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Abstract:Many researchers haveaddressedwhat factors shouldbe included in theirmodels of couplednatural-
human systems (CNHSs). However, few studies have explored how these factors should be incorporated (factor
configuration). Theoretical underpinning of the factor configurationmay lead to a better understanding of sys-
tematic patterns and sustainable CNHSmanagement. In particular, we ask: (1) can factor configuration explain
CNHS behaviors based on its theoretical implications? and (2) when disturbed by shocks, do CNHSs respond
di�erently under varying factor configurations? A proof-of-concept migration agent-based model (ABM) was
developed and used as a platform to investigate the e�ects of factor configuration on system dynamics and
outcomes. Here, two factors, social ties andwater availability, were assumed to have alternative substitutable,
complementary, or adaptable relationships in influencing migration decisions. We analyzed how populations
are distributed over di�erent regions along a water availability gradient and how regions are culturally mixed
under di�erent factor configurations. We also subjected the system to a shock scenario of dropping 50% of
water availability in one region. We found that substitutability acted as a bu�er against the e�ect of water defi-
ciency and prevented cultural mixing of the population by keeping residents in their home regions and slowing
down residential responses against the shock. Complementarity led to the sensitivemigration behavior of res-
idents, accelerating regionalmigration and cultural mixing. Adaptability caused residents to stay longer in new
regions, which gradually led to a well-mixed cultural condition. All together, substitutability, complementarity,
and adaptability gave rise to di�erent emergent patterns. Our findings highlight the importance of how, not just
what, factors are included in a CNHS ABM, a lesson that is particularly applicable tomodels of interdisciplinary
problems where factors of diverse nature must be incorporated.
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Introduction

1.1 Recent studies of coupled natural-human systems (CNHSs) have drawn much attention to interplays between
social and natural factors in a wide variety of situations (Liu et al. 2007). Many scholars have focused on "what"
factors should be included in CNHS models (An 2012; Liu et al. 2007), but the question of "how" these factors
should be incorporated has largely been overlooked; herein, we will refer to how factors are incorporated as
"factor configuration." This issue was recently raised by CNHS researchers (Boas et al. 2019; Kramer et al. 2017;
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Metson et al. 2015; Morzillo et al. 2015). What if factor configuration itself is more significant to outputs than the
mere inclusions of these factors? Factor configurationmay even build unique patterns, e.g., flickering patterns,
yet existing studies were restricted to examining this aspect. Factor configuration reflects a theoretical impli-
cation on how the factors interact and thus leads to a better understanding of decision-making processes for
CNHSs.

1.2 Agent-based models (ABMs) take a bottom-up CNHS modeling approach that captures how individuals make
their owndecisions, followdi�erent rules, and interactwith eachother inheterogeneousenvironments (Farmer
& Foley 2009; Grimmet al. 2005). ABMs’ strengthsmake them a greatmodeling tool to study the e�ect of factor
configuration. First, ABMs are capable of simultaneously handling both natural and social factors (Bell et al.
2019; Bousquet & Le Page 2004; Loomis et al. 2008). Second, ABMs allow us to include factor configuration into
an individual’s decision-making processes and generate system-level patterns (An 2012; Gimblett 2002). Third,
we can test di�erent shock scenarios and capture emergent CNHS responses against shocks (Waldrop 2018).

1.3 The objective of this study is to explore the e�ects of factor configuration on system dynamics and outcomes
of a simple CNHS ABM. To provide the context and narrative for interpreting the results, we use a highly sim-
plified ABM of migration processes. It is important to note here that the simplified migration ABM is used as a
platform for investigating the e�ects of factor configuration and is not meant to capture all the complexity of
migration process. Indeed, migration is a complex CNHS process, involving a large array of natural and social
drivers interacting at multiple temporal and spatial scales and producing multi-dimensional outcomes (Abel
et al. 2019; Adger et al. 2014; Black et al. 2011; Czaika & De Haas 2014). Within the context of this simple ABM,
we first delved into how di�erent configurations of multiple factors influence individual-level decisions and
systematic patterns. We especially looked into the flickering-like behavior—agents in two regions collectively
switch their locations back and forth—in a certain configuration (in Figures 5c and 5d). This study then tested
the e�ect of factor configurations in a shock scenario. We considered both stationary values and time series of
system outcomes a�er the shock for this analysis.

Methods

A proof-of-concept migration ABM

2.1 In this study, a simple, proof-of-concept migration ABM is used as a platform to investigate the e�ects of fac-
tor configuration on system dynamics and outcomes. Our ABM incorporates a two-staged migration decision-
making process (Champion et al. 2003; Rees et al. 2006; Stillwell 2005), focusing on a few key drivers of migra-
tion, namely distance, social ties, and the environment (e.g., water availability). We included water availability
di�erences as a natural factor, based onmigration case studies caused by water scarcity (Jägerskog et al. 2016)
and previous examples of ABMs of migration (Krol & Bronstert 2007; Magallanes et al. 2014; Rigaud et al. 2018;
Smajgl et al. 2015). The second factor was cultural a�inity—social ties connecting people from the same home
region. Social network ties are essential inmigrationmodeling as theyare closely related tomigrationdecisions
(Klabunde&Willekens 2016), e.g., information transmission through social connections pullsmore peoplewith
the same culture to the ethnic enclaves. Lastly, we also used region-to-region distance as a physical factor be-
cause the e�ect of distance is evident in choosing a destination to migrate (Ravenstein 1885; Schwartz 1973).

