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Abstract: In this work, we propose 2LevelCalibration, a multi-stage approach for the calibration of unknown
parameters of agent-based models. First, we detail the aspects of agent-based models that make this task so
cumbersome. Then, we conduct extensive research on common methods applied for this purpose in other do-
mains, highlighting the strong points of each approach that could be explored to efficiently calibrate the param-
eters of agent-based models. Finally, we present a multi-stage method for this task, 2LevelCalibration, which
benefits from the simplicity of equation-based models, used to faster explore a large set of possible combina-
tions of parameters and to quickly select the more promising ones. These values are then analysed more care-
fully in the second step of our method, which performs the calibration of the agent-based model parameters’
near the region of the search space that potentially contains the best set of parameters, previously identified in
our method. This strategy outperformed traditional techniques when tested to calibrate the parameters of an
agent-based model to replicate real-world observations of the housing market. With this testbed, we show that
our method has highly desirable characteristics such as lightweight implementation and consistency, which
are ideal for agent-based models’ development process.
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Introduction

1.1 Agent-based models are a valuable tool for modeling complex systems by allowing the representation of the
heterogeneity in the constituents parts of a system (Dilaver & Gilbert 2023). This level of disaggregation makes
the analysis of emergent behaviours and second-order effects possible, in opposition to traditional top-down
modelling that can hardly capture them (Van Dyke Parunak et al. 1998). Such appealing characteristic make
them very common in domains that study the consequences of human systems, such as Economics (Hamill &
Gilbert 2015; Tesfatsion & Judd 2006), Social Sciences (Borrill & Tesfatsion 2011; Squazzoni 2010; Retzlaff et al.
2021) and Epidemiology (Marshall & Galea 2015; Hunter et al. 2017).

1.2 The most prominent characteristic of agent-based models is nonetheless one of its main impediments for a
widespread adoption. To validate a model, typically we compare the output of the simulation against real-world
data. This is an obstacle for agent-based models for the following reasons: (i) usually we have access only to
surveys, census and the results of aggregated data, which cannot bring the complete information required to
model the individual behaviour of the agents in the system; (ii) as agent-based models are commonly used in
the realm of human systems, mental processes, feelings and expectations are frequent concepts adopted in the
models, despite the impossibility of objectively measuring and attributing a precise numerical representation
to them. The process of calibrating unknown model parameters is hence a vital step on the validation process
of those who adopt an agent-based approach, as many of the parameters required for the simulation should be
estimated from an incomplete and limited set of data observed from a real-world phenomenon (Moss 2008).
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1.3 The task of parameter calibration can present several degrees of difficulty, varying from satisfactorily applying
simple linear regression to exploring huge and rough search spaces. Unfortunately, agent-based models param-
eter calibration is usually closer to the latter, mostly due to its own structure. The decision process that governs
agent behaviour can be as detailed as desired, so frequently we are faced with large search spaces, as each pa-
rameter to be calibrated increases in one dimension this search space. Additionally, the surface that must be
explored to find the most probable set of parameters is rugged, with plenty of local minimums and maximums
resulting from the non-linear relationship among the parameters. As if it was not enough, frequently the out-
put of the simulation is non-deterministic due to the inherent randomness of the model, which might make the
process of assessing the likelihood of a set of parameters even more difficult.

1.4 As the calibration of parameters in an agent-based model is a crucial, yet remarkably challenging task (Banks &
Hooten 2021), in this work we propose a new strategy for this purpose, tailored to the idiosyncrasies of agent-
based models while making use of the best practices applied in other modelling approaches.

The Challenge of Calibrating Parameters in Agent-Based Models

2.1 A model is an abstraction of reality as it performs a simplification of the real world that is good enough for its
purpose (Zeigler et al. 2018; Robinson 2008). In essence, to build a model we should choose which aspects
(input variables) we take into account, and how we define the relationship among such aspects. A system’s
functioning can be described either mathematically or by computationally simulating the interaction of each
system’s component. The first approach, also commonly called top-down, extracts the dependence between
the selected input variables. This mathematical relation is expressed in an analytical form (i.e., by means of a
mathematical equation), or can rely on numerical approximation methods that extensively sample the search
space to estimate such relationship. In contrast, a computational model (or also a bottom-up model) does not
require explicitly the definition of a mathematical formula; it relies on the modeling of the constituent parts of
the systems and their interplay with the environment and other particles.

2.2 At first glance, it is clear that a computational model can be largely more expensive than an equation-based
model, as it scales with the number of particles of the system that usually outnumber the input parameters of
a mathematical model. However, there is extensive work that describe several situations in which a bottom-up
modelling approach is beneficial (Van Dyke Parunak et al. 1998), especially when the behaviour of the system
is governed by emergent phenomena and by the so-called second-order effects (Gilbert 2002), which is the
property of the particles in the system to react to new emergent collective behaviours.

