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Abstract: The agent-based model is the principal scientific instrument of generative social science. Typically,
we design completed agents—fully endowed with rules and parameters—to grow macroscopic target patterns
from the bottom up. Inverse generative science (iGSS) stands this approach on its head: Rather than handcraft-
ing completed agents to grow a target—the forward problem—we start with the macro-target and evolve micro-
agents that generate it, stipulating only primitive agent-rule constituents and permissible combinators. Rather
than specific agents as designed inputs, we are interested in agents—indeed, families of agents—as evolved out-
puts. This is the backward problem and tools from Evolutionary Computing can help us solve it. In this over-
arching essay of the current JASSS Special Section, Part 1 discusses the motivation for iGSS. Part 2 discusses
its goals, as distinct from other approaches. Part 3 discusses how to do it concretely, previewing the five iGSS
applications that follow. Part 4 discusses several foundational issues for agent-based modeling and economics.
Part 5 proposes a central future application of iGSS: to evolve explicit formal alternatives to the Rational Actor,
with Agent_Zero as one possible point of evolutionary departure. Conclusions and future research directions
are offered in Part 6. Looking ‘backward to the future,’ I also include, as Appendices, a pair of 1992 memoranda
to the then President of the Santa Fe Institute on the forward (growing artificial societies from the bottom up)
and backward (iGSS) problems.
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This article is part of a special section on "Inverse Generative Social Science", guest-editors: Joshua M.
Epstein, Ivan Garibay, Erez Hatna, Matthew Koehler, and William Rand

Part I. Motivation

1.1 This essay is the overarching – one might say "Manifesto"– article for the present Inverse Generative Social Sci-
ence (iGSS) Special Section of JASSS 1. I call this approach Inverse Generative Social Science because (a) I am
interested in explaining social phenomena (b) I have a specific generative notion of explanation in mind, and (c)
inverse computational methods, notably Evolutionary Computing 2, can produce agents meeting that explana-
tory standard. Importantly, iGSS does not change the generative explanatory standard. It offers a powerful way
to evolve agents meeting it 3.

From intelligent agent design to the blind model maker

1.2 To date, the agent-based modeling enterprise has consisted largely in the direct "intelligent design" of individual
software agents intended to collectively generate social phenomena of interest, from the bottom up. This intel-
ligent design programme has advanced very dramatically over the last several decades, with notable—in some
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cases transformative–impact on a remarkable range of fields, including epidemiology, violence, archaeology,
economics, urban dynamics, demography, ecology, and environmental adaptation, on scales ranging from the
cellular to the literally planetary 4. This practice of design will, and unquestionably should, continue.

1.3 Here, we explore standing this ‘paradigm’ 5 on its head: Rather than handcrafting completed agents to grow a
given target—the forward problem—we wish to start with the macro-target and evolve micro-agents—families
of them—that generate it "from the bottom up." Rather than agents as designed inputs, we are interested in
agents as evolved outputs. This is the backward problem and tools from Artificial Intelligence can help us solve
it. That could be transformative. 6 Several distinctions are crucial to clarify the goals of iGSS, at least as I have
come to see them since my earlier articulations of this idea.

Two back-to-the-future memoranda

1.4 The first of these was in a September 1992 memo to the then President of the Santa Fe Institute, Ed Knapp,
which I attach as an Appendix of possible interest. The memo was entitled Using Genetic Algorithms to Grow
Artificial Societies and it gives, rudimentarily, the iGSS steps elaborated below and illustrated by the models in
this collection 7.

1.5 That memo refers to an earlier, August 1992, memo entitled Artificial Social Life that proposed the extension of
ALife approaches to the forward problem of growing artificial societies as a whole. It suggested several lines of
future research, some of which were expanded and developed with Robert Axtell in the Sugarscape work.

Organization of the paper

1.6 Although wrapped in (but hopefully not obscured by) broader themes, I will discuss (a) the aims of iGSS, (b) the
steps in doing it, (c) several concrete applications, (d) foundational challenges, and (e) a central topic for the
future, evolving formal alternatives to the rational actor model. That is the trunk of the essay, though there are
several branches. More specifically, Part 2 updates and extends the generative explanatory standard, pointing
out several important distinctions and common confusions. Part 3 discusses concrete steps in doing iGSS, with
examples drawn from the four articles following this essay. Having discussed what it is (and is not) and how to
do it, Part 4 discusses several foundational challenges, some shared by Economics, and highlights the specific
need to develop formal alternatives to the rational actor. Part 5 discusses Agent_Zero as one such candidate. My
own thinking about Agent_Zero has itself evolved since its original publication. I now give two precise senses in
which this agent differs from the rational actor. Also new is a demonstration of Agent_Zero’s self-awareness that
his own (here destructive) behavior lacks evidentiary basis. These points require a concise demonstration of
Agent_Zero in action. For this reason only, one is presented. Also discussed are differences between Agent_Zero
and some of the Dual Process (e.g., System 1 / System 2) literature, with overall Conclusions in Part 6.

1.7 This essay, then, is far more than a technical exegesis of iGSS, but tries to locate it in the broader intellectual
landscape including AI, economics, rational choice theory, dual process cognitive psychology, and core issues
for agent-based (and mathematical) social science as a whole.

1.8 One theme is philosophical. Einstein said, “Science without epistemology is—insofar as it is thinkable at all—
primitive and muddled." Let us begin there.

Part II. Generative Epistemology and Core Distinctions

Generative explanation

2.1 Epistemologically, the defining feature of generative social science is its explanatory standard. Since iGSS adopts
the same standard, it is worth clarifying it in some detail before presenting examples in Part 3.

2.2 Since the success of a model obviously depends on its goals, of which many are possible (Edmonds et al. 2019;
Epstein 2008; Axtell 2016), we distinguish explanation as a general goal from others with which it is often con-
fused. The most important of these is prediction. The distinction between explaining and predicting is central
to the philosophy of science and the literature surrounding it is both extensive and complex. While there may
never be a "last word" on the subject, as a first word, the explain-predict distinction is sometimes introduced
by saying that predictions are claims that or when some event will occur, 8 while explanations concern why,
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that is, by what mechanism, such events occur. Arguably, one could predict without explaining and vice versa,
as argued in Suppes (1985) "Explaining the unpredictable." 9 Our focus here is on explanation, and in the case
of human social systems, we have a specific, generative, explanatory notion in mind: "To explain a social pat-
tern . . . one must show how the pattern could emerge on time scales of interest to humans in a population of
cognitively plausible agents." (Epstein & Chelen 2016).

Toward cognitively plausible agents

2.3 While this phrase, "cognitively plausible" is obviously open to interpretation, few would deny that a wide range
of human behaviors involve (a) emotional drives, which are not necessarily conscious or "chosen" (b) delibera-
tions, which are conscious but are bounded by incomplete information, cognitive biases, and computational/-
mathematical limits, and finally (c) social influence.

2.4 If one must choose a minimal set of basis elements for a space of cognitively plausible agents, these three "axes"—
emotion, bounded deliberation, and social influence—have some claim to primacy, as argued elsewhere (Ep-
stein 2013; Epstein & Chelen 2016).

2.5 One simple provisional candidate in the "span" of that minimal basis and grounded in cognitive neuroscience,
is Agent_Zero (2013). This theoretical entity is offered as a simple, but formal mathematical alternative to the
rational actor, in several senses discussed in Part 5 below, where a concrete example of Agent_Zero in action
(in the context of violence) is given. Obviously, not all situations engage all three (emotional, deliberative, and
social) of Agent_Zero’s "triple process" modules. However, in charged settings like financial panics, pandemics,
or civil violence, all three modules are active, and they interact.

From bounded- to ortho-rationality

2.6 The requirement for cognitive plausibility extends earlier renditions of the generative explanatory standard.
In Epstein & Axtell (1996) and Epstein (1999), Epstein (2006), bounded rationality (Simon 1972), was the sole
cognitive requirement 10. I took that term to mean that in making conscious decisions, agents are hobbled by
incomplete information and computational/mathematical limits. However, there was no insistence on an explicit
non-conscious affective component in addition. More recently (Epstein 2013) I have argued, along with many
cognitive scientists (Slovic 2010) that in diverse settings, this is indispensable. In a crude and provisional way, I
included an affective (fear learning) module in Agent_Zero. Network effects aside, Agent Zero’s actions depend
on her affective and deliberative modules 11. I would now say that Agent_Zero’s deliberative module is boundedly
rational, but that the affective module is a-rational, or perhaps ortho-rational 12.

2.7 As noted earlier (Epstein 1999) the term "generative" was inspired by Chomsky (1965). By whatever name, this
notion of explanation is distinct from several others, which we now discuss.

Distinct from Nash Equilibrium

2.8 Game Theory can of course be interpreted as the pure mathematical study of optimal behavior in strategic
settings. Interpreted so, it is a deep area of mathematics that does not purport to explain or predict human
behavior. By contrast, for many applied game theorists (e.g., studying competition, conflict, cooperation), to
"explain" a pattern is precisely to furnish a Game in which the target pattern (a set of strategies) is shown to be
the Nash Equilibrium: 13 If placed in the pattern, no rational (payoff-maximizing) agent would unilaterally depart
from it. Missing is any mechanism whereby cognitively plausible agents (untrained and deductively challenged
humans) get into the pattern, or get out of it (if dominated by other Nash equilibria 14), for that matter, or how
long either process might take.

2.9 Obviously, the Nash equilibrium state (e.g., mutual defection in the one-shot Prisoners’ Dilemma game) might
be attained in myriad ways, including at random. The issue is whether, from its payoff matrix (expressing the
strategic setting), cognitively plausible agents can attain equilibrium (deduce the optimal strategy) by reason-
ing. The experimental literature suggests otherwise (see Capraro et al. 2014). A memorable counter-example is
an experiment conducted by Merrill Flood and Melvin Dresher at the Rand Corporation (Flood 1958). It involved
an extension of one-shot play to a sequence of one-shot PD games played 100 times by Rand mathematicians
Armen Alchien and John Williams, then chair of Rand’s mathematics department. The players knew that ex-
actly 100 games would be played. By backward induction, the optimal strategy (the Nash solution) is to defect
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in all games. 15 This is not what the mathematicians did, playing cooperate respectively in 68% and 78% of the
games. When Nash himself was told of this outcome, he was surprised at "how inefficient" they were, adding,
"One would have thought them more rational." (recounted in Hodgson 2013).

2.10 On the Bayes-Nash extension, Varian (2014, p.281) writes, "The idea of the Bayes-Nash equilibrium is an inge-
nious one, but perhaps too ingenious. . . there is considerable doubt about whether real players are able to make
the necessary calculations." 16 Of course, if the target social pattern of interest is not an equilibrium at all, then
perforce, it is not a Nash equilibrium either.

2.11 So, demonstrating that an observed strategic configuration is the Nash equilibrium of a Game does not consti-
tute a generative explanation of it (or, as Nash lamented, a reliable predictor of behavior).

Distinct from Becker optimal control

2.12 We also depart from the related Becker 17 tradition in which behaviors are taken to be explained when they
are demonstrated to be solutions (extremals) of an optimal control or dynamic programming problem, as in
Becker & Murphy’s famous (1988) article, "A Rational Theory of Addiction." As with the vastly simpler problem
of maximizing a standard (e.g., Cobb-Douglas) utility function subject to a budget constraint, solving–indeed,
even formulating–such mathematical problems vastly exceeds the cognitive capacity of untrained humans.