Model structure

2.2 In themodel, five regionsareplacedat regular intervals alongavector (Figure 1). Each region is assumed tohave
a di�erent total water availability (wi at Region i) that is constant over time, though per capitawater availability
changeswith the population (wi/ni at Region i, whereni is the population at Region i). Water availability of the
five regions linearly decreased from le� to right (imagine a river or a lake to the le� of these five regions), based
on the following relationship,wi = s(i− 3) +m, where s represents the water availability gradient andm the
average water availability across the five regions. Initially, 100 residents lived in each region and considered it
their "homeland." When people in Region i decide to choose a migration destination, they consider the num-
ber of people from their homeland in potential destination, Region j (ni,j), as a beneficial factor (e.g., cultural
enclave).
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Figure 1: An overview of the proof-of-concept ABM. (A) Five regions (large circles) are located in the 1-D space
with the same distance d to their neighboring regions. Residents (small circles; the color of a resident repre-
sents his/her homeland) prefer people from the same homeland (cultural a�inity). Empty circles within each
region indicate that a resident has migrated to another region. Region 1 has the highest water availability due
to its proximity to the water source (e.g., river, lake, etc.; le� blue area). Water availability in each region lin-
early decreases with the distance from the water source (heights of the blue bars). (B) A closer look at Region 4
illustrating di�erent migration probabilities.

2.3 In this model, the decision-making process of a resident is divided into two stages. In the first stage, a resi-
dent (small circle in Figure 1a) decides whether to stay or to leave. Low water availability and/or weak social
ties "push" people from the current region, while an aggregate e�ect of the two factors is dependent on the
factor configuration. In the second stage ("pull"), he/she chooses which region to migrate to. The residents
then consider the destination’s water availability and stronger social ties as well as the distance from their
current region; as in the first stage, the total "pull" e�ect depends on the factor configuration. Residents in
each region equally share the water available in that region at every time step and make decisions accord-
ing to their social and environmental conditions. Each resident has a probability of staying µo(t) (o = ori-
gin) (first-stage decision). For those who decide to leave, they have a probability θj←o(t) (j = destination) to
go to Region j (second stage decision). Social ties and water allocated to a person a�ect both stages, while
distance is only considered in the second stage. Depending on the type of factor configuration described in
the next section, the migration probabilities of the two stages take di�erent forms. An ODD protocol (Grimm
et al. 2010) of the ABM provides a more detailed explanation in Appendix C. The model code can be found at:
https://www.comses.net/codebase-release/43c48c8c-a654-4c64-94ef-f6a477c08702/.

Factor configuration

2.4 Three possible configurations between natural and social factors are explored: ADD, AND, andOR (Figure 2 and
Table 1).

2.5 Substitutable factor configuration (ADD) linearly combines the two factors, following the constant elasticity
of substitution (CES) production function in neoclassical economics (e.g., Fenichel & Zhao 2015; Markandya &
Pedroso-Galinato 2007). The relation between factors can be compared to drinking soda products. You could
drink, for example, one of two alternative brands (factors). If one is insu�icient, another can be an alternative.
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The two factors have the same functionality so that one can substitute for the other. Despite this rather strong
implicit assumption of substitutability among factors, this configuration is the most widely used in many mi-
gration models (e.g., An et al. 2020; Cai & Oppenheimer 2013; Li et al. 2020).

Figure 2: First stage staying probability at an origin o, µo(t), with respect to di�erent conditions of water avail-
ability and social ties. Each plot corresponds to a di�erent factor configuration: (A) ADD configuration, (B) AND
configuration, and (C) OR configuration (see Table 1 for details).
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Table 1: Two-stagedmigrationprobability equationsofADD,AND,andORconfigurations. µo(t) is theprobability
that a resident stays (first stageF1; migration probability θo(t) = 1−µo(t)). x(1) is per capita water availability
(natural factor), and x(2) is a proportion of homeland residents in the current region (social factor). θj←o(t) is
the probability that a migrating resident goes to Region j (second stage F2). ∆x

(1)
jo and∆x

(2)
jo are relative x

(1)

and x(2) values between origin and destination, and ∆x
(3)
jo is distance between origin and destination. β(1)
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2 are parameters used to control the shape of the relationships related to water allocated to each
resident (β(1)

1 and α(1) in the first stage and β(1)
2 in the second stage). β(2)

1 , α(2), and β(2)
2 are parameters used

to control the shape of the relationships related to social ties (β(2)
1 and α(2) in the first stage and β(2)

2 in the
second stage). β(3)

2 only controls the shape of second-stage probability. In this study, we set all α as 0.3 and β
as 4 for the simplification. CF represents the normalization constant to satisfy the condition

∑
j 6=o θj←o(t) = 1

(F = {ADD,AND,OR}).