2.3 The core argument is that while one can calibrate the parameters of a mathematical model to replicate the past
behaviour of the system and thus provide an estimation about its future behaviour, these forecasts will only
keep their accuracy if the structure of the system remains stable over time. If relevant variables rearrange in
such a way as to alter their coupling structure, or even if the impact of some variables is amplified in a non-linear
fashion, the mathematical model might become useless. With an agent-based approach, on the other hand, one
can better investigate the underlying behaviours that led to the observed phenomenon (or, as pointed out in
Mauhe et al. 2023, to disclaim some beliefs). By doing so, such knowledge can be extrapolated, leading to many
reconfigurations of the model to generate hypothetical yet plausible scenarios (what if scenarios) by altering the
structure and stability of the system and generating unforeseen (and almost always counter-intuitive) forecasts.
In this way, we can say that agent-based models have a higher power of expression, extremely desirable to
replicate complex systems, that unfortunately makes, at the same time, the task of parameter calibration very
cumbersome for the following reasons:

1. Many parameters: With an agent-based model, there is no general formula that combines all the in-
put variables to produce an output. The modeller describes the behaviour of the components (agents)
and simulates their interaction to generate the resulting overall behaviour of the system, that is not vis-
ible (and not easily predicted) beforehand. This characteristic can foster an overparameterization of the
model, as the modeller tries to put as many details as possible in order to replicate the desired but not yet
visualized output of the system. A large number of parameters is not advisable in any modeling approach,
as it provides a high degree of freedom to the model that might be more than necessary to describe the
system: a model that requires a large number of inputs might be using them only to compensate its struc-
tural errors, and not to better approximate the target phenomenon (this situation is known as the numer-
ical daemon, Gan et al. 2014).
Particularly, from a parameter calibration standpoint, a large number of variables is an obstacle as it
brings along two undesirable conditions:
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• Combinatorial explosion: to estimate the most likely set of parameters that generates the observed
result, the parameter calibration method should vary all the parameters to explore a large set of
possible combinations to evaluate what are the most probable ones. Intuitively, it is clear that an
increase in the number of variables also increases the number of combinations that should be as-
sessed. Mathematically speaking, each new parameter increases one dimension in the search space.
To keep the same sampling density, there should be an exponential increase in the number of sam-
ples for each added dimension. This property is also referred to in the literature as The Curse of
Dimensionality (Banks & Hooten 2021);

• Equifinality: the property in which an observed output could have been generated by many differ-
ent combinations of parameters. As parameter calibration methods are essentially estimating the
probability of each set of parameters in generating the expected output, this condition can be mis-
leading: once you have a large set of equally probable and plausible candidates, it gets harder to
identify which is the correct one. Moreover, the method is more prone to find a spurious set of pa-
rameters that describe the overall expected behaviour of the system: the number of correlations is
convex with the number of dimensions. By testing too many parameter combinations, we can find
several ones that might fit remarkably well into the expected output, but only a small subset will
represent the real correlations among input and output - and it is virtually impossible to differenti-
ate between spurious and real correlated sets of parameters.

2. Non-linear relations: agent-based models are notably used on strongly non-linear domains, such as hu-
man systems. We say that we have a nonlinear relation when the impact on the output is not proportional
to the change on the input, meaning that even small perturbations can generate huge differences in the
result. This promotes an almost erratic behaviour of the system, that makes it harder to be predicted.
Parameter calibration methods rely on sampling strategies, that can vary each variable one at a time or
several ones at once, aiming to account for how much difference in the output can be proportioned to
an alteration in one variable. In linear systems, we can easily estimate the pattern of the gradient which
leads to an optimal combination of parameters. In non-linear systems, the parameter estimation method
should navigate a rough space, with gradients that suddenly change in direction and slope, resulting in
local minimums and maximums. It is almost impossible to extract the importance of each parameter to
the resulting behaviour of the system, and even more complex to certainly attribute the best value for an
unknown parameter (somewhere in a little unexplored corner of the search space there can be a better
combination of parameters as the search space surface does not present a monotonic behaviour).

3. Stochasticity: agent-based models rely on representing the heterogeneous behaviour of the agents and
on simulating its interactions. The same interaction performed by agents with different profiles can gen-
erate different results, which in turn can be reflected in the overall output. Moreover, such interaction
among agents can occur by pure chance, depending, for instance, on the position of each agent on a
grid or a network. Two executions of the simulation can thus provide different outputs, even if they are
initialized with the same parameters. The inherent stochasticity of the model increases model error vari-
ance (Kinal & Lahiri 1983), bringing a new layer of uncertainty to parameter calibration methods, as they
should account for changes in the overall behaviour due to modifications on the values of the parameters
and due to the randomness of interactions of the agents.

