshold as follows:

Pt < CALt and Pt(BN) > CALt (9)

where,Pt = Profit (US$/ha) calculated as in profit calculations section,Pt(BN): Best Neighbor Profit (US$/ha),
CALt = Aspiration level (US$/ha) a�er currentCC adjustment.
A�er inspecting this condition, the agent selects the crop type allocation of the best neighbor (BN ) as follows:

LUi,t+1 = LUi,t(BN) (10)

LUi,t+1: Percentageofagent’s farmareaunder crop type i for thenextCC (i=corn, soybeanorwheat/soybean),
BN = the agent with the highest P value in the Moore neighborhood (n = 8), LUi,t(BN): Percentage ofBN
farm area under crop type i for the nextCC.

Figure 18: Excerpt of the rule that copies an agent’s neighbor’s landuse, aspiration level and technological level.
These attributes are not yet assigned to the agent.

In the figure above there is an excerpt of the rule that copies the best neighbor’s land use allocation. If both
an agent and its neighbors have already calculated their P and RL then the model will proceed to select the
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neighbor with the highest P and copy its LU allocation, AL and TL to be used later in the simulation and, if
necessary, assigned to the agent.

Appendix D. Input Data

Pergamino 1988-2015 simulation

Input data from 1988-2015 were used for both the model initialization and to test the model outcomes against
the actual land use changes in the studied area. Table 9 presents a summary of these initial conditions.

Table 9: Summary of the initialization conditions for the Pergamino 1988-2014 simulation. Land use classes: M
(Maize); S (Soybean); W/S (Wheat/Soybean). Technological level classes: H (High); (A) Average; L (Low). WCT
is the Working capital threshold for each technological level class. Descriptor value represents the type of the
model component: P (parameter: fixed); A (attribute: variable during simulation due to ABM rules). Conditions
marked with an asterisk represent the real data extracted from the 1988 National agricultural census (INDEC
1991). Values of cropping regime (cost, renewability, yield and prices) as well asAL adjustment factor andWCT
are shown in the Appendix B. RP represents the value of 1.6 t of Soybean crop.

Condition

Number of
agents

Owner /
Tenant
ratio*

Crop type
allocation at
landscape
level
(%) *

Technological
level agent
distribution
at landscape
level
(%) *

Aspiration
level
(US$/ha)

Ecological
threshold
(%)

Rental
price
(US$)

Symbol # agents O/T LU TL AL ET RP
Value 625 63/37 20 (M) 30 (H) 0.6 WCT 50 443.2

36.2 (S) 36 (A)
35.8 (W/S) 32 (L)

Descriptor P P A A A P P

The observed LUCC dynamics were obtained from agricultural surveys (SAGPyA 2009), and both the initial
(1988) and final (2015) TL frequency distribution among farmers were obtained from the national agricultural
census (BOLCER 2015; INDEC 1991). In order to represent the main tenure regimes in the studied area (own-
ers and tenants), AgroDEVS was initialized using the 1988 Owner/Tenant relation (INDEC 1991). The land rental
price was set to historical values of 1.6 t of soybean per hectare (Margenes Agropecuarios 2015). Crop yield and
renewability level values under di�erent weather conditions (WGC) and technological levels (TL) were cal-
culated as it is explained in Appendix C profit calculations section. In the initial landscape configuration, each
farmer was assigned an initial working capital (WC) according to his initial TL. InitialAL level were fixed for
each farmer in order to account for the 60% of the direct costs (i.e. 0.6WCT ) of the TL adopted in the first
CC of the simulation (AACREA 2014). Oppositely, the ET value remains constant during the simulations and
is fixed in RL = 50% (Table 9). The accuracy of the simulations was assessed using both 1) the squared dis-
tances between a simulation’s outputs and a set of observations (RMSE) and 2) the ordinal pattern analyses
(OPA) (Thorngate & Edmonds 2013). OPA indicates the topological fit between observed and simulated outputs
but does not consider their closeness.