2.6 In the complementary factors configuration (AND), the two factors are complementary. For example, both
soilmoisture and solar radiation are needed for a plant to grow. If either one is insu�icient, the plantwill wither
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and die. This case requires both factors for an event to occur. In our model, a resident will stay in the current
location (first-stage decision) when the water availability is high and social ties are strong; otherwise, the resi-
dent is likely to migrate to other regions. Similarly, in the second stage, the resident prefers a destination with
high water availability and strong social ties.

2.7 In the adaptable factors configuration (OR), one factor alone can be enough for an event to happen. For ex-
ample, on a domestic flight, you may bring either a driver’s license or a passport as a form of identification. In
our model, this means that a resident is likely to stay when either high water availability or strong social ties.
For those who leave, they prefer a destination with either high water availability or strong social ties.

2.8 As discussed in previous paragraphs, di�erent factor configurations reflect di�erent theoretical reasoning. Our
worko�ers novel insights into the rulesof interactions amongmultiple factors and their implications in a simple
ABM. These lessons can further be extended to other CNHSmodels. It is also worth noting that the mathemat-
ical formulations of the factor configuration capture nonlinear interactions between the factors without the
"product" terms (e.g., β(1,2)x(1)x(2)), used in most models that aim to capture nonlinear interactions.

2.9 We explored some parameter values and in our companion paper (Carmona-Cabrero et al. 2020), also con-
ducted global sensitivity analysis to determine the importance of the factor configuration on the system out-
comes compared to the specific values used for the input parameters. We found that factor configuration had
an influential e�ect (i.e., explains > 90% of the outputs variance) on population distributions except for the
population in Region 3, where stochasticity was critical to the outcome.

Systematic patterns: Spatial distribution of population and cultural diversity

2.10 To investigate the e�ects of factor configuration, we considered two systematic patterns of populations: Spatial
distributions of population and the mixing of cultural groups. We ran 75 ABM realizations under each factor
configuration. Selecting the appropriate number of realizations (N = 75) is addressed in Appendix A.

2.11 Initially, each region has 100 residents. Then, regional populations are counted a�er the system reaches stable
dynamics to understand howpopulations are distributed over five regions. The level of culturalmixing or diver-
sity is also an important social character of a population, influencing population movements in complex ways
(Jiang et al. 2010; Nathan 2011). Here, Simpson’s index frombiodiversity literature (Quétier et al. 2007; Simpson
1949) is used to quantify how well cultural groups are mixed in Region j. Previous sociological studies have
applied Simpson’s index in the context of social diversity (Blau 1977; Rushton 2008), and the U.S. Census Bu-
reau has used it to explain degrees of ethnic diversity in theU.S. (U.S. Census Bureau 2021). This index identifies
whether a region is dominated by one cultural group orwell-mixedwith several groups—such cultural diversity
may attract some people or cause social tension; although these consequences and feedbacks have not been
explicitly incorporated in this present model yet, we believe that it is important to determine how diversity is
a�ected by the factor configuration. We used an inverse form of Simpson’s index for an easier interpretation:

Dj =
1∑5

i=1

(
pji

)2 , (1)

wherepji is the fractionofpopulation inRegion jwhosehomeland isRegion i (p
j
i = ni,j/

∑
i ni,j ): p

i
i represents

"locals" from that region i. WithDj close to 1, Region j is dominated by a single cultural group from a certain
homeland (unmixed cultural condition). WhenDj is close to 5 (the total number of cultural groups), cultural
groups are well-mixed in Region j.

2.12 We also explored population responses a�er a disturbance in the CNHS, namely what would happen to the
spatial distributions of population andmixing of cultural groupswhenwater supply in Region 1 reduced to 50%
by an unexpected shock?

Results and Discussion

Spatial distributions of population andmixing of cultural groups

3.1 We first considered patterns under the pre-shock condition. When the factor configuration was ADD, popula-
tions were distributed in a quadratic-like form from Regions 1-5, peaking at Region 2 and dropping at Region 5
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(blue boxplots in Figure 3a); Region 1 had slightly fewer residents, and the population decreased from Region
2 to Region 5. In water-rich regions (Regions 1 and 2), high water availability and strong social ties kept locals
in (high µo(t) in Figures 7a and 7b of Appendix B). These regions accommodatedmore "foreigners" from other
regions becauseweak social ties could be substituted by highwater availability. However, foreignerswere likely
to return to their homelands because when many of these foreigners moved into water-rich regions, their per
capita water availability reduced and could no longer substitute weak social ties. In the water-poor region, i.e.,
Region 5, lowwater availability cannotmake up for weak social ties, so foreigners avoid the region. Comparing
with other regions, Region 5’s locals also tended to out-migrate more due to low water availability, leading to
the lowest population in Region 5. Region 1was less populated than Region 2, despite its higherwater availabil-
ity. Here, distance played an important role in deciding which region to move to in the second-stage decision.
Residents in water-poor regions were more likely to migrate to Region 2 simply because Region 2 was closer.
Under the ADD configuration, regions were relatively culturally segregated (low values ofDj ; blue boxplots in
Figure 3d), with water-rich regions beingmore culturally mixed. High water availability can substitute for weak
social ties of foreigners so that these regions could attract more foreigners.