4. Domain of the parameters: usually agent-based models need to represent concepts that are better ap-
proximated by the family of Power Law probability distributions, such as stock market prices (Mandel-
brot & Taylor 1967), wealth (Vermeulen 2018), epidemics (Cirillo & Taleb 2020) and wars (Cirillo & Taleb
2016), just to name a few. This fact occurs more often than commonly believed (Chen et al. 2022) and it
brings important theoretical implications such as the possibility of infinite theoretical moments (mean,
variance1 (Granger 1968; Fedotenkov 2020)), which violates most of the assumptions of traditional math-
ematical methods. Under heavy-tailed probability distributions, even when those moments exist, it can
require a prohibitive number of samples to correctly estimate such properties, seriously compromising
the convergence of traditional methods or even invalidating their outputs (Taleb 2020).

Model Parameter Calibration Techniques

3.1 Parameter calibration is a classical mathematical problem, whose final objective is to find the set of parameters
that minimize the difference between real and simulated data (Liu et al. 2017). It is part of a research area called
Uncertainty Quantification, that encompasses problems such as uncertainty propagation, sensitivity analysis,
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and parameter calibration (also referred to as inverse problems when we also have uncertainty on the input
variables). Located at the heart of all methods to solve uncertainty quantification problems there lies sampling
strategies to explore an unknown search space that is not easily described by an analytical formula (Tarantola
2005). When dealing with intensive sampling tasks, we can adopt three strategies to reduce the computational
burden of the task (Frangos et al. 2010), shown in Figure 1. Namely, they are:

• Improving sampling strategies, to extract more information from a given number of samples or demand-
ing fewer samples positioned on strategic locations to properly cover the search space;

• Reducing the dimensions of the search space, by considering only a subset of the most important param-
eters, which as a consequence reduces the number of required samples;

• Constructing surrogate models, that are computationally cheaper to execute, thus decreasing the time
to generate the output of a given number of samples.

Figure 1: Strategies to reduce computational burden of sampling-intensive tasks.

3.2 There is extensive work from the research community to use one or a combination of strategies for uncertainty
quantification, and to describe all of the strategies in detail is beyond the scope of this work. We refer the reader
to Biegler et al. (2011), Sullivan (2015) for more details.

Sampling strategies

3.3 Sampling strategies are related to how the method for parameter calibration explores the search space col-
lecting samples. These samples are used to determine some relevant properties of the search space, such as
in what locations we have more chances finding the set of parameters that minimizes the error of the model
compared against ground truth data. Better strategies focus on extracting more information on key regions of
the search space to assure a faster convergence. However, those sampling methods should guarantee a good
coverage of the search space, in order to find in the first place what regions should be explored more carefully.
Sampling strategies are tightly coupled to the field of Design of Experiments (DoE), as they share the ultimate
goal of optimizing the number of experiments to the most important ones (Lorscheid et al. 2012).

3.4 Sampling strategies can be used alone to reduce the computational cost of calibrating the parameters or they
can be used in combination with the other two approaches (model order reduction and/or response surface
creation). The most efficient sampling strategy can vary depending on the use case (Sullivan 2015).

3.5 The more naive sampling strategy is known as the Monte Carlo strategy, in which the values of each parameter
are chosen randomly between its range of variation. There is no guarantee that the samples will be homo-
geneously distributed over the search space (there is a non-negligible chance that the samples are clustered
among small subspaces) and, moreover, there is no guarantee that regions that potentially are more likely to
contain a better set of parameters will be explored in more detail. As this is a simple method, with a very straight-
forward implementation, it is used as a benchmark for all other sampling strategies.

3.6 In order to overcome the undesired sampling clustering that might happen with Monte Carlo, some other tech-
niques are adopted. Latin Hypercube is one sampling strategy commonly applied that relies on equally dividing
the search space into a grid of cells, assuring that there is one sample on each of those cells (Shields et al. 2015).
Essentially it comes in two different flavours: a pure Latin Hypercube, in which the sample should be within the
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borders of the cell, or the Full Factorial version2, in which each sample is extracted precisely from the borders
of each cell, being equally distant from each other.

3.7 Quasi-Random Monte Carlo is another clustering-avoidance sampling strategy. It is based on the definition of
an initial sample (chosen randomly) which will dictate what will be the next samples: they will be selected by
following a numerical sequence that presents some mathematical properties (usually it is based on a Sobol’
sequence, Sobol 1990). As Latin Hypercube and Quasi-Random Monte Carlo are more space-filling than the
traditional Monte Carlo method, they both present quicker convergence. However, they require more compu-
tational power to calculate where to position the samples, which could easily be a drawback in many situations
(Kucherenko et al. 2015).