2.13 Therefore, if the Becker School’s contention is that humans are setting up and solving such optimization prob-
lems, it is prima facia untenable, and is rejected by many economists, including Akerlof & Shiller (2010), and of
course by Keynes (1936), who famously wrote:

Most, probably, of our decisions to do something positive 18, the full consequences of which will be
drawn out over many days to come, can only be taken as a result of animal spirits — of a sponta-
neous urge to action rather than inaction, and not as the outcome of a weighted average of quan-
titative benefits multiplied by quantitative probabilities.

2.14 More importantly, the assumption of optimization flies in the face of extensive empirical counter-evidence from
cognitive psychology and behavioral economics (e.g., Simon 1972; Kahneman et al. 1982; Kahneman 2011;
Slovic 2010; Ariely 2008; Dawes 2001; Ellsberg 1961; Allais 1953)19.

Friedman’s gambit declined

2.15 Friedman’s (1953) famous "Positive Economics" gambit was to (a) grant this point, (b) deny imputing such pow-
ers to humans, and (c) claim that people and other economic actors (e.g., firms) behave simply "as if" they were
optimizing 20. Because otherwise, they are selected out 21. This is quite inconvenient for the Becker-Murphy
addiction model since what they claim to be rational behavior (namely addiction) increases the risk of being
selected out, by overdoses!

2.16 More pertinent, are we to say that freely falling rocks are acting "as if" they were solving Newton’s equations?
"Conforming to" the equations and "solving" them strike me as radically different. While it is untenable that
we humans are formulating and solving Bellman’s equations (or applying Pontryagin’s maximum principle), it
is clear that in many natural and experimental settings, we are not even conforming to them. 22

2.17 Furthermore, since one could also arrive at an optimum by random walk or imitation, are Friedmanites not
compelled to say the actors of interest are also behaving "as if random" and "as if imitating" and "as if " any
of the innumerable processes that could eventually arrive at an optimum"? If so, why retain the word "rational"
at all, since, on the "as if anything" reading, it is devoid of any specific cognitive content, as its proponents
curiously insist. As for Becker and Murphy, rather than "a rational theory of addiction," perhaps what they truly
displayed was an irrational addiction to theory!

2.18 In any event, neither Becker nor Friedman (nor their lineage) appear interested in generating observed macro-
social phenomena from the bottom up in populations of cognitively 23 plausible (and perforce heterogeneous)
agents, a notion we will clarify below in connection with Rational Choice Theory and the Agent_Zero approach.

Distinct from macroeconomic regression

2.19 Another approach that—while very powerful—is not explanatory in our generative sense is aggregate regres-
sion. Regression may well predict the response of an aggregate dependent variable to changes in one or more
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aggregate independent variables. This, however, gives a purely macro-to-macro account when we want a micro-
to-macro account. To a generative social scientist, the aggregate relation (the regression equation) itself is the
explanandum. That is the target we wish to grow! When agent modelers give a bottom up generative account
of some macro pattern, they are sometimes challenged with the question, "Couldn’t you just do that with a re-
gression?" The answer is "No, you couldn’t do that—give a micro-to-macro account—because the micro world
is absent from the regression".

Distinct from compartmental differential equations

2.20 Likewise, in epidemiology a well-mixed compartmental differential equation epidemic model may well pro-
duce the same population-level infection curve as an ABM (Rahmandad & Sterman 2008). However, the former
does not illuminate how that macro pattern could emerge from a population of cognitively plausible interacting
agents. The model outputs (the aggregate curves of cases over time) are the same, but the agent-level genera-
tive mechanism is absent from the classical compartmental differential equations.

Generative explanation for policy

2.21 If we care solely about aggregate prediction, we may not need the micro-mechanism. However, if we wish to
design interventions at the micro-level of agent information, expectations, and rules, a representation of the
micro-world is essential. What changes to the micro rules will induce—from the bottom up—a different ‘emer-
gent’ macroscopic pattern, like a more healthy, peaceful, or equitable society? In the COVID-19 pandemic, epi-
demiologists used differential equations to estimate the vaccination level required to produce herd immunity at
the population (macro) scale. The problem was how to induce that level of vaccine acceptance by large numbers
of misinformed and unduly fearful individuals at the micro scale. In such cases, explanation—understanding
cognitive micro mechanisms—may be more important for the design of policies and policy messages than mere
macro-scale prediction.

Posit vs. Generate

2.22 Another important distinction that I have encountered is between positing and generating. To some, the motto
of generative social science is "If you didn’t grow it, you didn’t explain it" (Epstein 1998). That is emphatically
not a dictat that "You must grow everything in your model." Some elements of every model must be posited.
These may be very important actors, treated as agents in their own right, like intermediate institutions (e.g.,
the Federal Reserve). The point is purely definitional: if they aren’t generated, then they aren’t explained. That
does not mean they are inessential or forbidden, much less that the model is somehow a failure if it posits non-
generated elements. To insist that every element of a model be generated invites an infinite regress of demands
that every generator itself be generated and it’s "turtles all the way down."

2.23 After all, even biological evolution began with primitive constituents (the chemical elements) and rules govern-
ing their permissible combinations (the laws of Physics) 24. Of course, as in Physics, we always look for more
fundamental unifying laws that entail the ones in hand. 25 But we don’t suspend science in the meantime.

Necessity vs Sufficiency

2.24 Centrally, the motto (‘Not grown implies not explained’) must not be confused with its converse (‘Grown implies
explained’) 26 as explicitly stated in several publications, including Epstein (2006, p.53):

"If you didn’t grow it, you didn’t explain it. It is important to note that we reject the converse claim.
Merely to generate is not necessarily to explain (at least not well) . . . A microspecification might
generate a macroscopic pattern in a patently absurd—and hence non-explanatory—way." In sum,
"generative sufficiency is a necessary but not sufficient condition for explanation." (Emphasis in the
original).
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Uniqueness vs. Multiple generators

2.25 Finally, the motto does not say there is only one way to grow it. As noted in a series of publications (Epstein
1999, 2006, 2013; Epstein & Chelen 2016), there may be many ways to grow it; many agent specifications that
suffice to generate the target, be it segregation, or the skewed distribution of wealth. That is precisely the point
of iGSS: to enlist AI approaches in the discovery or evolution of multiple generators 27.

Adjudication between competing generators

2.26 It is an embarrassment of riches, not an embarrassment, to have multiple generators. As in any other science
where theories compete, we must of course devise ways to adjudicate between them, by collecting new micro-
data or designing new experiments at the micro-scale. As often occurs in science, new theory may precede
and guide data collection and experimental design. It is no different here. Having multiple generators is also
common in climate science, hurricane forecasting, and epidemiology where several mechanistically different
but empirically credible models are used to form a probabilistic "cone" over possible futures. Inverse methods
can provide us with families of this type.

2.27 In summary, the motto does not say that generating is sufficient for explanation; it does not say that one must
generate everything in one’s model; and it does not say generators are unique. Generative sufficiency confers
explanatory candidacy. If there are multiple candidates, more empirical or experimental work is required to
adjudicate between them, as in every science.

2.28 Having discussed critical distinctions and goals, and having insisted on the addition of an affective (not just
boundedly-rational) component in charged settings, we now present the modular Agent_Zero, as a minimal
cognitively plausible agent. This sets up the Part 5 demonstration of Agent_Zero as an alternative to the rational
actor and the proposal to "disassemble" Agent_Zero and evolve alternatives to it using iGSS.

The modular Agent_Zero

2.29 Agent_Zero’s observable behavior is produced by the interaction of internal affective and boundedly-rational
deliberative modules 28 (each an explicit real-valued function). In addition, Agent_Zero is a social animal in-
fluenced by other emotionally-driven and boundedly-rational Agent_Zeros in social networks. These networks
form and dissolve endogenously based on affective homophily. 29 The agents’ behavior changes their envi-
ronment (a landscape of aversive stimuli, attacks in the violence illustration), which feeds back to change the
agents, so micro and macro are in fact coupled. All mathematical and computational specifics of Agent_Zero
are given in Epstein (2013). Importantly, however, my stated goal was "not to perfect the modules but to begin
the synthesis," and to do so formally. This is crucial.

Formalization

2.30 All but the most doctrinaire would grant that humans are not perfectly rational, but would argue that the ratio-
nal actor model is a mathematically tractable and fertile abstraction like the ideal gas. As the saying goes, "You
can only beat a model with another model," and lacking a formal alternative, the rational actor will hold sway.
As Kahneman writes, "Theories can survive for a long time after conclusive evidence falsifies them, and the
rational-agent model certainly survived the evidence we have seen, and much other evidence as well." (Kahne-
man 2011, p.374). Albeit crude and provisional, Agent_Zero is a formal alternative.

The affective module

2.31 For the affective module of Agent_Zero, I used the classic, but very simple, Rescorla & Wagner (1972) equations
of associative fear learning (given a stimulus) and extinction (when the stimulus stops). These crudely capture
the performance (not the tissue science) of the amygdaloid complex in a wide range of vertebrate species in-
cluding humans. Very interesting work by Trimmer et al. (2012) demonstrates why natural selection could favor
the Rescorla-Wagner fear-learning rule. However, as noted in Epstein (2013) and in Epstein & Chelen (2016),
there are several existing alternatives to explore, 30 and an even larger family to evolve computationally from
more fundamental rule primitives, as proposed below.
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The deliberative and social modules

2.32 Similarly, there are many alternatives to Agent_Zero’s boundedly-rational deliberative module, which com-
putes a moving average 31 of local relative attack (aversive stimulus) frequencies over a memory window 32.
The same point applies to affective homophily 33 as the endogenous mechanism of network formation, making
it a "triple process" model if you like.

Entanglement

2.33 Finally, I began with a linear combination of modules, when we know that these can be deeply entangled, as
when our fear of an event (the emotional module) distorts our estimate of its likelihood (the deliberative mod-
ule). In that case, just as Hume would have it, "Reason . . . is a slave to the passions." I proposed a simple non-
linear functional form entangling these modules, without adding parameters, in which fear of an event distorts
our estimate of its probability. 34 This is another very fertile area to be sure.

2.34 My commitment, then, was to a formalized synthesis, not to the components (though defensible as a starting
point). And from Agent_Zero’s constituents, iGSS can discover new ones, and combine them in new nonlinear
ways. As I wrote of the published versions of Agent_Zero,

"Whether this particular agent, or some distant progeny yet to emerge, I believe this broad family
tree of individuals—each capable of emotional learning, bounded rationality, and social connec-
tion—is well worth developing." (Epstein 2013, p.193)

2.35 In the present context, I would say, "well worth evolving," using evolutionary computation and other tools from
AI. In several respects, however, Inverse Generative Social Science would be a new use of AI.

AI, emulation and explanation

2.36 As noted in Epstein (2019) and in our iGSS Workshop Descriptions, Artificial Intelligence is displacing humans. It
is augmenting humans. It is emulating humans. It is defeating humans. It is not (yet) explaining them. We want
to enlist it in the (generative) explanatory enterprise. For example, AlphaZero annihilates humans at chess. But
this does not illuminate how humans play chess.

2.37 In one famous game, Gary Kasparov defeated IBM’s Deep Blue with a startling sacrifice. When asked how he
came up with that brilliancy, Kasparov answered, ‘It smelled right.’ I would say that we humans do many things
"by smell," without the explicit comparison of costs and benefits assumed in textbook renditions of economic
choice.