Figure 3: Spatial distributions of the population (upper row) and degrees of cultural mixing (lower row) under
di�erent factor configurations: (A,D)ADD, (B, E) AND,and (C, F)OR.Blueboxplots arepopulationpatternsbefore
an external shock, and red boxplots are those a�er a 50%dropof availablewater in Region 1. Initial populations
in each region were 100. These boxplots are the results of 75 realizations with having parameters s as -10,m as
100, α(1) = α(2) as 0.3 and β(1)

1 = β
(2)
1 = β

(1)
2 = β

(2)
2 = β

(3)
2 as 4.

3.2 A similar trendwas observedwith amore pronounced gradient in the OR configuration (blue boxplots in Figure
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3c). In this case, either one factor alone was enough to keep a resident. That is, residents were "more tolerant"
to changes in either social ties or water availability. It turned out that this adaptability diluted the e�ects of
social ties, leading to more culturally well-mixed conditions (blue boxplots in Figure 3f). With greater diversity,
all regions had similar strengths of social ties. Residents’ decisions now became more dependent on water
availability relative to other configurations; more people migrate from water-poor to water-rich regions. Note
that the more pronounced distribution of populations implies greater equality in per capita water availability.

3.3 Under the AND factor configuration, spatial distributions of the population had more irregular patterns than
ADD andOR configurations (blue boxplots in Figure 3b). Under this configuration, natural and social factors are
complementary: A resident needs both to stay. The results suggested that residentswere sensitive to changes in
eitherwater availability or social ties, showinghighlymobile behaviors. Highlymobile anduncertain characters
of residents led to irregular population distributions. Also, all regions became culturally well-mixed conditions
and weakened social ties (blue boxplots in Figure 3e).

Spatial distributions of population andmixing of cultural groups a�er shocks

3.4 In response to a shock of water availability (50% reduction) in Region 1, residents in Region 1 out-migrated to
other regions (red boxplots in Figure 3). Median populations in Region 1 reduced to similar amounts (70 and 65)
a�er the shock in ADDandORconfigurations (redboxplots in Figures 3a and3c), yet post-shock transition forms
were di�erent between the two (Figrues 4a and 4c). Populations in the disturbed region gradually decreased in
the ADD configuration. Substitutability absorbed shocks onwater availability, preventing a sudden population
decrease (Figure 4a). Moreover, residents in Region 1 moved to other regions at di�erent rates. Out-migrating
residents in Region 1 were mostly locals under the ADD configuration. As in the pre-shock case, the distance
factor was the most critical in choosing which region to move. Thus, the closer a region was to Region 1, the
faster newmigrants moved to the region.

Figure 4: Population time series in five regions right a�er the shock (lightning bolt symbol in graph) in di�erent
factor configurations: (A) ADD, (B) AND, and (C) OR. The lines are median populations for 75 realizations, and
the shaded areas are standard deviation bands.

3.5 Populations in Region 1 droppedmore sharply in the OR configuration (Figure 4c): Residents hadweaker social
ties (because it is culturally mixed; Figure 3f) so that a shock in water availability more strongly a�ected pop-
ulation movements. Most of these residents transit Region 2 and then spread to other regions (the population
in Region 2 rapidly increases, reaches a peak, and gradually decreases in Figure 4c). This behavior appeared
inconsistent with the OR configuration’s characteristic of beingmore tolerant, as discussed in the previous sec-
tion. This seeming inconsistency came from di�erent strengths of social ties in ADD and OR configurations. In
the ADD configuration, each region becamedominated by localswho had strong social ties (Figure 3d). Regions
were culturally mixed in the OR configuration, and residents had weaker social ties. The strength of "pull" be-
cameweaker given that regions before the shockwere culturallywell-mixed, and social tieswere not important
anymore.

3.6 In the AND configuration, populations in the disturbed region did not change greatly like the other two cases
(Figures 3b and 4b). Populations in Region 1 were already low under the AND configuration before the shock.
This result indicates that per capita water availability was relatively high. Thus, Region 1 was less influenced by
the shock than in other configurations. Residents still abruptly out-migrated fromRegion 1 right a�er the shock.
It is because staying probability (µo(t)) drops immediately to deficiency in any one of the factors under the AND
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configuration (see how µo(t) changes according to one factor when another factor is su�icient in Figure 2b).
This behavior reflects AND’s sensitive nature.

3.7 Themixingof cultural groups a�er the shock variedacross factor configurations. ANDandORconfigurationsdid
not exhibit significant changes in cultural diversity a�er the shock (Figures 3eand3f). Both locals and foreigners
in Region 1 had weak social ties before the shock due to the culturally well-mixed condition in these configura-
tions. A�er the shock, Region 1 residents su�ered from low water availability and weak social ties. No matter
which cultural group a resident belonged to, he/shemoved out of the region. Cultural diversity wasmaintained
at similar levels. ADD configuration exhibitedmore significant changes in cultural mixing in the shock scenario.
When Region 1 was disturbed, both locals and foreigners out-migrated (population movements of locals were
much greater). Foreigners could previously stay in Region 1 as high water availability replaced weak cultural
a�inity. Now that Region 1 could notmakeup forweak cultural a�inity,most of the foreigners in Region 1moved
to other regions, leading to the almost homogeneous cultural condition (Dj ≈ 1). Out-migration from Region
1 increased cultural diversity in other close regions (red boxplots in Figure 3d).