3.8 Importance sampling and Markov Chains, on the other hand, try to focus on fostering the sampling on regions
of the search space with a higher potential to include a better set of parameters. With Importance Sampling,
one can estimate an unknown distribution (in the case of parameter calibration, the likelihood associated to
each set of parameters), while sampling from another, more tractable probability distribution, that we will re-
fer to henceforth as the sampling probability distribution s. Probability distribution s must be chosen so as to
overweight a potentially interesting region by concentrating more samples on it. Because some regions of the
subspace were favored by s, a correction must be later applied to the samples in order to extract the real proba-
bility distribution. Choosing a good probability distribution s to sample from is key for the method performance
as some can generate an expectation with an infinite variance - in this case, a pure Monte Carlo method would
outperform Importance sampling (Owen & Zhou 2000).

3.9 The Monte Carlo Markov Chain is an umbrella term for several sampling techniques of multidimensional spaces.
Unlike the Monte Carlo method, which considers a set of independent samples to estimate the unknown proba-
bility distribution, the Markov Chain method consists of extracting a chain of correlated samples that are gener-
ated by a walk over the search space (Geyer 1991; Brooks et al. 2011). As mentioned, there are several possible
implementations of the Monte Carlo Markov Chain, and their subtle differences stem from the way a point in the
search space is added to the chain of samples. The most adopted sampling strategy is the Metropolis-Hastings
(Roberts & Smith 1994). It is based on the definition of an initial sample point, the choice of a sample candidate
and analysis of acceptance/rejection of the new sample: the new sample is accepted if it presents a higher likeli-
hood (in the case of parameter calibration, if it reduces the observed error of the model output when compared
to real data); otherwise, the new sample is accepted with a random probability, even with a lower likelihood.
This property assures that, in the long run, we have a satisfactory coverage of the whole search space, while at
the same time emphasizing the search in potential hot spots.

3.10 Metaheuristics encompass techniques that tries to implement the trade-off between exploring a huge search
space while focusing on subspaces that present a higher potential to contain at least local optimum solutions.
Simulated Annealing resembles a Monte Carlo Markov Chain with a Metropolis-Hastings sampling strategy. The
key difference is that while on Simulated Annealing the probability of accepting a sample with inferior like-
lihood is time-dependent(i.e., the probability decreases as more samples are chosen from the search space),
with the Metropolis-Hastings this probability is strictly related to the likelihood of the new samples (the smaller
the likelihood, the smaller the chance this sample is accepted). Genetic algorithm is a widespread metaheuris-
tic that implements the metaphor of natural selection, fostering the exploration of regions of the search space
which showed the greater potential of containing a good set of parameters. Metaheuristics in general present
some draw-backs: first, they lack the mathematical formalism of sampling (Tarantola 2005; Saka et al. 2016);
secondly, their performance is closely coupled to the chosen parameters that regulate their behaviour (for in-
stance, the size of the parent population in Genetic Algorithms). The CMA-ES algorithm (Hansen 2006), which
stands for Covariance Matrix Adaptation - Evolution Strategy, is a population-based metaheuristics, that takes
advantage of second-order information and is a derivative-free method. It is based on a multi-variate normal
search distribution, regulated by the covariance matrix that is continuously updated, and on evolutionary com-
putation, by applying selection/ranking techniques over recombining generations. One of the great advantages
of the CMA-ES method is that it can regulate its own parameters, such as step size, overcoming one of the great
drawbacks of metaheuristic methods, as well as being a more agnostic method that does not rely on restrictive
assumptions about the objective function.

3.11 Similarly, History matching systematically reduces the search space by evaluating if the set of parameters makes
the model mimic important properties of the target system over time. The combination of parameters that do
not successfully replicate those properties is removed from the search space, narrowing it for subsequent exe-
cutions. To account for the intrinsic randomness of the model, a fixed number of executions with the same set
of parameters is performed, and the evaluation is based on the mean and variability of the difference between
the ensemble of simulations with the same parameters and the observed behaviour (Papadelis & Flamos 2019).
History matching is widely used in the oil industry to model reservoir properties but is not limited to this domain
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(Vernon et al. 2014). Computational resources can be a barrier depending on the number of points analysed,
model parameters and instances of the ensemble 3. Moreover, in high dimensional spaces, the method can be
trapped on suboptimal solutions, resulting mistakenly in the discard of a viable set of parameters and even a
complete region of the search space.

3.12 Gradient-based strategies also follow an approach to concentrate on regions of the search space with a com-
bination of parameters that minimizes the error of the simulator output. They require the definition of a loss
function (i.e., a function to evaluate how far the output of the simulation in which a set of parameters differ
from real data). The gradient of each parameter, which represents how much the output responds to changes
in its values, is computed for each iteration. Repeatedly, the method selects a combination of parameters that
minimizes the loss function, until it eventually reaches the point of (local) minimum (Lu 2022). There are several
methods to implement gradient-descent strategies, that vary on how to calculate the gradient and how to select
the parameters’ values. The most prominent methods in this family are stochastic gradient descent (SGD) and
Adam (Kingma & Ba 2014) optimizer. As with any method, they can have some undesirable behaviour, such as
noisy and slow convergence (for SDG) (Ruder 2016) and problems of convergence (not theoretically guaranteed
for Adam; Chen et al. 2018; Reddi et al. 2019).