Choice-free aspects of social science

2.38 As discussed above, the evolved human fear apparatus, which generates a great deal of observable behavior,
is not choice-like, or necessarily even conscious, much less "rational." 35 Yet, it exhibits dependable regularities
we can represent (at least crudely) in mathematical models.

2.39 Now, a committed Rational Choice theorist would counter that the fear—even baseless fear–is subsumed in
one’s utility function and that, given the fear, you then optimize your behavior. In the case of fear (and several
other emotions 36), this is not supported by the neuroscience.

2.40 You do not in fact optimize behavior given your fear, you often behave before you are aware of your fear. As
James (1884) put it, ‘you don’t run because you fear the bear. You fear the bear because you run.’ For the
contemporary neuroscience of this, see LeDoux’s (2002) discussion of the "low road" (amygdala-based: fast and
inaccessible to conscious ratiocination) and the "high road" (prefrontal cortex: delayed and evidence-based)
of the human fear response. If a snake lands in your lap, you instantly freeze. You do not choose to freeze.
Only after that do you consciously evaluate whether it is a real or a rubber snake and choose whether to remain
motionless.

2.41 The central point, however, returning to AI is that defeating and displacing humans does not illuminate how hu-
mans work. The confusion is between the emulation of human output and the revelation of a human generative
mechanism. Perhaps the most glaring example of this confusion is Turing’s own Imitation Game.
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The Turing Test is irrelevant to explanation

2.42 Turing (1950) considered the question, "Can machines think?" to be too unclear to warrant discussion (for a
challenge, see Chomsky 2009) and proposed to replace it with (paraphrasing), ‘Can we distinguish the com-
puter’s responses from those of a human in [his famous] Imitation Game?’ Whatever else might be gained from
the Imitation Game, it is clear that a machine’s emulation of human output per se does not illuminate how (the
mechanism by which) humans generate that output. How so?

2.43 Imagine the following Imitation Game. Behind Turing’s screen is a soprano and a perfect recording of that same
soprano. No human subject can tell them apart. The recording tells me nothing about how humans vocalize.
By what mechanism do humans generate ‘sounds?’ By blowing wind across vocal chords, whose vibrations
produce travelling waves in the medium, and so forth. 37 The perfect recording gives me no clue. 38 As Chomsky
(2009) has written,

". . . a machine is a kind of theory, to be evaluated by the standard (and obscure) criteria to deter-
mine whether the computational procedure provides insight into the topic under investigation: the
way humans understand English or play chess, for example. . . . Questions about computational—
representational properties of the brain are interesting and seem important; and simulation might
advance theoretical understanding. But success in the imitation game in itself tells us nothing about
these matters." (Emphases added).

Talking AIs

2.44 An equivalent confusion arises in connection with "Talking AIs." That a Large Language Model (LLM) trained on
massive data can spit out grammatical English word strings tells us nothing about how humans acquire a gram-
mar in the first place, with no such training and long before they even have a notable vocabulary on which to
train! The central cognitive science question is precisely how the infant acquires a grammar (a finite rule system
capable of generating the infinite set of all and only grammatical word strings) given the extreme "poverty of the
stimulus." (See Berwick et al. 2011). Indeed, how does the infant brain even distinguish—from the cacophony
into which it is born–those auditory stimuli (again, waveforms in the medium) that are linguistically salient,
from the ambient sounds of rustling leaves, parental sneezes, and crashing dishes? For a pellucid statement
of the issue, see Epstein & Hornstein (1999). Despite the myriad applications of LLMs, human grammar acqui-
sition involves an innate cognitive endowment that the massively trained LLM neither possesses, formalizes, nor
illuminates. 39

Big data end of theory

2.45 The same general emulate-explain confusion has other incarnations, including the "End of Theory" big data
movement, if I may 40. Again, either we are proposing to abandon the search for underlying generative mech-
anisms, or we are purporting to reveal them by vast sampling of output. The latter seems fatuous, as if ‘To
understand how the steam engine works, let us begin by sampling clouds of emitted steam; collect Big Steam
Data.’ Suppose we can construct a model that produces the same data. The model might even let one predict
emitted Steam at time t + 1 from emitted Steam at time t. However, this teaches us nothing about how the
steam engine works. The emulation of output does not illuminate generative mechanism.

Markov models simply encode the problem

2.46 In turn, suppose we have a cognitively plausible micro-mechanism, m that generates a macroscopic target
pattern, M . Some would say that m is unnecessary because M is the equilibrium distribution of some Markov
Process with transition matrix T . To give this position it’s due, let us think of M as a stationary distribution of
wealth across social groups. It is certainly deep and interesting that (under several mathematical strictures)
for any M , there exists a Markov transition matrix 41 T whose terminal distribution is also M . How does T (a
list of transition probabilities) illuminate the mechanism, m? T might predict, but it does not explain. Why
is the inter-generational transition probability from poor to rich so low in America? If we want to change it
by designing interventions at the micro (e.g., urban neighborhood) scale, we need more than the transition
probability itself. We need mechanisms, like polluted environments, poor schools, systemic discrimination,
and the ambient threat of violence.
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2.47 T ’s entries alone simply encode the social problem. They are the target of the ABM, not a substitute for it. Here
again, explanation is essential to policy.

2.48 Having clarified some broad goals of iGSS, made some central distinctions, and situated it in the broader dis-
cussion, there are six essential steps in actually doing it in particular cases.

Part III. Concrete Steps of iGSS with Examples from the Collection

3.1 Each of the models in the present collection, and many beyond, address their topics in their own way. In some
respects, these are requirements of Genetic Programming generally. Of course, one must begin with an explicit
target of some sort (or there is nothing to explain). What aggregate pattern or collective functionality are we
attempting to generate? Step 1, therefore, is:

• Stipulate the macro (or other) target (i.e., what you are attempting grow).

3.2 The papers in the present collection exhibit a colorful range. In Gunaratne et al. (2023), the target is a stable
mixed racial residential pattern in an artificial Schelling-like segregation model. In Vu et al. (2023), it is the em-
pirical time series’ of drinking (alcohol consumption) data for males and females in New York State from 1984
to 2016, the challenge being to simultaneously generate both time series. In the flocking and opinion dynamics
models from Greig et al. (2023), it is (a) a dynamic reference pattern, from the famous Boids model (Reynolds
1987) of flocking behavior and (b) multi-modal (including polarized) opinion dynamics. In Miranda et al. (2023),
it is the true performance of human subjects in a common pool resources (irrigation) experiment. Having stip-
ulated the target output, the next task is to:

• Stipulate the agent rule-constituents, or primitives, as distinct from numerical parameters and their ranges.

3.3 Examples of agent rule constituents from the Gunaratne et al. (2023) mixed Schelling segregation model in-
clude: the agent’s preference for like-colored neighbors, the average age and racial composition of each candi-
date neighborhood, its distance from the agent’s current location, and the agent’s moving history. In the Greig
et al. (2023) Flocking model, ‘avoid collisions,’ ‘normalize,’ and ‘maintain separation’ are primitives. In the Vu
et al. (2023) alcohol model, ‘conform to the injunctive norm’ (the agent’s perception of acceptable drinking by
sex) and ‘maintain drinking habit’ (based on prior drinking level) and autonomy are available rule constituents.
In the Miranda et al. (2023) common pool irrigation game, upstream and downstream homophily are rule con-
stituents.

3.4 Obviously, the initial number of agents or the agents’ maximum vision would be global variables or numerical
parameters, but not agent rules. These numbers of course must also be assigned for the models to run. To
evolve rules from primitives, we must

• Stipulate the permissible concatenations of primitives.

3.5 These primitives can be combined in innumerable ways to form agent rules. In most Genetic Programming since
Koza (1992), the complete rule is represented as a Tree structure with primitives as terminals and permissible
combinators as nodes. Edges can encode mathematical operations like addition, division, square root, or logs
and also logical operators such as ‘if-then’ and ‘not.’ One can also permit or constrain the nesting of operators,
as in log(log(x)). In purely mathematical problems, the nodes would be variables like x and y, and the edge
structure might stipulate that, for example, the log of their product should be raised to some power. The GP
Tree representation of the function: uv + exp(4 + u) is shown in Figure 1.
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Figure 1: Mathematical function as a GP tree.

3.6 In our cases (displayed below) the terminals are rule-primitives, like "fraction of like-colored neighbors," "move
to," or "maintain a threshold separation distance." The combinators include logical operators like "if-then" and
"not."

3.7 The winning Tree, or agent architecture, from Gunaratne et al. (2023) is shown below in Figure 2. Notice its
retention of Schelling’s sole rule shown in green.

Figure 2: Mathematical function as a GP tree. Source: Gunaratne et al. (2023).

3.8 As in all evolutionary computing, rule trees (agent architectures) below some fitness threshold are selected out
while performers above it progress to the next round of mutation, crossover, and selection.

3.9 There are two specifically evolutionary aspects of the approach. First, complete Trees can mutate (e.g., at a
terminal) and can crossover (have sex with other trees) to produce offspring trees. In the (present collection)
Gunaratne et al. (2023) Schelling model, the Vu et al. (2023) alcohol model, and the Greig et al. (2023) flocking
and opinion dynamics models, crossover is used. In the Miranda et al. (2023) irrigation model, it is not. To
bound the search space of Trees (rules), one can also impose limits on their complexity, variously defined (e.g.,
expression length, logical depth), which is done in several of the models.

3.10 Agents scoring well on one fitness metric may score poorly on another, so the choice of fitness metric will chan-
nel the evolutionary process, bringing us to the fourth step:

• Stipulate a fitness metric.

3.11 When we run an ABM, we are mapping (sending an element of) a domain space of micro-scale agent architec-
tures to an image-space of macroscopic patterns or collective functionalities. Some member of the latter set
is the Target. The fitness of an agent model (micro-scale) is the proximity of its generated output to the target
(macro-scale).

3.12 The evaluation of fitness therefore requires that we metrize the set of macro-patterns and compute the distance
between the model-generated macro-pattern and target macro-pattern. This is done in many modeling areas
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and can typically be done in many ways. For positive integer values of p, the Lp norms used to compute the
distance 42 between two functions (one the target and one the model output) are themselves countably infinite.
In the earlier Artificial Anasazi modeling (Axtell et al. 2002) we explicitly offered goodness-of-fit (i.e., model
fitness) on three of these Lp-norms. In no way is this Step a distinctive challenge for ABMs (or inverse ABMs),
then.

3.13 In the present collection, Greig et al. (2023) use the mean-squared error (MSE) with respect to the target flocking
and opinion patterns, while Miranda et al. (2023) use 1-MSE in their irrigation model. Vu et al. (2023) use the
implausibility metric from Approximate Bayesian Computation (ABC) as in Andrianakis et al. (2015).

3.14 Importantly, one can include a complexity penalty in the fitness function itself, to bias selection toward human-
interpretable models 43. A simple such penalty is the number of nodes in the tree representation of the agent.
Vu et al. (2019) put an upper limit of 16 elements on the set of evolved agent rules, for example. The next step
is to

• Stipulate an evolutionary algorithm.

3.15 To ensure replicability, one must explicitly state the algorithm used to evolve agent architectures. The present
collection exploits several of these: Gunaratne’s Evolutionary Model Discovery (EMD) engine is completely open
source and is used in the Schelling extensions published here, in the earlier, very interesting extensions of the
Artificial Anasazi model in Gunaratne & Garibay (2020), and in the collective action irrigation model of Miranda
et al. (2023). The DSL tool is employed by Greig et al. (2023), and the Grammatical Evolution engine is used by
Vu et al. (2023). Google has released a Genetic Programming engine as well, and several ABM environments
include them. Finally, we must

• Stipulate a stopping rule.