3.8 Our model results highlighted the importance of how factors are put together in a model. In the context of this
proof-of-concept ABM, howagents tookwater availability and social ties into account—that is, how they config-
ured these two factors—led to di�erences in resulting population patterns and a�ershock responses. Many of
these di�erent patterns and changes could be explained by the types of relationships between the two factors
encapsulated by our three factor configurations, namely substitutability (ADD), complementarity (AND), and
adaptability (OR). When one of the factors became unfavorable at the origin, substitutability provided some
bu�er to so�en the e�ects, complementarity led agents to become quite sensitive and incentivized to leave,
and adaptability enabled people to stay longer in a new environment a�er they migrated.

3.9 Factor configurationswere useful, but using them to di�erentiate underlyingmechanisms of populationmove-
ments was not always straightforward. For example, the population transition in Region 1 a�er the shock was
not more tolerant in the OR configuration than in the ADD configuration (Figure4c). Underlying mechanisms
fit well into the theoretical implications of factor configuration if all factors are at similar levels. Nonetheless,
factor configuration still o�ered a way for us to interpret some of these di�erent situations in a coherent way.

3.10 Although the population time series reached stationary ranges in the current parameter set, this is not always
the case. With larger β values (β(1)

1 = β
(2)
1 = β

(1)
2 = β

(2)
2 = β

(3)
2 = 5 or 6) and α(1) = α(2) = 0.3 under the

AND configuration, some populations alternated back-and-forth between low and high values (Figures 5c and
5d), akin to the so-called "flickering" of a bistable dynamical system approaching a regime shi� (Dakos et al.
2013; Sche�er et al. 2009; Taylor et al. 1993; Wang et al. 2012). The back-and-forth movement was caused by
collective movement and return between neighboring regions (Regions 1 and 2 in Figure 5c or Regions 4 and
5 in Figure 5d). Interestingly, such back-and-forth migration patterns have been documented in some migra-
tion cases of the real world, e.g., short-termmigration in India (Bala 2017), camps of displaced citizens in Haiti
(Fondation Scelles 2014). Transnationalism literature also discussed back and forth migrations between two
locations (Adams & Kasako� 2004; White 2012). This simple model was rich enough to exhibit diverse patterns
according to the changes in β values. β parameters did a�ect the model outcomes, yet factor configuration
more critically controlled the outcomes, proven by our companion paper (Carmona-Cabrero et al. 2020). To be
clear, the flickering-like behaviorwas only observedwhenβ valueswere large in the AND configuration, but not
in other cases.
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Figure 5: Regional population time series in the AND factor configuration with di�erent parameters. Plots rep-
resent one realization over 75 realizations. The plots were under pre-shock conditions.

Conclusions

4.1 This study used a proof-of-concept ABM in a stylizedmigration problem to answer the following research ques-
tions: (1) how does factor configuration between social and natural factors a�ect systematic patterns? and (2)
how are post-shock responses distinguished by the factor configuration? In this particular ABM, factor con-
figuration reflected the interactions between cultural a�inity and water availability in influencing an agent’s
decisions. Our results suggested that spatial distributions of the population and the mixing of cultural groups
candi�er significantly according to the factor configuration. Substitutability, complementarity, andadaptability
(ADD, AND, and OR configurations, respectively) exhibited di�erent spatial distributions of population and cul-
tural mixing. In the ADD configuration, substitutability resulted in quadratic spatial distributions of population
and cultural segregation. Highmobility and uncertainty of complementarity shaped irregular population distri-
butions and culturally well-mixed conditions in the AND configuration. Adaptability showed linear population
distributions proportional towater availability andhigh cultural diversity in theOR configuration. Furthermore,
we observed nonlinear responses in emergent patterns, both population distribution and cultural mixing, un-
der di�erent factor configurations in a shock scenario. ADD and OR configurations exhibited great population
changes in Region 1, while the change wasmore abrupt in the OR case. AND and OR configurationsmaintained
culturally well-mixed conditions to similar levels a�er the shock. On the other hand, ADD configuration had
di�erent post-shock responses. Region 1 became almost culturally unmixed, and Regions 2-5 increased their
degrees of cultural mixing. These a�ershock population patterns were sometimes unexpected because social
andnatural factor conditionsweredi�erent for all configurations right before the shock. Population transitions,
population distributions, and cultural mixing a�er the shock could still be explained through theoretical impli-
cations of factor configuration considering these di�erences. In sum, these results highlight the importance of
how, not just what, natural and social factors are incorporated into ABMs.