3.13 Another approach some sampling strategies adopt is to increase the information extracted from samples. These
sampling strategies do not try to reduce the number of samples to converge, but they apply techniques to con-
verge more quickly, by combining samples generated by models with different accuracies and computational
costs. This is a mixed strategy, as it relies both on (i) sampling wisely and on (ii) model-order reduction tech-
niques or on the creation of response surfaces to generate models that perform faster at the expense of accu-
racy. There are essentially two strategies that can be put under this classification: Multi Level Monte Carlo and
Bayesian Optimization.

3.14 Multi-Level Monte Carlo is based on the assumption that there are at least two models with increasing accuracy
and consequently increasing computational cost. This method relies on the telescoping sum of the expecta-
tion, which requires only the computation of the difference in the accuracy between the models (Jasra et al.
2020). A finite number of samples (i.e., sets of combinations of the parameters being calibrated) is simulated
both on the model with higher accuracy and on the lower accuracy model in order to properly calculate the
accuracy difference. After this calculation, the method determines the number of required samples on each
model to converge properly. Most of the samples are executed on the cheapest model, so Multi-Level Monte
Carlo demands fewer computations to achieve the same results obtained from a pure Monte Carlo strategy.

3.15 Bayesian Optimization (Frazier 2018), as the name implies itself, heavily relies on Bayes Theorem. It has two key
elements: a statistical model of the objective function (which in our case tries to minimize the error between
the results obtained from the simulation model against ground truth data), and an acquisition function that
determines where to sample on the next iteration. The first step collects a fixed number of samples that will be
used by the statistical model (commonly Gaussian Process) to generate a surrogate of the objective function.
The statistical process provides the most probable function that interpolates the samples, with an associated
confidence interval. The acquisition function then estimates the next sample to be collected, which should be
the one located in the region of lower confidence, therefore maximizing information brought by this new sam-
ple. The whole process of fitting the statistical model is then triggered again, generating a new surrogate of the
objective function and consequently the region with higher uncertainty, that will be explored with the next sam-
ple. This iteration stops once a predefined condition is reached (computational time, level of confidence, error).
For an extensive list of references about Bayesian optimization and its application to demography modelling,
we refer the reader to Bijak (2022).

Model-order reduction

3.16 It is very intuitive to infer that models that receive fewer input parameters are executed faster, as fewer calcula-
tions are required to generate the output. Additionally, such models require a substantially reduced parameter
combinations to be calibrated (remember that the number of required samples increases exponentially with
the number of parameters). Therefore one good approach is to find which ones dominate system response. The
task of sensitivity analysis (Oakley & O’Hagan 2004), or feature selection on Machine Learning (Chandrashekar
& Sahin 2014), does precisely this job, as it aims at identifying which input parameters contribute most to out-
put variations (Saltelli et al. 1999). There are two common approaches when performing a sensitivity analysis:
local and global sensitivity analysis methods. The first one varies one parameter at a time, while all others are
fixed. The latter one varies all parameters at the same time, which allows a more comprehensive analysis of the
consequences of parameters variations by also observing the impact on the interaction among the parameters
in the overall response.
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3.17 Within the local approach, the most naive strategy is based on the calculation of correlation metrics between
the input parameter and the output of the system. Those metrics include Pearson or Spearman correlation,
mutual information, among others. In the same category, Differential Sensitivity Analysis extracts the partial
derivatives of each parameter to infer its relevance.

3.18 As global sensitivity analysis methods are more computationally expensive, often a multi-stage approach is pre-
ferred: screening methods selects a small yet representative subset of parameters, that will be evaluated more
carefully. Such methods do not measure the importance of each parameter in a numerical form but essen-
tially indicate comparatively which ones contribute most to the system’s behaviour. The Principal Component
Analysis (PCA) technique is applied recurrently to this end. In general terms, it employs mathematical trans-
formations to extract an independent set of parameters (the principal components) among an extensive list of
parameters (Jolliffe & Cadima 2016). PCA methods have some caveats: they are based on the Gauss-Markov
assumption, which might not be fulfilled if data is not normally distributed (Taleb 2020). Similarly, some works
opt for stepwise regression in order to find out what are the most impactful input parameters, by adding or
removing an input variable to observe the consequence on the accuracy of the model’s output. A parameter
is considered relevant if the accuracy decreases more than a predetermined level of acceptance or if it is con-
sidered statistically relevant for the output. Unfortunately, this method is unsuitable for scenarios with a large
number of parameters, as due to the phenomenon of equifinalitity, it increases the chance of finding misleading
answers (Smith 2018).

