September 18, 1992

To: = The 2050 Theoretical Group
From: Joshua Epstein

Re: Using Genetic Algorithms to Grow Artificial Societies

In my August 4 memo to Ed Knapp, I discussed the application of A-Life techniques to
the problem of social evolution as a whole: Is there a small set of local rules, that is, rules
governing the behavior of individual agents, that over many iterations, will generate a crude
caricature of, say, the observed international system--a set of coherent societies with internal
structures {e.g., hierarchical, egalitanan) and dynamics, interacting with one another in various
cooperative and competitive ways, in an environment that is affected by, and feeds back on, the
productive activities of the agents? Core questions might include:

* What system(s) of local rules will generate politically egalitarian societies? Totalitarian
societies?

* What rule system(s) will yield social aggregates that are largely peaceful and
cooperative? Warlike and competitive?

* Can internal instability--revolutions, the rise and fall of empires--be made to emerge
from simple rules?

Proposal: Use Genetic Algorithms_to find the tules.

Basically, there are five steps.

Step 1. Target Patterns

First, one needs to define some very simple target patterns/behaviors (Turing test
analogues) an artificial social life system should produce as outputs. For instance, can you get
emergent social hierarchy after 10 iterations?

Step 2. Actual Patterns

Every system, i, of local rules (n-bit strings encoding behavioral rules) generates some
social evolution. Check after 107 iterations: did hierarchy emerge? There is some actual output

that, in principle, one could compare to target output. Specifically,

Step 3. Define a Metric on Patterns
Define a mapping ¢ from the set of patterns (target or actual) to the set of real k-vectors

(some k). Suppose the target pattern was T and the actual emergent pattern under rule system

i was A(i). Then ¢ sends these to k-vectors:
¢: T~ ¢(NDeR
¢ : A(D) ~ [A()]eRE

With | - [The Euclidean norm, define the distance between the target and the emergent actual

pattern as
(1) de(D),¢[AD]) = 1$(D) - ¢[AD]]
Step 4. Define a Fitness on the Set {i} of Ruie Systems

Given (1) define the fitness of rule system ie{i}, call it F(i), as some bounded

monotone function of distance d($(T),$[A(i)]). For example, let
@ F() = exp[-d(¢(T),$[A(D])], 50 0 < F(i) < 1. Finally,

Step 5. Let a Genetic Algorithm Séarch {i}

If we want to know what rule system ief{i} generates the pattern closest to the target,

we're éimply asking for the string # with highest fitness under (2). So, turn a GA loose on {i}.

.That’s the basic idea. Clearly, real problems arise at each step. When I proposed this
idea in Michigan (on September 11) to John Holland, Bob Axelrod, and the other BACH group
members, the issues of encoding and computational requirements loomed pretty large. How
much initial sifting of strings could be done by humans, narrowing the set on which the GA
would operate? Is there a simple problem--match some pattern of industrial concentration--that
a prototype could handle?

What do you think?