4.2 In this paper, we aimed to highlight the e�ect of factor configuration rather than to build a realistic model of
any particular system. We are aware that real-world migration involves other drivers related to politics, demo-
graphics, and economics (Black et al. 2011). Incorporating all these drivers in the model, however, would have
hindered us in answering our research questions in a clear fashion. Thus, our ABMwas purposefully built upon
a minimalistic design in the conceptual environment. We reduced migration decision-making dimensions by
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selecting cultural a�inity (social factor) and water availability (natural factor) as drivers. Such a design facili-
tated us to understand the primary mechanisms of the problem—the e�ect of factor configuration. Our future
work includes implementing several factor configurations to real-worldcasesandverifyingapplicability inmore
complex models, using the present model as a benchmark to capture missing migration factors (e.g., disaster,
fatality, income, etc.) at di�erent stages.

4.3 While our focus here is on how di�erent factors are configured in an ABM, ABMs of such complex processes as
migration have other challenges: They tend to involve many parameters to codify the many rules that govern
their agents, so many that sometimes it is di�icult to tell which parameters and their interactions drive the
model outcomes. Our ongoing work addresses that challenge by conducting global sensitivity and uncertainty
analysis on themodel to disentangle the direct and interactive e�ects of themodel’s inputs (Carmona-Cabrero
et al. 2020). This helps to informmanagement of the system and to evaluate the model.

4.4 Our lessons and findings about the importanceof how, not justwhat, factors are included in anABMare applica-
ble to othermodels of co-evolutionary systems, including CNHS, socio-ecological systems, and socio-technical
systems. These models integrate several components—e.g., humans, ecology, hydrology, technology, infras-
tructure, etc.—and therefore require an understanding of how components are incorporated. Clarifying the ef-
fects of theway inwhichmultiple factors are configuredwill improve thedevelopmentof these complexmodels
as well as their contributions to the development of a coherent theory.
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Appendix A: Selection of the Number of ABM Realizations

Since this model is stochastic, we need to run the model several realizations with the same inputs for robust
results. The realization size should be large enough to make outputs representative and robust for the same
inputs by reducing the the e�ect of stochasticity over the outputs. At the same time, it should be computation-
ally e�icient without excessive runs to minimize the simulation duration. We used bootstrapping technique to
identify the best realization size objectively in this tradeo�.

Webootstrapped twooutputs at 2000 time step (pre-shock condition) in the AND configuration: the population
in Region 3 and the degree of cultural mixing in Region 3 (D3) in the AND configuration. AND configuration was
the most variable and uncertain from our understanding. The realization size selected from the AND configu-
ration would produce stable outputs in the other two configurations. Also, Region 3 was particularly the most
stochastic among the five regions as it o�enworked as a transit. Therefore, the optimal realization size selected
from these outputs will be used for other outputs and factor configurations.

First, the model generated results for 200 iterations with the same inputs. We then resampledN outputs from
200 realizations. Here,N is directly related to the realization size. We tested di�erent resampling sizes ofN =
5, 10, 25, 50, 75, 100, 150, 200. Coe�icient of variation was calculated withN resampled outputs:

cv = µs/σs,

where µs is the mean of N resampled outputs, and σs is the standard deviation of N resampled outputs. cv
involves the relative variability ofN resampled outputs. Resampling and cv calculationwere repeated 25 times
for eachN .

Figure 6 presents distributions of cv in di�erent N values. When comparing mean, median, and range between
minimum and maximum scores, statistical properties converged to the values of large N results from N =
50− 75. Thus, we selectedN = 75 for more stable results in the model analysis.
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Figure 6: Coe�icient of variation cv by resampling sizeN for (A) population inRegion 3 and (B) degree of cultural
mixing in Region 3. Red lines represent median values, red crosses are outliers, and green stars stand for mean
values.

Appendix B: Trajectories of Per CapitaWater Availability, Social tTes, and
Staying Probability Under Di�erent Factor Configurations

Figure 7: Trajectories of per capitawater availability and social ties in pre-shock (A-E) andpost-shock conditions
(F-J) under theADD factor configuration. One residentper each regionwas randomlypicked for trajectories. The
contour represents staying probability in the current region. The color of dots indicates di�erent locations at
each time step. Theblue lines are trajectories before the shock, and the red lines are trajectories a�er the shock.
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Figure 8: Trajectories of per capitawater availability and social ties in pre-shock (A-E) andpost-shock conditions
(F-J) under theAND factor configuration. One residentpereach regionwas randomlypicked for trajectories. The
contour represents staying probability in the current region. The color of dots indicates di�erent locations at
each time step. Theblue lines are trajectories before the shock, and the red lines are trajectories a�er the shock.

Figure 9: Trajectories of per capitawater availability and social ties in pre-shock (A-E) andpost-shock conditions
(F-J) under the OR factor configuration. One resident per each regionwas randomly picked for trajectories. The
contour represents staying probability in the current region. The color of dots indicates di�erent locations at
each time step. Theblue lines are trajectories before the shock, and the red lines are trajectories a�er the shock.
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Appendix C: ODD Protocol

Overview

This ODD (Overview, Design concepts, and Details) protocol provides detailed information of our ABM that is
not explained in the main text of the manuscript.