3.19 The Morris method, also sometimes called as One-at-a-Time method, might be inadvertently classified as a lo-
cal method, but in fact, performs much more a global analysis. It creates a vector with all the input parameters
and sequentially alters only one value of the vector at a time, for a fixed number of steps, generating a trajec-
tory. After generating several trajectories, the method calculates certain statistics for each parameter, such as
mean and standard deviation to summarize the importance to the system’s output (Morris 1991). Fourier am-
plitude sensitivity test (FAST) is a long-term well-established method for sensitivity analysis, that decomposes
the variance of model output by applying a Fourier transformation, and then sampling suitably to compute the
importance measure of each parameter (Saltelli & Bolado 1998; Reusser et al. 2011).

3.20 Similarly, ANOVA, which stands for Analysis of Variance, adopts techniques developed on the field of Design of
Experiments (DoE), decomposing the variances into partial ones, that are later and incrementally expanded by
increasing their dimensionality (Speed 1987; Gelman 2005). Sobol’ indices, often called Variance-based sensi-
tivity analysis, relies on the ANOVA decomposition of functions (Owen et al. 2014) and the Monte Carlo method4

to calculate how each parameter contributes proportionally to the overall output, as well as the effect on the
output generated by the interplay among parameters. It essentially measures the importance of subsets of pa-
rameters, and then incrementally and hierarchically decomposes each subset into multiple one-variable sets
in order to calculate its unitary importance. Sobol’ indices is the only one that escapes from the curse of di-
mensionality, by implementing the Total Sensitivity Index, which clusters the variance of several variables into
a unidimensional value, that is later decomposed into each of the constituent variables (Ratto & Saltelli 2002).
However, this method still requires several executions of the model to properly calculate its index, which might
compromise its usage with heavy simulation models (Lamboni et al. 2013)5 and, more importantly, it can only
be applied when the variables present a finite variance (Brevault et al. 2013), which might not be naively as-
sumed, especially in social domains.

Surrogate models

3.21 Surrogate models are also sometimes referred to as response surface, emulators or metamodels6. They try to
faster replicate the output of a simulation model (the response surface of the model), without implementing its
process dynamics. Response Surface Methodology (RSM) is aimed at extracting an unknown (usually nonlinear)
function that describes the relationship among independent predictor (or input) variables. In essence, to create
a response surface one needs to perform a numerical approximation that relies on experimental strategies to
explore the space of parameters and estimate an empirical relationship with the output of the model (Myers
et al. 2016).

3.22 The task of constructing a response surface can be preceded by an optional screening step, often referred to as
step zero, which consists of performing screening on input variables to identify which ones influence most the
shape of the surface. It is essentially the strategy employed on the aforementioned model-order reduction.

3.23 The techniques employed to construct such response surfaces vary according to certain characteristics of the
process that governs the model’s behaviour it is trying to replace. For a simpler process, polynomials can satis-
factorily describe the surface, but this is not the usual scenario, which requires the usage of more sophisticated
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methods. Gaussian Processes have been successfully applied to perform regressions on stiff search spaces.
In essence, while traditional regression methods try to find the best parameters that fit a predefined (linear
or nonlinear) function, Gaussian Processes explore a wide range of functions that could describe the training
set always considering the assumption that data stemmed from a multivariate (usually Gaussian) distribution
(Ebden 2015). In order to make this task computationally tractable, the range of variation of all variables should
be defined. Moreover, a Gaussian Process assumes that nearby input values will generate close outputs in the
response surface (Williams & Rasmussen 2006). This relation is described by a covariance matrix, that can be
extracted from the training data, but still, the user should specify the mean of such correlation matrix, and the
kernel of the shape of the correlation, which is usually assumed to be a Gaussian. The definition of the covari-
ance function predominantly determines the reliability of the regression made by the Gaussian Process (Ebden
2015). Correctly executing a Gaussian Process regression is very time consuming and computationally expen-
sive7. Additionally, it can be a useless effort as this method heavily relies on the variance of involved variables
that might not exist8 (Nair et al. 2013). We refer the reader to Kennedy & O’Hagan (2001) for an interesting use of
Gaussian Process to model and propagate several sources of uncertainty of calibrated computer models (Conti
et al. 2009; Oakley & O’Hagan 2002) and to construct an emulator for sensitivity analysis.