Long-term scenarios

AgroDEVSwas also run over a 50-year period, under contrasting scenarios due both 1) fiveWGC regimes (con-
stant unfavorable, constant average, constant favorable, a see–saw pattern of very unfavorable-average-very
favorable, and a random regime), and 2) two tenure regimes based on the landscape pattern of Owner/Tenant
agent relationship (90/10 and 10/90). As tenants are more focused on short-term income and are less likely to
invest in longer-termmanagement strategies than owners (Soule et al. 2000), we used AgroDEVS for testing the
hypothesis that tenant farmers are less likely than owner-operators to adopt crop allocation decisions that lead
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to sustainable LUCC trajectories. All crop types and TLwere set to equal distribution in the landscape (i.e. 33%
of the total area for each crop and each TL) at the initialization. However, the internal assignment of each crop
type for each agent was set randomly. Model simulations were inspected in terms of the dynamics of 1) crop
type allocation of total area, 2) profit and 3) renewability level.

Appendix E. Modelling Approach

In Figures 19 and 20 we provide an illustrative, non-exhaustive sample view of the Cell-DEVS specification used
for AgroDEVS. Most of the information declaring the structure, components and behavior is found in a text file
with .ma extension.

Figure 19: Sample excerpt of an AgroDEVS.ma definition file (Le�) Schematic of the AgroDEVS system. The “cli-
mate” DEVSmodel is connected with the “landscape” Cell-DEVSmodel (Right).

In Figure 19 we can see the main statements defining structure, components and interconnections through
input-output ports. In Figure 20 we provide an excerpt of the agrodevs.ma file highlighting relevant lines. Note
that three dots “. . .” in the figures denote lines omitted for the sake of brevity. In Figure 20 we can see main
statements defining behavior for the landscape cellular automaton. Within each cell, a list of rules is evaluated
sequentially in a top-down fashion, using a Value, Delay, Condition structure: the first rule that evaluates its
Condition to true, will apply the Value to its attributes a�er a Delay amount of time. Once a rule is applied, the
simulator recommences the cycle evaluating the rules fromthe top. Thismechanism is appliedasynchronously,
simultaneously and in parallel to all cells in the model. The global timing for the whole cellular space is an
emergent property driven by the local timing applied by each independent cell. The pairs (X,Y ) denote the
positions for neighbors relative to each currently evaluated cell denoted with (0, 0).
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Figure 20: A sample of two rules defining the behavior of each cell of the Landscape Cell-DEVSmodel, showing
the case for Step 2 in Figure 3 (main text).

Simulation framework and so�ware experimentation environment

As discussed previously in the modelling approach section, AgroDEVS uses a DEVS-based formal approach.
One salient feature of the DEVS formalism is the strict and clear separation between simulation algorithms
and model specification. As a specialization of DEVS for Cellular Automata, the Cell-DEVS formalism inherits
this separation. Di�erent Cell-DEVS-capable simulators should be able to simulate a given Cell-DEVSmodel. In
turn, di�erent interactive user interfaces canbe used to helpwith the design andmaintenance ofmodel specifi-
cations and to interact with the simulation exercises. Figure 21 shows a high-level component and deployment
diagram of AgroDEVS.
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Figure 21: The AgroDEVS System. Le�, top: High-level architecture andmain components. Le�, bottom: Typical
steps and use cases. Right: Web interface for model management and results visualization.

The CD++ generic simulation engine for DEVS and Cell-DEVS models resides in a Simulation Server. It can re-
trieve and simulate Cell-DEVS formal specifications of models that are stored in a Database Server. Such mod-
els can bewritten directly by specialists in the Cell-DEVS formalism or by higher-level experts in the agricultural
domain using a friendly web-based interface. Once models are defined, they can be reused to launch as many
simulation experiments as required, by invoking the simulator also from a web-based experiment interface.
Figure 21 describes sequences of steps for two typical use cases: Model Specification and Simulation, denoting
the components involved in each of them.

Appendix F. Design Concepts

Emergence

Fourmain landscape-level attributes emerge from individual farmer’s behavior and interactions amongagents:
(a) land use (% of cropping area under each crop type), (b) economic profit (the average landscape profit per
hectare), (c) emergy renewability level (the average fraction of renewable emergy consumption in the land-
scape), and (d) the average rate of fulfillment of two thresholds: 1) a fixed environmental threshold, in terms of
emergy renewability level (RL), and 2) a dynamic aspiration level, in terms of economic profit (P ).