3.16 Only in rare cases can we say definitively that the GP has found the absolute global peak of a typically rugged
fitness landscape. 44 Therefore, we must furnish the GP with a stopping rule, which could be a time limit, a
"satisficing" fitness threshold, or other criterion. In this collection, a finite generation count is used in all but
the Greig et al. (2023) model, which uses a loss threshold as its stopping rule.

3.17 An interesting possibility is that, when the stopping rule is applied, the winning architectures may retain func-
tionless "Darwinian tubercles" 45 that evolution (the GP) "never got around" to eliminating.

3.18 Table 1 gives all these six elements for each of the four articles (five models) below.
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Table 1: Required elements for each model.

The new locus of design and architecture

3.19 As the Table makes clear, iGSS does not dispense with intelligent design. Rather, it changes the locus of de-
sign from the completed agent to more elemental building blocks for the computational evolution of agent
architectures. Architectures become specific agents when numerical parameter values and initial conditions
are assigned. Architectures, then, are truly distinguished by the agents’ rules.

Rules are natural language expressions

3.20 Centrally, when we speak of agent rules in an architecture, we have in mind natural language expressions, not
numerical parameters. The distinction between parameters and rules is crucial for two reasons. First, we know
how to measure the distance between two real number parameter values. We, I will argue, do not know how
to (usefully) measure the distance between two rules. This is problematic (and not just for agent modeling) in
connection with model sensitivity to rule perturbations. Second, agent rules can in principle be written out
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longhand in English 46 (or English pseudo-code) which will be useful in considering the tradeoff between ac-
curacy and human comprehensibility. In some cases, the tradeoff is steep. Surprisingly, in others, the fittest
evolved rule can be remarkably simple.

Rule fitness vs. Interpretability

3.21 An earlier published example of a steep accuracy-comprehensibility tradeoff is below, from Probst et al. (2020).
There, we used iGSS to discover rules of drinking behavior that generate the true alcohol consumption time
series data for NY state over the period 1984 to 2020. The four primitives were payoff (hedonic satisfaction),
the injunctive norm (appraised opprobrium associated with drinking), autonomy, and the disjunctive norm (the
agent’s appraisal of drinking prevalence. Permissible concatenations were {+,−, ∗,

√
} with nesting (recur-

sion) of expressions permitted. Table 2 gives the final fitness ranking of the top eight evolved agent rules.

Table 2: Ranking of evolved agent rules.

3.22 The tradeoff between rule fitness and complexity is shown in Figure 3.

Figure 3: Tradeoff between fitness and complexity.

3.23 In this case, the tradeoff between empirical fit and human comprehensibility (or perhaps, the likelihood of
human design) is clear. GPs 1 through 8 are agent rules evolved by the Genetic Program. In Table 2, the fittest
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rule, GP1, is the most complex, involving triply-nested square roots of primitives. The least complex GP8 is
the simplest and most interpretable, but also the least fit. In gauging the likelihood that a human would have
handcrafted a successful generative rule, the English language (or pseudo-code) rendition is very useful.

Conserved elements and rule phyla

3.24 This set of GPs also exhibits building blocks that are conserved across algorithmic evolution 47. While the use
of payoff only has lowest fitness, it is conserved as the primitives autonomy, descriptive norm, and injunctive
norm are successively added by evolution producing ever-fitter agent architectures. 48 We might define phyla
of architectures by such conserved elements. Different designed starting points—parent trees–will propagate
different agent phylogenies. Below we discuss the difficulties of defining mathematically proper neighborhoods
of rules. Phyla of rules, however, pose no such problems. In Figures 6 above and 7 below, from Gunaratne et al.
(2023), we see that Schelling’s single factor (racial preference) was retained as a tree node (colored green) in
several more complex evolved architectures.

Punctuated equilibrium

3.25 The retention of conserved rule elements (primitives), with successive abrupt evolved improvements, or "jumps,"
can lead to so-called punctuated equilibrium (Gould & Eldredge 1972). This is illustrated in Figure 4 from Greig
et al. (2023). Here, the agents first learn momentum, alignment, and separation. Then they "discover," and add,
normalization, followed by cohesion, producing a stepwise (not "gradualist") evolutionary trajectory ending in
the target phenomenon, flocking.

Figure 4: Evolutionary trajectory to the flocking rule.

3.26 A different punctuated learning trajectory was found in the drinking model of Vu et al. (2023), as shown in Figure
5.
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Figure 5: Punctuated Equilibrium in the drinking model of Vu et al. (2023).

3.27 Notable are the waiting (searching) times between the successive (punctuated) equilibria (horizontal segments).
They appear at generations 6, 9, and 21, as shown in Figure 5.

iGSS and calibration

3.28 Because it starts with an explicit Target (empirical or artificial) iGSS is automatically aimed at calibration. That
is, the fitness function is precisely the proximity of the model’s output to the target, so agents (rules plus pa-
rameters) that are too poorly calibrated (that is, fit) are selected out. High fitness means good calibration.

3.29 What we obtain from the inverse generative exercise is, in the best case, a family of well-calibrated ABMs. In this
regard, iGSS shifts the empirical burden to adjudicating between the auto-calibrated generators, on grounds of
comparative cognitive plausibility at the individual agent level. 49

Emergent simplicity: The inverse mixed Schelling model

3.30 We have seen that the fittest evolved Rules can be the most complex. But the reverse may obtain, as we discov-
ered in the inverse Schelling model of Gunaratne et al. (2023). Schelling’s original model contained only one
primitive: the preferred fraction of neighbors of one’s own race. Famously, even when agents do not insist that
a majority of neighbors (as few as 1 in 4 neighbors) share their color, segregation results. Because we were in-
terested in generating mixed, not segregated, neighborhoods, Gunaratne et al. (2023) expanded the primitives
beyond race alone, which is retained as an available constituent. For any neighborhood, i, the Schelling prim-
itive (the fraction F of racial similarity) is denoted FRace(i). The new primitives are: mean neighborhood age
FAge(i); distance from present home locationFDist(i); the agent’s preference for isolationFIsol(i); the agent’s
tendency to moveFMove(i), based on movement history, andFNeigh(i), the mean utility ("satisfaction") of the
candidate neighborhood’s residents. Permissible combinators were given above in Table 1. Notably, ratios and
products (and, by iteration, powers) of terms are permitted, allowing highly nonlinear rules. The top ten evolved
rules are given in Table 3. Note that these are not simply weighted linear combinations.
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Table 3: Ten best rules evolved by the genetic program with fitness measured by Hatna’s c-index (theoretical
maximum value 1/3)

Rule Mean
c-Index

ua,i = −FMove(a,i)
FRace(a,i)

0.3047

ua,i = −FRace(a,i)
FIsol(a,i)

− FIsol(a, i)− 2
FAge(a,i)FIsol(a,i)

2

FRace(a,i)FDist(a,i)
0.2260

ua,i = −FRace(a,i)
FIsol(a,i)

− FIsol(a, i)− FAge(a,i)FIsol(a,i)

FRace(a,i)
− FAge(a,i)FIsol(a,i)

2

FRace(a,i)FDist(a,i)
0.1804

ua,i = −FRace(a,i)
FIsol(a,i)

− FIsol(a, i)− FAge(a,i)

FRace(a,i)
− FAge(a,i)FIsol(a,i)

FRace(a,i)FDist(a,i)
0.1777

ua,i = −FRace(a,i)
FIsol(a,i)

+
FAge(a,i)

FIsol(a,i)
− FIsol(a, i) +

FAge(a,i)

FDist(a,i)
0.1009

ua,i =
FAge(a,i)

2

FRace(a,i)
0.0790

ua,i = −FRace(a,i)
FIsol(a,i)

+
FAge(a,i)

FIsol(a,i)
+

FAge(a,i)

FDist(a,i)
0.0699

ua,i = FRace(a, i) 0.0607

ua,i =
FRace(a,i)
FAge(a,i)

0.0358

ua,i = FAge(a, i) 0.0313

3.31 For the mixed segregation target, the theoretically maximum fitness, using Hatna’s c-index, is 1/3. So, the win-
ner is very fit indeed. We would expect Schelling’s rule (FRace only) to perform poorly, since it generates segre-
gation, (when mixed neighborhoods is our target). And in fact, it comes in third from the bottom as shown.

3.32 In the Schelling case, FRace is the only term and is per force the numerator. Computational evolution moves it
to the denominator in the winning rule: ua,i = −FMove(a,i)

FRace(a,i)
, whose Figure 3 tree representation is shown again

in Figure 6 below:

Figure 6: Tree Representation of the Fittest Evolved Rule. Source: Gunaratne et al. (2023).

3.33 Remarkably, this evolved rule is parsimonious, elegant, and not intuitive (at least to this author). One might
expect to see the required moving distance, FDist, since it is one surrogate for relocation cost. But it does not
appear in the wining rule. Rather, we see FMove, a measure of one’s tendency, or "habit," of moving. 50 Habit
as an alternative to economic optimization is discussed by Kenneth Arrow below.

3.34 Not only is the winning rule much fitter than the runner-up. It is also much simpler, as is clear from the Table
and from the runner-up’s Tree Representation below.

3.35 Even if one finds the winner to be intuitive, surely few would say the same of the next six rules in Table 3. The
silver and bronze medalists, for example, each contain squared terms embedded in complex algebraic forms.
The reader may judge how likely it is that a human designer would come up with these rules. The tree repre-
sentation of the runner-up rule is shown in Figure 7.
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Figure 7: Tree Representation of the Runner-Up Evolved Rule. Source: Gunaratne et al. (2023).

Heterogeneity in architecture

3.36 The present iGSS collection evolves fit rules but all agents adopt them. The evolved agents are heterogeneous
in parameters and states, but homogenous in rules, or architectures 51. We may find even fitter agent models by
allowing heterogeneous architectures. An intermediate form, short of complete individual agent heterogene-
ity, could evolve on population proportions of homogeneous pools. Although we did not employ evolutionary
computing per se in the Axtell & Epstein (1999) retirement-timing model, the best empirical fit to US data was
produced by a model with three types of homogeneous agents, in different proportions. The three types were
"randoms" (who retire at a random eligible age), "rationals" (who solve the full Bellman-Becker control prob-
lem for the optimal retirement age), and "network imitators" (who retire when the majority in their network
retires). The networks proper were heterogeneous and dynamic (e.g., age cohorts are pruned by death and re-
populated by aging-in) but the agent types were themselves homogenous by decision rule. The best fit to the
US data on the timing of retirement was obtained with 10% rational, 5% random, and 85% imitators. Greater
heterogeneity in rules is clearly a fertile direction to pursue with iGSS. 52

3.37 Having discussed the epistemology, the goals, and the practical implementation of iGSS (illustrated further in
the subsequent articles), we now take up certain foundational challenges to the approach, some of which—
perhaps surprisingly–are not unique to ABM.

Part IV. Selected Foundational Issues

Sensitivity to a small change in rules

4.1 Given a successful agent rule, such as the farm-site selection rule in the Artificial Anasazi Model (Axtell et al.
2002), it is certainly fair to ask, "What if you change the rule a little? Do you get the same output?" In other words,
are the results robust to small changes in agent rules? To answer, indeed to pose, this question coherently, we
must agree on what is meant by the phrase, "a small change in rules."