3.24 Machine Learning techniques, especially unsupervised algorithms, have been broadly adopted to generate re-
sponse surfaces because they have the power to model rough surfaces without requiring much prior knowl-
edge of the target surface. Neural networks are nowadays undoubtedly the most widespread approach for such
task, presenting impressive results on extremely challenging scenarios, such as chaotic systems (Lamamra et al.
2017) and processes strongly governed by differential equations (Meng et al. 2020). They are not a panacea,
though. To implement a neural network several definitions must be made beforehand or on a trial-and-error
approach. Such definitions include the network architecture, the shape of the activate functions of neurons,
the learning rate and the loss function. Moreover, the size and quality of the training set are key for the success
of the task of generating a surrogate model based on neural networks. It is broadly known that neural networks
are good at interpolating, not extrapolating the search space (i.e., going beyond the training domain, as it relies
on the universal approximation theorem; Barron 1993; Schäfer & Zimmermann 2006). This means that the sam-
ples should cover to some extent all the characteristics of the search space, demanding a huge amount of data
to this end. Additionally, there is a known drawback of disproportional importance given to regular, ordinary
samples (that are more common and, consequently, more abundant in the training dataset) during the learn-
ing phase than non-frequent samples resulting from the combination of input variables with extreme values,
amplified by strongly non-linear relations9. This question is addressed in the literature as imbalanced training
samples (Hensman & Masko 2015).

3.25 A multi-step approach can be adopted for the construction of response surfaces. The first step consists of esti-
mating the shape of the response surface (for instance, the location of maximums and minimums) to identify
which regions of the search space possibly lie close or far from the optimum. In essence, it performs an ap-
proximation of the effect of input parameters on the response. This first-level response surface is then used as
the building block of a method responsible for an improvement, which searches for (at least local) optimum
regions. Steepest ascent/descent is generally the method of choice for this purpose. In phase two, a more in-
tense exploration nearby the selected region takes place, and a second-order response surface is built, better
approximating the curvature of a small region near the optimum.

3.26 For a discussion about some of the surrogate construction techniques for agent-based models, we refer the
reader to Banks & Hooten (2021).

Model parameter calibration in ABM

3.27 Agent-based models are valuable tools for the simulation of complex systems, especially to deepen our under-
standing of systems’ dynamics and to substantiate policy-making decisions. Comparing their ability to replicate
real-world data is an important requirement to provide supporting evidence of the value of such models. Sur-
prisingly, parameter calibration is performed by only a minority of work published in this area (some studies
suggest something near to 10%, Thiele et al. 2014). One of the possible reasons for this scenario could be due
to the technical complexity required by the task of parameter calibration of agent-based models, which makes
it essential to define efficient methods for this purpose (Banks & Hooten 2021).

3.28 We performed extensive research to identify what techniques have been adopted in the literature, concerning
agent-based parameters’ calibration. Overall, such techniques are frequently selected without entering too
much into the model and data idiosyncrasies. We provide a summary of this research in Table 1, highlighting
canonical techniques and giving minor details about the implementations in the footnotes.

JASSS, 26(4) 3, 2023 http://jasss.soc.surrey.ac.uk/26/4/3.html Doi: 10.18564/jasss.5183



Table 1: Parameter calibration for ABM.
Reference Sampling Model-order reduction Surrogate model

Lamperti et al. (2018) Quasi-random (Sobol’)10 No Machine Learning11

Papadopoulos & Azar (2016) No No Linear Regression
van der Hoog (2019) No No Machine Learning12

Grazzini et al. (2017) Monte Carlo Markov Chain No No
Barde & van der Hoog (2017) Latin Hypercube13 No Gaussian Process
Venkatramanan et al. (2018) Bayesian Optimization No No

Zhang et al. (2020) Importance sampling14 No Machine learning15

Lux (2018) Importance sampling16 No No
Fonoberova et al. (2013) Latin Hypercube Variance-based Machine Learning17

Garg et al. (2019) No Regression18 Regression19

McCulloch et al. (2022) History matching20 Latin Hypercube No
Kotthoff & Hamacher (2022) Gradient-based21 No No

3.29 Some work try to summarize and discuss different approaches for parameter calibration, such as Reinhardt
et al. (2018)22, Fagiolo et al. (2019) and more recently Carrella (2021). It is very unlikely that there is a silver-
bullet, one-size-fits-all solution for agent-based parameters’ calibration, as such models are applied in a myriad
of domains, with diverse data aggregation and parameters’ dependence.

2LevelCalibration: A Multi-Stage Approach for Agent-Based Models’ Pa-
rameter Calibration

4.1 By analysing both theory and previous work, we can infer that the construction of surrogate models can be
very beneficial, as they can substantially spare computational resources when adopted in combination with
effective sampling strategies (especially Multi-Level Monte Carlo and Bayesian Optimization). The most tradi-
tional and agnostic23 method for the construction of surrogate models, Machine Learning is nonetheless also
very time-consuming as it requires a large number of samples and several configuration decisions. If the surro-
gate development is coupled with model-order reduction techniques, the burden of this process also increases
sharply.