Adaptation

Agents can adjust their crop type allocation if the economic profit (at farm level) does not reach theAL at each
CC. In addition, each agent has two di�erent adaptation mechanisms: a) adopting di�erent TL based on
the capital availability, and b) adjusting it’s AL based on both theWGC of each CC and the outcome in the
previousCC (see sub-model section for computational details).
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Objectives

Agents pursue to achieve aP level in eachCC above theirALwhile satisfying (or not) a fixedRL. IfP is below
agents’AL, theywill be unsatisfied andwill seek a di�erent crop type allocation in the agents’ neighborhood. If
an agent’s capital availability drops below theWCT for each TL, theymust adopt a lower-cost TL, but agents
never quit farming. Both landscape and individualRL emerge from the crop allocation decided for each agent,
but it is not used as a farmer´s goal. Rather, this is an emergent property due to local rules.

Prediction

Agents predict the future consequences of their decisions (i.e., they build expectations) aboutP based on past
outcomes and current weather information (WGC), following the theory of adaptive expectations (Shell &
Stiglitz 1967). Agents revise theirAL in eachCC using adaptive rules based on a) the dissimilarity -in the pre-
vious CC- between the predicted and the observed P , and b) the seasonal climate forecasts (WGC) for the
currentCC (see sub-model section for algorithms adjustingAL).

Sensing

Agents have information about their capital availability and consider this variable in their decisions about the
potential adoption of higher (or lower) TL. In addition, they are aware of the P achieved by their eight neigh-
bors (Mooreneighborhood)duringeachCC. Finally, farmersare informedabout theexpectedstatusof external
contextual factors (i.e. seasonal forecast) for the currentCC.

Agent–Agent interaction

Agent interaction is based on the imitation of the crop type allocation of the best neighboring agent (i.e., the
highest P achieved in the neighborhood) in the case of dissatisfaction with its own P achieved (as compared
to itsAL). Otherwise, the agent repeats its current crop type allocation in the nextCC.

Agent–environment interaction

Crop yield simulations reflect the interaction between farm decisions and both climate and soil conditions.
These models capture the TL e�ect (through increasing fertilization and pesticide use) as well as theWGC
of eachCC (mainly global radiation and precipitation) and land quality factors (which are constant during the
simulation). As crop simulationmodels represent biotic-unconstrained yield potential, final yields are adjusted
in each combination of crop type-TL using potential weeds and pest infestation losses (see simulations input
section for an example of crop yield data). Agent decisions have no e�ect on resource dynamics, through crop
type allocation, and it is only on the currentWGC that agents receive feedback about changes in resource
conditions.

Stochasticity

Stochasticity is used to assign the TL and the crop type allocation to each agent only at the initialization pro-
cedure.

Collectives

Agents do not form or belong to aggregations that a�ect or are a�ected by other agents in the model version
described here. Further model refinements should include collectives.
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Appendix G. Acronym Table

Table 10: List of acronyms and their full forms used throughout the article.
Acronym Full form Units
ABM Agent-Based Model
AL Aspiration level US$/ha
CA Cellular Automata
CAL Climate-adjusted Aspiration Level US$/ha
CC Cropping Cycle
DEVS Discrete Event Systems Specification
ET Environmental threshold %
IOF Index of Observed Fit
LU Land Use (also crop type allocation) %
LUCC Land-use and Cover Change
M Maize cropping %
O/T Owner/Tenant ratio Ratio
ODD Overview, Design concepts, and Details
OPA Ordinal Pattern Analysis
P Profit US$/ha
PM Probability of a match
RL Renewability level %
RP Rental Price US$
S Soybean cropping %
SA Sensitivity Analysis
TL Technological level
V Normalized RMSE
W/S Wheat/Soybean double-cropping %
WGC Weather Growing Conditions

Notes

1WeuseABMalsoas anequivalent for IBM (Individual-BasedModels) orMAS (Multiagent Systems); seeRails-
back & Grimm (2011). Agent-based and individual-based modeling: a practical introduction. Princeton univer-
sity press.
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