Purpose

This model is built upon a proof-of-concept condition to verify the e�ects of factor configuration in simplified
migration decision-making processes. The model particularly focuses on incorporating cultural a�inity as a
social factor and water availability per resident as a natural factor. The model aims to (i) reveal how di�erent
factor configurations influence the emergent patterns and (ii) explore how factor configurations are related to
changing regimes of system outcomes in response to unexpected shock.

Entities, state variables, and scales

The environment of this stylized model is five patches in a row (in the x-axis direction), representing five inde-
pendent regions (Figures 1 and 10). Neighboring regions are one patch away from each other. Available water
in Region j (wj) is linearly decreasing from Region 1 to 5: wj = s(j − 3) + m (Table 2 for the explanation of
parameters). Then,wj is equally distributed to each resident in Region j (shown in the le� bottom in Figure 1).

Figure 10: A NetLogo interface of our ABM. In the le� top, you can select how natural and social factors are com-
bined (factor configuration) in the chooser per simulation. Water available in each region is shown in the plot
below the chooser. Le�bottompartmonitors attributes of Region j includingpopulation (pj), water availability
(wj), andwater allocated to each resident (wj/pj). In the center, we displaymodel outcomes—spatial distribu-
tions of population and the mixing of cultural groups—in the forms of both distribution graph and time series.
Parameters can be controlled in the right column.

AgentsofourABMare residentsof five regions (circles inFigure 10). Residents take their initial locations (patches
at t = 0) as their homelands and form social ties with people from the same homeland due to their cultural
background (social factor). Water availability is also an important factor inmigration decisions (natural factor).
Each resident has di�erent levels of social and natural factors in deciding whether to stay or to leave their cur-
rent locations. A resident calculates a migration probability based on factor levels and parameters for his/her
migration decision-making (equations for the migration probability are given in Table 1 and parameters are il-
lustrated in Table 2).
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Par Description Unit Value

m
Mean of available water for five regions. This input is directly related to the amount

of water supply over five regions. [W ] 100

s
A slope of water availability over five regions. Related to how equally/inequally water

is distributed in five regions. [−] -10

β
(1)
1

Weight of natural factor (water availability) in calculating first-stage migration
probability. Controls a shape of logistic function for the first-stage probability (flat

curve versus steep curve).

[
1

W/N

]
4

β
(2)
1

Weight of social factor (cultural a�inity) in calculating first-stage migration probability.
Controls a shape of logistic function for the first-stage probability (flat curve versus

steep curve).
[−] 4

α(1) Increase/decrease the probability of a resident to leave the current location (controls
degrees of first-stage probability) with respect to water availability.

[
W
N

]
0.3

α(2) Increase/decrease the probability of a resident to leave the current location (controls
degrees of first-stage probability) with respect to cultural a�inity.

[
W
N

]
0.3

β
(1)
2

Weight of natural factor (water availability) in calculating second-stage migration
probability. Controls a shape of logistic function for the second-stage probability (flat

curve versus steep curve).

[
1

W/N

]
4

β
(2)
2

Weight of social factor (cultural a�inity) in calculating second-stage migration
probability. Controls a shape of logistic function for the second-stage probability (flat

curve versus steep curve).

[
1
N

]
4

β
(3)
2

Weight of distance factor in calculating second-stage migration probability. Controls
a shape of logistic function for the second-stage probability (flat curve versus steep

curve).

[
1

patch

]
4

Table 2: Descriptions, units, and values of parameters used in the model.

This ABM is built in the artificialworld that theunits and scales are not basedon real-worldmeasures. In Table 2,
"[W ]" is an artificial unit related to the water amount, "[N ]" is a unit for the number of residents, and "[patch]"
represents a distance between regions.

Par Description Initial value

pj Count a population size in Region j 100
Dj Identify how well cultural groups are mixed in region j 1

Table 3: Descriptions and initial values of state variables used in the model.

Process overview and scheduling

Every time step, the followings are done.

1. First-stagemigration decisionmaking: Each resident decides whether to stay or leave the current location.
He/she first identifies the current levels of natural and social factors in the current region.

• Natural factor x(1): Water availability per resident in the current region j (x(1) = wj/pj)

• Social factorx(2): Strength of social ties in Region j stemming from the same cultural background. x(2) =
pjk/p

j ; pjk is the population in region j from homeland k)

He/she calculates a staying probability at the current location o (µo(t)) with these factors and parameters in
Table 2. An equation of staying probability depends on the first-stage factor configuration (F1).

• F1 =ADD: µo(t) = e
β

(1)
1 (x(1)−α(1))+β

(2)
1 (x(2)−α(2))

1+e
β

(1)
1 (x(1)−α(1))+β

(2)
1 (x(2)−α(2))

• F1 =AND: µo(t) =

(
e
β

(1)
1 (x(1)−α(1))

1+e
β

(1)
1 (x(1)−α(1))

)(
e
β

(2)
1 (x(2)−α(2))

1+e
β

(2)
1 (x(2)−α(2))

)
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• F1 =OR: µo(t) = 1−
(

1

1+e
β

(1)
1 (x(1)−α(1))

)(
1

1+e
β

(2)
1 (x(2)−α(2))

)

Then, the resident rolls a random dice between 0 and 1. If the dice value is smaller than µo(t), he/she stays in
the current location. Otherwise, he/she decides to leave the current region and proceeds to the second-stage
decision making to select where to go.