4.2 As reviewed above, we certainly have many ways to define a distance between model-generated macro-patterns
and real-world macro-targets, like wealth distributions or epidemic time series. We also have many ways to
metrize a space of mathematical functions on some domain. And, we can obviously define "a small change in
numerical parameters." But how do we define "a small change in agent rules?"

A bad answer

4.3 A tempting definition is: The distance between two rules is small if and only if the distance between their gener-
ated outputs is small. This is fatal because, under this definition, it is impossible to coherently assert either that
(a) "a small change in rules produced a large change in output," or that (b) "output was invariant under a huge
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change in rules." Both possibilities are logically precluded by the very definition. Of course, these are precisely
the types of sensitivity and robustness properties we wish to explore.

4.4 Hence, we need independent (not inter-defined) metrics for the domain space of rules (coextensively, agent
architectures) and the image space of model outputs. We have good options for metrizing the latter. But do
we have sensible options for metrizing rule space itself ? Could it be sensible to say that the rule "Call home" is
closer to the rule "Eat a pie" than it is to the rule "Vote for Jones"? It seems nonsensical.

Can rule space be metrized?

4.5 As a purely mathematical matter, however, there are many ways to put a metric structure on instructions like
these. However, none accord with any intuitions about "rule proximity," if we have any intuition at all.

4.6 Technically, Hamming distance is one method. The Hamming distance between two binary strings of length
n is the number of bit positions at which they disagree. The Hamming distance between 10011 and 00101 is
three. Any agent rule (like those above) expressible as a finite expression in a finite alphabet (symbols, including
spaces) can be represented as a unique finite string of zeros and ones. Therefore, obviously, the Hamming
distance between two encoded rules (including those above) is perfectly well-defined.

4.7 However, suppose we can encode a rule as a string of five zeros (00000). Then there are five other strings at
Hamming distance one from it, namely the strings: 10000, 01000, 00100, 00010, 00001. For a string (an en-
coded base rule) of length n, there are n strings of Hamming distance one from the encoded base rule. Some
of these would encode gibberish, not well-formed formulas (e.g., the meaningful expression "3 + 4 = 7" is one
permutation 53 from the gibberish string "3 + = 47") 54 and many well-formed ones would not be rules at all,
much less synonymous ones. It is quite hard to see how such a metric, well defined and easily implemented as
it is, could possibly express a useful notion of rule proximity. Symbol rearrangement may preserve Hamming
distance, but it does not conserve meaning.

Gödel numbering

4.8 Rather than Hamming distance between binary rule encodings, one could construct a unique Gödel number
(a positive integer) for each rule. (For the procedure, see Gödel 1931; Hamilton 1988; Nagel & Newman 2012).
In turn, a distance between two rules could then be defined as the absolute difference between their Gödel
numbers. But is this useful? Logicians don’t care about defining a distance between the Gödel numbers of "if p
then q" and "if q then p."

4.9 Lacking a useful metric for rule space, we cannot say formally that we made "a small change in the rules," or
perforce that "a small change in rules" produced any particular change in output, large or small. 55

Can rule space be ordered?

4.10 An alternative would be to order the space of rules without defining a distance between them. Without saying
how close two rules are to one another, we could say that one precedes the other in the ordering. The lexico-
graphic (e.g., alphabetic) ordering would certainly do this. Then, without fear of contradiction, we could say
(if we dare) that "Call home" precedes "Eat a pie," which precedes "Vote for Jones" in the ordering. Our origi-
nal question, "What if you change the rule a little?" could become "What if you use the higher adjacent rule in
the ordering?" 56 The problem, obviously, is that a set of n letters can be ordered (indexed) in n! ways, with no
grounds for preferring one ordering over another. Why is alphabetical order any better than reverse alphabeti-
cal, or a random order? In some, "Eat a pie" would be between "Call home" and "Vote for Jones." In others not.
Ordering their Gödel numbers seems equally fruitless.

4.11 While each is feasible in myriad ways, neither metrizing rule space nor ordering it seem especially useful as ways
to give meaning to the phrase "a small change in rules." So, at the moment, we are left without a compelling
formal answer to the question: Are the model-generated patterns robust to a small change in agent rules?

Relevance to Economics

4.12 Other fields, sometimes critical of ABM, might consider whether they are in the same boat and if so, whether it
truly matters. Returning to Economics, posit a specific utility function, such as a standard two-commodity (x
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and y) cardinal Cobb-Douglas utility with exponents (elasticities) a and b, as shown below.

U1(x, y) = xayb (1)

4.13 Given a standard budget constraint (B) we can calculate the unique optimal consumption bundle (x∗, y∗). We
can compute (as in comparative statics) how the optimum changes with a given change in the budget constraint,
or in factor prices, or in elasticities. But, these are just numerical parameters.

4.14 If it is fair to ask Agent-Based Modeling, then it is also fair to ask Economics: "Is the output robust to a small
change in rules?" Having just excluded numerical parameters, this can only mean a small change in the algebraic
form of the utility function. Here are several common algebraic forms:

Table 4: Common algebraic form of utility functions.

Cobb Douglas U1(x, y) = xayb

Leontiev Utility U2(x, y) = min{ax, by}
Perfect Substitutes U3(x, y) = ax+ by

Quasi-Linear U4(x, y) = ax+ f(y) or f(x) + by

CES U5(x, y) = (xr + yr)
1
r

4.15 If we include uncertainty, we have (expected) utility functions. With risk aversion, we have others, such as con-
stant relative risk aversion 57 utilities, among others. If we include intertemporal choice, the rule family grows
to include hyperbolically discounted utilities and its many relatives. With this variety in mind, then, let us pose
the same question to economics.

4.16 Would the substitution of Leontiev’s utility U2 for Cobb-Douglas utility U1 be a small change in rules or a large
one? Are quasi-linear utilities U4 with f(y) = ln(y) closer to perfect substitutes U3 than to CES (Constant
Elasticity of Substitution) U5? What could one mean by the distance between utility functions proper? 58

4.17 For the space of real functions continuous on a compact domain, for example, an infinitude of metrics presents
itself. Though I have not searched exhaustively, I have not encountered an article in Economics that argues for
any one of them, or any Economics textbook recognizing this as an issue. 59

4.18 So, "a small change in rules" (i.e., in the algebraic form of the utility function) is no clearer in Economics than
in Agent-Based Modeling, or even Computer Science, where the distance between programs (equivalently, be-
tween partial recursive functions) is of no value or particular interest.

‘Agent models are not robust’

4.19 Detractors seem troubled that agent modeling is not robust to small changes in rules. But establishing such ro-
bustness would require us to usefully metrize rule space, which is challenging. However, it is no less challenging
for Economics, where it is not even recognized as a problem, much less a fatal one.

4.20 In sum, while the search for useful metrics is a worthy problem, an inability to do this at present for ABMs is no
more problematic than the same limit in Economics, or Logic, or Computer Science.

4.21 To complete the parallel, if the space of utility functions (as algebraic forms) cannot be metrized, can it be or-
dered? Of course it can, also in innumerable ways. But, would it be useful to say that the utility functions above
(as algebraic forms) can be ordered (<) as U3 < U5 < U1 < U4 < U2?

60 This seems no less absurd than "Call
home" preceding "Eat a pie" in a rule ordering.

‘Agent Models are Ad Hoc’

4.22 Closely related, ABMs are sometimes indicted as being Ad Hoc, by contrast to Economics with its allegedly uni-
fied theory of utility maximization. But, the theory hardly seems unified if one can choose from a virtually
boundless menagerie of utility functions. 61

4.23 Moreover, even the hypothesis that humans are maximizing any utility function is questionable, which brings
us back to the rational actor. Some prominent defenders of this theory claim that critics are simply "poorly
schooled." Gintis (2018) writes, "Every argument that I have seen for rejecting the rational actor model I have
found to be specious, often disingenuous and reflecting badly on the training of its author."

JASSS, 26(2) 9, 2023 http://jasss.soc.surrey.ac.uk/26/2/9.html Doi: 10.18564/jasss.5083



4.24 Kenneth Arrow’s 62 "training" can hardly be in doubt. Yet, as a cognitively plausible alternative to the rational
actor, he offers a simple habit-driven (and irreversible) agent:

For example, habit formation can be made into a theory; for a given price-income change, choose
the bundle that satisfies the budget constraint and that requires the least change (in some suitably
defined sense) from the previous consumption bundle. Though there is an optimization in this the-
ory, it is different from utility maximization; for example, if prices and income return to their initial
levels after several alterations, the final bundle purchased will not be the same as the initial. This
theory would strike many lay observers as plausible, yet it is not rational as economists have used
that term. Without belabouring the point, I simply observe that this theory is not only a logically
complete explanation of behaviour but one that is more powerful than standard theory and at least
as capable of being tested.63

Rational Choice: Unfalsifiable or already falsified?

4.25 Countless articles in Economics take as their target an observed pattern (of consumption choice for example)
and consider it to be explained when the pattern is shown to optimize a utility function meeting several math-
ematical requirements. Let us say that such utility functions are proper. Cleary, if for every possible choice x∗

there is a theoretically proper 64 utility functionU such thatx∗ maximizesU , then the general postulate of utility
maximization is not falsifiable, as argued by Winter (1964) as well as others noted in Hodgson (2013). Relatedly,
see Ledyard (1986).

4.26 That orthodox Rational Choice theory is either unfalsifiable or already falsified is a strong claim. However, it is
fair to say that the settings in which it applies convincingly are less than universal, and that the theory is less
unified than some would have us believe.

Part V: Agent_Zero and the Rational Actor

5.1 Therefore, a pressing aim of generative, and inverse generative, social science is to produce formal alternatives
to the Rational Actor. Albeit simple and provisional, Agent_Zero (Epstein 2013) is one, in two central respects
not elaborated before. 65

5.2 First, Agent_Zero is directed at questions to which contemporary Rational Choice Theory (RCT) simply does not
apply. Specifically, RCT does not concern the formation of political, economic, or other preferences. Adopting
Stigler’s Latin dictum, de gustibus non est disputandum, 66 contemporary rational choice theorists militantly
deny that the theory has anything to say about how people acquire baseless fears, genocidal hatreds, mani-
festly erroneous beliefs, logically inconsistent patterns of thought, self-injurious consumption preferences or
any such thing. For a clear and unabashed statement, see Gintis (2018). As he insists, "The rational choice model
expresses but does not explain individual preferences."

5.3 The Rational Actor maximizes utility given whatever preferences (even if reprehensible or self-injurious) these
internal fears and hatreds induce. In this modern orthodox usage of the term, if with sufficient strength an
agent prefers more Aryan purity to less, it could be perfectly rational for him to join the Einsatzgruppen. 67 If
we care about how—by what cognitive or social processes—baseless fears and murderous dispositions come
about, the Rational Choice theorist tells us to look elsewhere.

5.4 Some social scientists are interested in explaining how it is that genocidal utility functions happen—through
combinations of unconscious emotions or "animal spirits" like fear, systematic errors in conscious appraisals
of risks, amplified in social networks of other emotionally driven, poorly informed, and statistically hobbled
peers. Rational choice theorists will aver that this question simply lies outside the ambit of RCT. Understood,
but we are interested this, and moves like Agent_Zero are designed to study it.

5.5 That model posits specific, and I would say falsifiable, affective, deliberative, and social modules (mathemati-
cal expressions) grounded in cognitive neuroscience and psychology. These choices then are not ad hoc. In a
provisional and fairly parsimonious 68 way, Agent_Zero is directed at cognitive questions—how fears and atten-
dant preferences arise, change, and spread—that are explicitly disavowed by rational choice theorists. This is
one sense in which it is an alternative.
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A core violation

5.6 However, Agent_Zero also concerns areas that are within the avowed scope of RCT, but violates a central canon
of it. Specifically, in choosing a level of activity (production, consumption) rational actors set marginal benefit
(MB) equal to marginal cost (MC). 69 Agent_Zero does not, and knows he does not. There are two cases to con-
sider: when Agent_Zero is attacked and when Agent_Zero is not attacked. Here, a compact demonstration is
necessary. 70

Case 1: Agent_Zero is attacked

5.7 Figure 8 shows three connected (by red links) Agent Zeros (colored blue) occupying a landscape of indigenous
agents, each of whom is simply a yellow patch, not a full Agent_Zero (yellow shades distinguish individuals).

Figure 8: Three Agent-Zeros on the landscape.

5.8 Some indigenous agents in the northeast quadrant actively resist the occupiers, ambushing them at a random
attack rate per "day." When they do, their patch turns orange, "exploding," as in Figure 9.
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Figure 9: Agent_Zeros under attack.

5.9 The two Agent_Zero occupiers in the volatile northeast are mobile (executing a 2D local random walk in their
Von Neumann neighborhoods (the adjacent sites immediately to the north, south, east, and west of their lo-
cation). The third Agent_Zero is stationary in the always-peaceful southwest. In this run, Agent "vision" (local
sampling radius) is also limited to the Von Neumann neighborhood (and so is a sample selection bias).

5.10 The two attacked agents in the northeast unconsciously fear-condition (as in the Rescorla-Wagner model) on
direct attacks, forming an association between yellow sites and the orange attacks. This is their affective, fear,
component. They also consciously take in data and compute the moving average (over a memory length) of
relative frequencies of attackers within their vision. This is their deliberative (empirical estimate) component.
The sum of these is their solo disposition to retaliate. An agent’s total disposition is this solo disposition plus the
sum of the weighted solo dispositions of the other Agent_Zeros in her (endogenous) network (fully-connected
in this example). Solo disposition governs what Agent_Zero would do alone, while total disposition governs
what it does in the group.

5.11 The agent’s behavioral repertoire is binary: destroy sites or not. She takes binary action—destroying all agents
within a fixed destructive radius—if total disposition (D) exceeds an action threshold (τ ) or, more compactly, if
total disposition net of the threshold (Dnet ≡ D − τ ) is positive 71 . Destroyed sites are colored dark (blood)
red as shown in Figure 10 72.
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Figure 10: Attacked Agent_Zeros Retaliate.

5.12 Their destruction reduces the aversive attack rate. Therefore, as noted earlier (Epstein & Chelen 2016) one could
interpret Agent_Zero as a "disposition minimizer." 73 He doesn’t "like" having positive net disposition, or excess
disposition to be economistic, and takes (binary) action to reduce it. Here, he destroys indigenous sites (whether
attackers or innocents) within his destructive radius. This destructive action immediately reduces the rate of
attacks and with it his destructive disposition. 74 However, because fear may decay far more slowly, the killing
can continue long after any evidentiary basis for it has vanished, as illustrated in Figure 11.

Figure 11: Unprovoked killing continues.

5.13 Here, the two mobile agents continue destroying benign sites lying outside the NE region of actual attacks.
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This destruction does not reduce the aversive attack rate. The incremental (marginal) benefit is therefore zero.
If the incremental cost of retaliation is any positive number, then this behavior is economically irrational, in that
marginal cost exceeds marginal benefit (which is zero). Now, the Rational Choice theorist might say, "Well, OK,
but the agent perceives positive benefit."

5.14 No! This is precisely the point: His deliberative module knows the benefit to be zero: It is returning an ambush
probability of zero, as shown in the upper plot of Figure 11. But fear decays much more slowly, as shown in the
lower plot. The killing persists after any empirical support for it has evaporated. 75

Zillmann’s classic experiment

5.15 This is consistent with the behavior reported by Zillmann et al. (1975) in "Irrelevance of Mitigating Circum-
stances in Retaliatory Behavior at High Levels of Excitation." They found that "Under conditions of moderate
arousal, mitigating circumstances were found to reduce retaliation. In contrast, these circumstances failed to
exert any appreciable effect on retaliation under conditions of extreme arousal." That is, "the cognitively me-
diated inhibition of retaliatory behavior is impaired at high levels of sympathetic arousal and anger" (emphases
added).

Purposive but not rational

5.16 Like the rational actor, Agent_Zero is clearly purposive. Unlike the rational actor, he is driven to engage in ac-
tion he knows to be without benefit, continuing to kill even after his own calculation of the attack probability
P (t) is zero. He does not reduce to homo economicus, who would choose a retaliation level that sets marginal
benefit (incremental ambush relief) equal to marginal cost (of incremental retaliation). He continues acting un-
til—through fear decay, attack cessation, and network effects—his total disposition is below threshold. In this
respect, Agent_Zero might be considered a sticky "satisficer" (to invoke Simon 1956). Agent_Zero does not seek
economic equilibrium. 76 He seeks emotional equilibrium and emotions my change much more slowly than the
facts.

Agent_Zero and the dual process literature

5.17 Beyond rational choice theory, this is also a departure from much of the "dual process" literature. The idea
that humans have different—even competing–cognitive modes is not new to psychology. Tooby & Cosmides
(2008) call them the "hot" and "cold" spheres of cognition. Schneider & Chein (2003) use the terms "automatic"
and "controlled." Stanovich & West (2000) introduced the terminology of System 1 and System 2, so adroitly
deployed by Kahneman (2011) in his best-selling book, Thinking Fast and Slow.

5.18 These conceptual models have in common the important idea of a fast, automatic, effortless, and not necessar-
ily conscious system (fear acquisition being exemplary) and a slow, conscious, and effortful system, as in sta-
tistical calculations. Kahneman is commendably clear that these Systems are "conceptual," not mathematical.
Like many useful idealizations, they are, he explains, convenient expository "fictions." This literature provides
many very important insights. It does not provide equations.

5.19 Since Agent_Zero’s Affective (fear) and Deliberative (relative frequentist) modules are mathematical, no strict
correspondence, or isomorphism, between Kahneman’s or others’ two systems and Agent_Zero’s two internal
(affective and deliberative) modules can be drawn, nor is one attempted. However, in certain settings, the anal-
ogy is inviting and—up to a point—the two stories "rhyme."

5.20 For example, as discussed earlier, in the classic case of a snake thrown in one’s lap, fear acquisition (by LeDoux’s
"quick and dirty" amygdaloid low road) is certainly faster than the conscious dispassionate appraisal of the
threat (by LeDoux’s "slow but accurate" cortical high road). In this case, in acquiring fears—on the way up, so
to say—System 1 (automatic) is typically faster than System 2 (deliberative).

5.21 However, on the way down, in expunging fears, the reverse may obtain. Where fear is high, the facts on the
ground, and our conscious appraisal of them, can change much more rapidly than our emotions, as was illus-
trated by the plots in Figure 11. There, System 1, if I may, is the slow poke, 77 a possibility Kahneman recognizes.

5.22 In connection with suicide bus bombings in Israel (analogous to our ambushes of Agent_Zero) he writes: "The
emotional arousal is associative, automatic, and uncontrolled," as in Agent_Zero’s Rescorla-Wagner associative
fear-learning module. And, he continues, "It produces an impulse for protective action," in Agent_Zero’s case,
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the disposition to retaliate. As in Figure 11 above, Kahneman writes, "System 2 may know that the probability
is low, but this knowledge does not eliminate the self-generated discomfort and the wish to avoid it. System 1
cannot be turned off." (emphasis added). But, if it cannot be turned off, then perforce System 1 is slower (since
infinitely slow) to adapt to the changing facts than is System 2. Clearly, our Agent_Zero run "tells" the same
general story mathematically. However, the story challenges any uniform ‘System 1 fast, System 2 slow’ picture,
at least in this post-stimulus extinction phase.

Modules are sticky in their own ways

5.23 In this phase, Agent_Zero’s effortful deliberative module can also be "sticky." It computes the moving average
of local relative attack frequencies over a memory window. Thus, even if all fear-inducing attacks suddenly stop,
it takes time to clear this memory or overwrite it with new experiences. 78 Here the new experiences are zeros
(no attacks). Thus, in "recovering from" its dispositions to act (e.g., to fight or to flee), Agent_Zero’s modules
can each be ‘sticky in their own way.’

5.24 In Agent_Zero this is also possible the fear acquisition phase. Unlike the snake example—where the excitation
level is high and fear is faster than deliberation–if the stimulus is neither surprising nor salient (producing a
small fear learning rate), we may make a probability estimate before (or even without) any emotional response.

5.25 In Agent_Zero at least, and perhaps in humans, the general ‘fast vs slow’ relationship (in both the upward ac-
quisition and downward extinction phases) is not uniform, and it may depend on excitation levels.

Rates and levels

5.26 Clearly, some (e.g., Zillmann) are focused on excitation levels. Which module has greater magnitude, the emo-
tional module or the mitigating deliberative one? Others (e.g., Kahnemann) are focused on excitation rates, or
which module (or System) is faster. But what really matters in terms of action? Is it which module is faster, or
which is bigger, and is there any uniform relationship between them?

5.27 Again, without purporting to mathematize Zillmann’s or Kahneman’s picture, in Agent_Zero, one module could
be faster but smaller than the other, or slower but bigger, and so forth. Moreover, the "speed-lead" could change
hands with one module remaining bigger (i.e., dominant) throughout, and vice versa, all of which is under uni-
fied mathematical study. 79

Purposive but not rational

5.28 Returning to our specific scenario, like the rational actor, Agent_Zero is clearly purposive. Unlike the rational
actor, he engages in action he knows to be without benefit, continuing to kill even after P (t) = 0. In this setting,
he does not reduce to a utility maximizer, choosing a retaliation level that sets a marginal benefit (incremental
ambush relief) equal to a marginal cost (of incremental retaliation). He continues acting until—through fear
decay, attack cessation, and network effects—his total disposition is below threshold.

5.29 All of the above holds for the mobile agents in Figure 9, who at least initially are subject to attacks.

Case 2: Agent_Zero not attacked

5.30 The deeper and more disturbing case is the southern Agent_Zero who is never attacked, but who acquires ex-
cess retaliatory disposition purely through the disposition of remote others. The southwest Agent_Zero wipes
out his village although (unlike the northeast agents) no villager has attacked him, a parable 80 of the My Lai
massacre. For this agent, there never were any attacks, so there is no aversive stimulus to reduce through
destructive retaliation. Throughout, destruction occurs without benefit. Again, since the marginal benefit of
violence is zero, 81 if violence carried any incremental cost, 82 no classically rational agent would engage in it 83

(because marginal cost would again exceed marginal benefit). Agent_Zero does engage in it, despite knowing
(by the deliberative module) the objective attack probability to be zero within his vision (the blue circle), as
shown in Figure 12.
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Figure 12: Unprovoked slaughter of innocents.

5.31 He joins the lynch mob, as it were, having had no adverse experience with black people. He does things in the
group that he would not do alone. In the extreme case, he is the first to do them. He leads the lynch mob! This
is shown in Figure 13.

Figure 13: Agent_Zero goes first despite no attacks.

5.32 The two attacked agents in the northeast have positive but sub-threshold retaliatory dispositions. Each is "dis-
tressed," but not enough to retaliate. However, the sum of their weighted dispositions drives the never-attacked
southern agent over his threshold, 84 and he wipes out the innocent village. Again, his deliberative module has
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told him they are innocents. 85 Moreover, the agent can continue acting (e.g., killing) while his deliberative
module is reporting no probability of attack.