2. Second-stage migration decision making: Each resident who decided to leave the current region in the
first stage chooses which region to migrate to. He/she first identifies the levels of natural, social, geographical
factors in the other four regions.

• Natural factor∆x(1)
jo : Di�erenceofavailablewaterper residentbetweenoriginoanddestination j (∆x

(1)
jo =

wj/pj − wo/po)

• Social factor∆x(2)
jo : Di�erenceof population fractions from the samecultural backgroundbetweenorigin

o and destination j (∆x(2)
jo = (pjk − pok)/

∑5
i=1 p

i
k, where Region k is the homeland of a focal resident)

• Geographical factor∆x
(3)
jo : Distance between origin o and destination j

He/she calculates a second-stage migration probability (θj←o(t)) with these factors and parameters in Table
2. An equation of migration probability depends on the second-stage factor configuration (F2). Geographical
factor always has an inverse relationship to natural and social factors.

• F2 =ADD: θj←o(t) = CADD
e
β

(1)
2 ∆x

(1)
jo

+β
(2)
2 ∆x

(2)
jo

1+e
β

(1)
2 ∆x

(1)
jo

+β
(2)
2 ∆x

(2)
jo

/eβ
(3)
2 ∆x

(3)
jo

• F2 =AND: θj←o(t) = CAND

(
e
β

(1)
2 ∆x

(1)
jo

1+e
β

(1)
2 ∆x

(1)
jo

)(
e
β

(2)
2 ∆x

(2)
jo

1+e
β

(2)
2 ∆x

(2)
jo

)
/eβ

(3)
2 ∆x

(3)
jo

• F2 =OR: θj←o(t) = COR

{
1−

(
1

1+e
β

(1)
2 ∆x

(1)
jo

)(
1

1+e
β

(2)
2 ∆x

(2)
jo

)}
/eβ

(3)
2 ∆x

(3)
jo

CADD,CAND, andCOR normalize the probabilities (
∑
j 6=o θj←o = 1).

Then, the resident rolls a random dice between 0 and 1 (independent from the previous one). If the dice value
is in the range of cumulative probability for θj←o, he/she chooses Region j as the destination.

3. Move: Residents who decided to leave in the first stagemigrate to destinations selected in the second stage.
Residents who decided not to leave in the first stage just stay in their current region.

4. Update social and environmental properties: A�er the migration process is finished for all residents, the
model newly updates natural and social factors.

Shock scenario

At t = 2001, we drop 50% of water availability in Region 1 to explore how the system responds to the shock in
di�erent factor configurations. This drop is kept until the end of the simulation (t = 3000).

Design Concepts

Basic Principles. This model is a proof-of-concept ABM which simplifies environmentally induced migration
to test the e�ect of factor configuration. Though many drivers exist in this problem (e.g., economic, political,
demographic) (Black et al. 2011), we focus on natural (related to water availability), social (related to cultural
a�inity), and geographical (related to distance) factors.

Emergence. Two key outputs of our ABM are the spatial distribution of populations and the mixing of cultural
groups. The former explains how populations are spread over five regions, and the latter illustrates howmuch
each region is culturally homogeneous/heterogeneous. For the cultural mixing, we use Simpson’s diversity in-
dex (Dj) from ecology to quantify a level of how well Region j is culturally mixed.
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Adaptation. In our model, migration decision making is divided into two stages as in some migration models
(Champion et al. 2003; Rees et al. 2006; Stillwell 2005). First, a resident decides whether to stay in the current
region. Once the resident decides to leave, he/she chooses which region to go in the second stage. Decision
making is based on the probabilistic process rather than an adaptive process. A resident rolls dice with U[0, 1]
and behaves depending on the relationship between the probability value and dice value.

Objectives. An agent’s objective is to pursue a higher level of natural and social factors. Therefore, a resident
may leave the current location and move to a new place with a better situation. Yet, di�erent configurations
between these factors a�ect the decision making of the agent. For example, a low level of one factor can be
replaced by another factor under the ADD factor configuration and satisfy a resident to stay at his/her current
location regardless of insu�iciency.

Sensing. An agent is assumed to know howmany people from the same homeland stay in one region and how
much water can be supplied in each region (full information).

Interaction. The interactions are indirect in ourmodel. Themigration of residents a�ects thewater availability
to each resident. Migration also changes the strength of social ties in each region.

Stochasticity. In general, most of the processes in themodel are probabilistic. Decisionmaking of an agent de-
pends on the randomdice rolls. Migration patterns still have deterministic behaviors which aremore explained
using global sensitivity analysis (Carmona-Cabrero et al. 2020).

Collectives. People form social ties with others from the same homeland due to the same cultural background
(cultural a�inity). Social ties play a significant role in migration decision making.

Initialization

At t = 0, each region has 100 residents who take initial locations as their homelands. Five regions are all cultur-
ally homogeneous withDj = 1with their locals. Water allocated to each resident is 1.2, 1.1, 1.0, 0.9, and 0.8 in
Regions 1-5.
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