Hume revisited

5.33 Regarding ‘dual process’ Hume, then, reason is not only "a slave to the passions," but knows itself to be! Of
course, this is all too human. We continue eating knowing the marginal benefit of further cookies to be zero
(indeed negative!). People with post-traumatic stress continue to fear events they know to have probabilities
near zero. 86

5.34 This southern agent’s initiation of violence occurs by a cognitive mechanism of dispositional contagion, not
rational choice or imitation. The latter is obviously not possible for the first actor, since there is no one yet to
imitate, as is clear in Figure 13. In joining or initiating an action he would not take alone, one might say that
Agent_Zero betrays himself. In the most extreme case–the book’s Jury Trial–all agents do. Alone, each would
acquit. Together in the jury chamber, they unanimously convict! 87 It is universal self-betrayal.

5.35 These behaviors simply fall outside the ambit of the rational actor, but unfortunately fall well within that of the
human being, all of which led me to write:

"The overall picture of Homo sapiens reflected in these interpretations of Agent_Zero is unsettling:
Here we have a creature evolved (that is, selected) for high susceptibility to unconscious fear condi-
tioning. Fear (conscious or otherwise) can be acquired rapidly through direct exposure or through
observation of fearful others. This primal emotion is moderated by a more recently evolved de-
liberative module which, at best, operates suboptimally on incomplete data, and whose risk ap-
praisals are normally biased further by affect itself. Both affective and cognitive modules, more-
over, are powerfully influenced by the dispositions of other—equally limited and unconsciously
driven—agents. Is it any wonder that collectivities of interacting agents of this type—the Agent_Zero
type—can exhibit mass violence, dysfunctional health behaviors, and financial panic?" (Epstein
2013, p.188)

5.36 If we are interested in the cognitive wellsprings of such collective phenomena, models like Agent_Zero may
be a more fertile starting point (a better "ideal gas") than the rational actor. But, the Agent_Zero I designed
(intelligently, I would hope) is not the last word, as emphasized earlier.

A modest proposal: Grow Agent_Zero

5.37 Specifically, it would be very interesting to "disassemble" Agent_Zero into its primitive rule constituents (Dar-
win’s warm little pond) and extend that set with alternative primitives. Several of these are offered in the pub-
lished Agent_Zero code, 88 and others have been proposed elsewhere. 89 One would also allow combinators
beyond those thus far employed, allowing nonlinear entanglement between modules, and use iGSS to discover
other, perhaps fitter, agents in this algorithmic phylum and others. It is conceivable that in some settings, the
original Agent_Zero is re-evolved as the winner. But, it might also be fundamentally modified with some ele-
ments conserved (as in the Gunaratne et al. 2023 Schelling model above), or it might be skipped altogether! It
would be progress either way.

Part VI. Concluding Thoughts

6.1 We have reviewed the epistemology of generative social science, have discussed iGSS as a means to discover
generative agent architectures and rules, and have introduced examples presented fully in the articles that
follow in this Special Section. They (and many others not included here) exhibit several distinctive advantages
of the approach:

6.2 First, iGSS can evolve novel generative agents that might have eluded even very intelligent human designers.
6.3 Second, it can produce a set of them—multiple generators—subsets of which may be comparably fit (well-

calibrated to the target). The adjudication or ranking of these multiple competitors may require new micro-
data, or experiments at the micro scale.
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6.4 Third, some of these sets of comparably fit agents exhibit elements that are conserved across algorithmic evolu-
tion, just as the amygdala has been conserved across vertebrate evolution. While we cannot rigorously define
neighborhoods of agents (which requires that we metrize rule space), we might define families (or phyla) of
agents by these conserved elements.

6.5 Fourth, there is no general relationship between rule fitness and rule complexity. In some cases (Vu et al. 2023)
there is a steep tradeoff. By contrast, in Gunaratne et al. (2023), the fittest evolved rule is among the simplest,
and vastly simpler than the runner up. Moreover, the relationship between rule fitness and complexity is not
even monotone. 90 There has been a widespread presumption that Genetic Programing must produce highly
complex and opaque expressions. Here is a counter-example.

6.6 Fifth, several of the articles in the present collection enforce that algorithmic evolution (as in many Genetic
Programs) can exhibit jumps, or punctuated equilibria, which are also observed in biological evolution.

6.7 Unlike biological evolution, however, all of this can start (without fear of infinite regress) with an intelligently
designed base model, which can be deconstructed into primitive constituents to be mutated, crossed, and con-
catenated to yield new explanatory alternatives. I offer Agent_Zero as one such Garden-of-Eden candidate,
though there are doubtless many others.

6.8 Far from being "The End of Theory," iGSS offers a resurgence of it. The locus of theoretical work shifts from the
completed agent architecture to its constituents and their permissible combinations. This can be every bit as
creative as the traditional design of entire agents, which we would certainly expect to continue.

6.9 Some of these agent constituents (like a fear learning rule module) are not conscious at all, much less rational.
The scope of this programme is broader than Rational Choice Theory, which disavows any attempt to explicate
cognitive drivers of social preference or bias, where Agent_Zero includes them explicitly and falsifiably. In areas
of interest to both theories, moreover, Agent_Zero is not canonically rational. He acts knowing the benefit (e.g.,
reduction in the attack rate) to be zero. The assumption that action carries any cost whatsoever makes his
continued killing irrational: MC > MB.

6.10 The agent does not seek economic equilibrium, but emotional equilibrium, as it were. And emotions may
change much more slowly than the facts. Moreover, in many setting they should! It would make no evolutionary
sense to learn to fear alligators on Monday and then forget to on Tuesday. Hard-wired fear retention 91 provides
long-term selective advantage, but as we see, it can override short-term economic optimization. Evolution can
trump economics.

6.11 This contrasts with RCT but also with some of the qualitative dual process (hot/cold, fast/slow) literature as well.
In Agent_Zero, the speeds and the magnitudes of the Affective and Deliberative Modules—in both acquisition
and extinction phases—depend on the context (e.g., the threat dynamic) and specific initial agent conditions
and parameters, plus endogenous social network dynamics. The same is true for the nonviolent interpretations
of Agent_Zero, such as physical flight from disasters or contagious fear-driven flights from financial portfolios
(Epstein 2013). The complete mathematics of this, initially for Agent_Zero, is a fruitful line of theoretical and
possibly experimental work.

6.12 For several fundamental anomalies of Rational Choice Theory (e.g., endowment effects and asymmetrical weights
on gains and losses), Prospect Theory (Kahneman & Tversky 1979) offers an elegant formal solution. For the dif-
ferent cognitive drivers and economic anomalies (as where MC > MB) of interest to Agent_Zero, a different, and
generative, formalism is required. 92 With Agent_Zero, I hope to have provided a starting point and, in iGSS, an
evolutionary way forward.

The need for suitable data

6.13 Data ("big" or small) are not theory and cannot replace theory. Without suitable data, however, there is no
empirical selection pressure on competing theories. And, without such pressure, no science, including iGSS
itself, can progress. That said (staying with biological analogies), "off-the-shelf" public data sets often strike me
as the "fossil record" of past funding decisions by government agencies and foundations. Like the true fossil
record, there are many gaps. If we have a specific new theory, but the available data were collected without that
specific theoretical motivation, it is not surprising that the data, however "big," may not be suited to test that
theory.

6.14 As often happens in science, new theory may precede and require the collection of new data. Without Maxwell’s
theory, no one would have known to look for radio waves, whose existence he deduced mathematically. With-
out relativity theory, no one would have thought to measure the predicted deflection of light in a gravitational
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field. Science does not always begin with data. It sometimes begins with a theory, which tells us what data to
collect.

6.15 Perhaps this is the case with (the incomparably more modest) Agent_Zero. Luckily, there are many exciting
new data sources—from cognitive neuroscience to innovative laboratory experiments to natural experiments
unfolding on social media—that can and should be brought to bear in testing and attempting to falsify it. "Off-
the-shelf" data sets (and existing statistical methods 93) may be not be well-suited to either its corroboration or
refutation, though I am happy to be corrected.

Backward to the future

6.16 Popper (1962) characterized scientific progress as a process of Conjectures and Refutations. Our allegiance must
be to this process, not to any particular conjecture, the Rational Actor and Agent_Zero included. Inverse (or
backward) Generative Social Science can evolve a much larger space of competing generative candidates—
each a conjecture—than we can yet design by hand. Fisher’s (1930) Fundamental Theorem of Natural Selection
is that the rate of growth in average fitness is proportional to phenotypic variance. By driving up the variance
in generative agent phenotypes, iGSS can likewise accelerate the evolution of social science.
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Appendix A

The original version of the document "Using GAs to Grow Artificial Societies (1992)" is included below.

Appendix B

The original version of the document "Artificial Social Life (1992)" is included below.

Notes

1This essay is based on addresses at the first two International Workshops (2020 and 2021) on iGSS, held
in the US, and at the 2022 SCC and iGSS Panel held in Milan, Italy as well as invited Talks at The University
of Chicago, The Fields Institute for Research in Mathematical Sciences, Toronto; The Turing Institute, London;
Alphabet, Mountain View CA; Tsinghua University, Beijing; the OECD, Paris, and the Courant Institute of Mathe-
matical Sciences at NYU.

2The present collection is focused on Evolutionary Computation. Other AI methods including Machine Learn-
ing are also applicable.

3Though distinct from this specific agenda, related lines of work include inductive game theory (DeDeo et al.
2010), rule induction (Rand 2019), computational abduction (Ren et al. 2018), and the evolution of optimal
strategies in the repeated prisoners dilemma (Lindgren & Nordahl 1994; Axelrod 1987).

4For a recent literature review see (co-published in English and Russian) Makarov et al. (2022).
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5For difficulties in Kuhn’s use of this and related terms, see Joseph Epstein (1979). I have in mind simply
a set of common practices, here the conscious design of complete agents to generate targets, as distinct from
their computational evolution from primitive agent constituents.

6Hence my subtitle.
7For subsequent articulations, see Epstein (1999, 2006, 2019)
8"When" is technically unnecessary, since we can subsume it in "that" by saying that it will rain today at

noon.
9See also Troitzsch (2009), from which I stand corrected on epicycles.

10One might argue that autonomy was another.
11Technically, it depends on the numerical values returned by the affective and deliberative modules, each

of which is a real-valued function defined on the stochastic stimulus landscape, and bounded to [0,1].
12For a mathematical discussion of how the affective, deliberative, and social modules could be rendered as

orthogonal basis elements for a space of cognitively plausible agents, see Epstein (2013) (fn. 24).
13Named after John Nash, Nobel Laureate in Economics
14As in coordination game "poverty traps".
15The well-known reasoning is that on the final 100th one-shot game, each should certainly defect, because

retaliation is not possible. But since the optimal behavior on the 100th game is determined, the players should
defect in the (now effectively final) 99th, and so forth back to the first game.

16On the multiplicity of Bayesian-Nash equilibria, see Ledyard (1986).
17Gary Becker, Nobel Laureate in Economics.
18By "positive," I believe Keynes means simply "definite" or "concrete," not meritorious.
19In some classes of infinite games, the optimization problem is literally unsolvable in pure strategies (Prasad

1991).
20For a penetrating philosophical critique, see Nagel (1963).
21For a critique of selectionist arguments for the maximization hypothesis, see Winter (1964) and others dis-

cussed in Hodgson (2013).
22For example, the assumption that all agents are conforming, optimizing in the Bellman sense, is not con-

sistent with the macro data on the timing of retirement. See Axtell & Epstein (1999).
23In fact, Becker and Murphy’s paper does not mention the neurobiology of addiction, or offer a single refer-

ence to the scientific literature on it.
24Analogously in mathematics, not everything can be a nontrivial Theorem. There must be Axioms (trivially

theorems since A implies A) that are not themselves deduced from antecedent propositions.
25Just for completeness sake, neither are we insisting that Physics adopt our generative explanatory stan-

dard. We are talking about social science broadly construed where we are insisting that explananda (be they
meso- or macro-scale) be generated in populations of cognitively plausible individuals. Whatever may be one’s
definition of cognitive plausibility, electrons surely fail.

26G ⊃ E is the converse of ¬ G ⊃¬ E because by contraposition, the latter is E ⊃ G.
27One impressive example is the alternative plot-selection rules for the ancient Anasazi, evolved by Gunaratne

& Garibay (2020). These evolved rules outperform our original rules (Axtell et al. 2002), at the cost of somewhat
more (but hardly intolerable) rule-complexity. Accuracy (i.e., fitness) versus complexity is a central topic dis-
cussed below.

28Each of these is an explicit bounded real-valued mathematical function. Both differential equation and
agent-based computational versions are given in Epstein (2013).

29Arguments that affective homophily is a sensible starting point are given in Epstein (2013). The published
Agent_Zero code allows one to select two alternatives.

30One among many is temporal-difference learning (Sutton & Barto 1987).
31The published code allows the user to choose a moving median for example.
32The memory length is user-specified.
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33The published code allows the user to choose probability homophily and disposition homophily, for exam-
ple.

34One way (Epstein 2013) to have fear bias the agent’s probability estimate is to set pe = p1−V
n , where Pe is

the emotionally biased estimate, Pn is the emotionally neutral estimate, and V ∈ [0, 1] is the fear level. With
no fear (V = 0), there is no bias. But if petrified by shark attack (V = 1), we don’t go near the water, imagining
an attack as all but certain.

35Of course, the documented anomalies are myriad, including framing and endowment effects, asymmetric
weights on gains and losses, reliance on heuristics, base rate neglect, anchoring, preference reversals, and the
Ellsberg and Allias paradoxes, to name several.

36One such is disgust, routinely mobilized in propaganda to induce (by conditioning) a nefarious association
between the enemy and an irksome insect, rodent, or festering disease. We do not choose to be disgusted by
a hideous smell or taste. We simply recoil in revulsion. As Chapman & Anderson (2012) write, "The anterior
insula, and to a lesser extent the basal ganglia, are implicated in toxicity- and disease-related forms of disgust,
although we argue that insular activation is not exclusive to disgust."

37If we define "sound" as an auditory sensation occurring only when these waves collide with a human eardrum,
then the ancient puzzle is resolved: "No, isolated from human eardrums, the falling tree produces no sound,
though it does disturb the medium." And vice versa if "sound" is defined simply as the disturbance.

38That a machine or monkeys at typewriters might eventually produce Hamlet—the same output as William
Shakespeare—does not illuminate how Shakespeare wrote plays.

39On ChatGPT specifically, see Chomsky (2023).
40For instance, see "More data usually beats better algorithms," at Datawocky: https://anand.typepad.

com/datawocky/2008/03/more-data-usual.html.
41More generally an ϵ-machine (Shalizi & Crutchfield 2001).
42The norm of a difference between functions is a metric. In general, for a real number p ≥ 1, the p−norm of

x is defined as: ∥xp∥ = (|x1|p + |x2|p · · ·+ |xn|p)
1
p . MSE is based on the L2 norm.

43I would not assume that cognitively plausible internal agent rules will necessarily be easy for an external
human to interpret. There are cognitively plausible, indeed empirically supported, internal rules whose func-
tional form is very hard to interpret, as in neural network learning dynamics.

44There might be multiple peaks of equal height or none, as on unbounded sets.
45Also known as "Darwin’s bump", this is a small cartilaginous nub on the inside of the upper ear, with no

apparent function (Darwin 1871)
46English is but one example.
47I first heard this idea from Ivan Garibay.
48These additions produce stepwise advances, or punctuated equilibria, as we discuss below.
49This, of course, is an entirely separate question from whether any of these auto-calibrated models works

well in novel, out-of-sample settings, sometimes called "external validation."
50Admittedly, economic factors would likely play a role in one’s pattern, or habit, of movement since multiple

moves cumulates costs.
51I have not encountered a model in microeconomics where different agents have utility functions of different

algebraic forms.
52Heterogeneous agent macroeconomics is in fact a vibrant area. See Hommes & LeBaron (2018).
53While it makes the point, this is a slight abuse since, technically, the number of permutations is not neces-

sarily the same as the Hamming Distance.
54Not to be confused with the += operator in C++
55We also cannot construct an analogue of Structural Stability for agent-models. This would require that the

notion of a neighborhood of rules—all those within distance d of one another—be formalized and in addition
that an analogue of homeomorphism (not distance) between outputs (phase portraits) be devised. No obvious
approach presents itself.

56Problematic for the rightmost rule.
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57These subsume logarithmic utilities.
58Notice that to say, "Well, from the economic context, we will know whichU is most suitable" is irrelevant to

the question at hand: whether the space of Us can be usefully metrized, so that robustness to "small changes"
in form could be assessed.

59Although their definition of "departure from rationality" does not involve these metric considerations, Ak-
erlof & Yellen (1985) take a very interesting step in this direction in their AER article "Can Small Deviations from
Rationality Make Significant Differences to Economic Equilibria?" Their answer is yes.

60Lexicographic preferences raise the problem of just noticeable differences in microeconomics.
61Of course, the range of candidates may be constrained by the economic setting, but few settings would

preclude all but one functional form.
62Nobel Laureate in Economics.
63Arrow (1990).
64See Gintis (2018) or a graduate microeconomics text, such a Kreps (2020).
65Several anomalies, such as endowment effects and loss aversion are, of course, addressed formally by

Prospect Theory (Kahneman & Tversky 1979). Agent_Zero addresses other concerns.
66‘We do not argue about tastes.’
67For a colorful rendition of the general point, see Kahneman (2011, p.411).
68Landscape settings aside, Agent_Zero proper contains six parameters: the affective learning rate, the mov-

ing average memory, the action threshold (all equal in the book), the maximum associative strength (equal and
set to the usual default of 1 in the book), and the vision and destructive radii (all equal in the book). Network
weights are endogenous so do not add parameters. The code offers two nonlinear extension parameters for
the affective module, which are not employed in the basic published Agent-Based computational runs. See the
source code in Epstein (2013, Appendix III) or under the code tab at http://modelingcommons.org/browse
/one_model/5982#model_tabs_browse_nlw

69Thinking of firms, at each level of production, q, the firm’s economic profit π(q) is by definition its revenue
R(q)minus its production costC(q). That is,π(q) = R(q)−C(q). At a profit maximum,π′

(q) = 0. But because
the derivative is a linear operator, we have R

′
(q) = C

′
(q): marginal benefit (here revenue) MB equals marginal

cost MC. It applies to myriad activities, including the optimal level of costly retaliation. A rational actor will cease
when MB = MC. Agent_Zero (a) continues beyond this point (MC > MB) and (b) knows he is beyond this point.

70All equations, code, and numerical assumptions are given in Epstein (2013).
71If the agent is operating alone then the total disposition equals solo disposition.
72An animated movie of this run is posted at https://vimeo.com/83069872. The NetLogo code can be run

online at http://modelingcommons.org/browse/one_model/5982#model_tabs_browse_nlw
73In fact, I did not design Agent_Zero with this interpretation in mind and thank Erez Hatna for recognizing

it. As stated in Epstein & Chelen (2016), "While Agent_Zero is not canonically rational, this agent is arguably
purposive. One can think of Agent_Zero as taking actions that seek to reduce aversive stimulus: wiping out
attacking sites, or fleeing contaminated ones. In acting to minimize aversive stimulus, Agent_Zero could be
interpreted as a disposition minimizer."

74The complete technical mechanism is (i) the extinction of fear (in the affective module) (ii) the reduction
in the relative frequency of attacks (in the deliberative module), and (iii) their contagion effects through the
network. If the updated total disposition is below his retaliation threshold, he desists . Otherwise, he continues.

75This is a "fight" scenario. Agent_Zero exhibits the same irrational behavior in the "flight" scenario in Epstein
(2013). There, Agent_Zero continues fleeing (which carries some marginal cost) long after he knows he has
escaped the contaminated zone (marginal benefit being exposure-reduction, which is zero outside the toxic
zone).

76Technically it is dispositional equilibrium.
77For the innocent population, this is disastrous.
78This is modeled in the 18th Brumaire of Agent_Zero (Epstein 2013, pp.165-168).
79To give the flavor of his work, recall that the modules are functions returning numbers. Then, if the modular

levels at time τ areV (τ) andP (τ), we define their speeds as the absolute values of their derivatives: |V ′
(τ)| and
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|P ′
(τ)|, making the speed of change independent of its direction (up or down). In this notation, V is larger but

slower if V (τ) > P (τ) and |V ′
(τ)| < |P ′

(τ)|. In turn, P is larger and faster if V (τ) < P (τ) and |V ′
(τ)| <

|P ′
(τ)|, and so forth. Moreover, there may be times τ∗ at which the ‘speed-lead’ switches from one module to

the other, but the ‘size-lead’ does not. This would be the case if on some time interval: (a) For τ < τ∗ we have
|V ′

(τ)| < |P ′
(τ)|, (b) For τ > τ∗ we have |V ′

(τ)| > |P ′
(τ)|, but (c) For the entire interval, V (τ) > P (τ). All

these possibilities, and their connection to total disposition and action can be studied concretely in Agent_Zero,
where explicit formulas for V and P are given. This abstract rendition is continuous, but the discrete time
analogue is of course constructible and characteristic of the agent-based version.

80All runs are called Computational Parables.
81Because the derivative of a constant (here zero) is zero.
82Although it is easily done, we have not introduced any explicit cost-of-retaliation function here. The point

stands if we simply agree that killing requires some non-zero expenditure of effort, time, or resources, which
hardly seems debatable.

83Nor, by the same logic, would the two northeastern Agent_Zeros continue their slaughter of innocents out-
side the ambush area, as they do later in this run with a zero fear-extinction rate. See Epstein (2013, Figure 38,
p.92)

84Action thresholds are equal here.
85As a commentary on the human condition, this seems more significant than the technical point that any

positive marginal cost exceeds the zero marginal benefit, which still applies.
86Agent_Zero is afflicted with PTSD in Epstein (2013, pp.78-79).
87Compactly, for every agent, Dtotal > τ > Dsolo

88Already coded alternatives are offered in Epstein (2013). As deliberative alternatives, I offer the choice
of moving average or moving median. As affective alternatives, I offer classic Rescorla-Wagner and nonlinear
variants. To form endogenous network weights, the user can select affective, probability, or dispositional ho-
mophily. And of course, the entire model can be scaled up indefinitely.

89See Epstein & Chelen (2016)
90See Figure 6 of Gunaratne et al. (2023).
91Implemented through long-range potentiation. See LeDoux (2002).
92It could be very interesting to use the prospect-theoretic value function as a module of Agent_Zero.
93For a "call to arms," by two statisticians, on the need for new statistical methods to test ABMs generally, see

Banks & Hooten (2021)
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