4.2 One can argue that the process of constructing a surrogate model is performed only once or a few times, de-
pending on the strategy adopted. Notwithstanding, this argument misses an important aspect of the agent-
based modelling process: such models inherently present a high level of epistemic uncertainty (Sullivan 2015),
which is the one associated with how much one knows about a target process. This epistemic uncertainty can
be attributed both to model uncertainties (in which we do not even know if the model correctly describes the
target phenomenon) and to parametric uncertainty (in which we assume that the model is correct but there is
some uncertainty on the values of the parameters). With an agent-based approach, the modeller does not have
visibility about the output before executing the model – and to execute the model, several parameters should
be calibrated. Consequently, the parameter calibration process is repeated several times during the phase of
model development, as the modeller tries to explore and, even more important, to evaluate the performance
of several assumptions regarding the agent’s behaviour and cooperative structures. So, with an agent-based
approach, model and parameter uncertainty are intrinsically related: while testing the model’s assumptions,
we should use parameter calibration techniques that are both efficient and that present consistent results 24. In
other words, we aim for techniques that are lightweight (since the calibration step is performed repeatedly) and
that have good convergence (i.e., if there is an optimal set of parameters that can fit the model, the technique
should be able to find a solution within a small deviation). Hence efficiency and consistency are requirements
that should be satisfied by our proposed approach 2LevelCalibration.

4.3 The most appealing methods that meet our desired requirements take advantage of the combination of a large
pool of executions from low-cost models and a few ones from costly and most accurate models, which demands
the development of surrogate or reduced-order models. To construct low-cost models affordably for agent-
based systems, we propose the usage of a Model Library. This idea is grounded on the concept that the micro-
behaviour of the particles of a system, described by many factors and interactions, can lead to behavioural
patterns at a macro-scale (Siegenfeld & Bar-Yam 2020; Grimm et al. 2005).

4.4 Specifically in agent-based models for social simulation, it is common to obtain only a time series that portrays
system dynamics over time. Thereafter, most commonly the surrogate model should describe an evolving dy-
namic system, that is governed by ordinary differential equations (ODEs), that can be adopted as a surrogate
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of an agent-based model. We chose ODEs to compose our Model Library according to work developed in the
research area of System Dynamics (SD). Sterman (2000) identified the fundamental behavioural modes of so-
cial dynamic systems, described as the most common recurrent patterns in this domain, with the advantage
of relying on the definition of very few parameters. As a byproduct of this strategy, our method performs, at
no cost, a model-order reduction, while simultaneously avoiding the Curse of Dimensionality by making model
evaluations independent on the number of parameters of the agent-based model. Moreover, by successfully
identifying the key parameters of the system dynamics to generate the surrogate model, we are more likely to
develop robust models that are both representative of the target system’s current conditions and of possible
regime shifts (Grimm & Berger 2016).

4.5 The process of reducing the number of parameters by collapsing several parameters into one requires a later
step of downscaling. This step translates the aggregated value into the multiple parameters of the agent-based
model that are merged into the higher level parameter of the ODE. For this reason, our method relies on a second
phase for calibrating the agent-based model’s parameters. In fact, our method 2LevelCalibration can be seen as
a multiscale approach, an effective strategy for complex systems because they have the property of presenting
simultaneously different patterns of behaviours at different scales (Grimm et al. 2005). In the first step, the ODE
surrogate function f̂ , which requires a smaller number of parameters than the original model, is generated and
calibrated using ground-truth data. In the second phase, the reduced set of parameters calibrated previously
is used as initial values. The whole set of parameters is then calibrated, but now comparing the result of the
original agent-based model, i.e., function f , against ground-truth data. Figure 2 denotes this process.

Figure 2: 2LevelCalibration pipeline for parameter estimation: in the first step, surrogate model (f̂ ) is created
based on input data from real world; in the second step, the parameters of function (f̂ ) are used as initial con-
ditions for the second process of parameter calibration, which is executed this time to calibrate the parameters
of the agent-based model.

4.6 The choice for using System Dynamics’ fundamental models brings also a key advantage on the task of going
back from the macro parameters provided by the surrogate modelling to the micro ones, required by the agent-
based model. To date, there is no systematic silver-bullet method to interconnect aggregated variables (the
macro parameters of the ODE) and their constituents components (the micro parameters of the agent-based
model), and this is precisely the fact that makes agent-based models so useful. However, System Dynamics
relies on the assumption that it is possible to infer a system’s structure by observing its output. In a nutshell,
in Systems Dynamics (SD), the structure is composed of two basic units: accumulators (represented by stocks)
and flows, coupled to feedback loops that provide the dynamic character of the system (i.e., its property of
changing over time) (Forrester 1994). By taking advantage of the types of structures described in SD that give
rise to the observed output, the modeller can intuitively group parameters that supposedly contribute to the
observed dynamics. This strategy does not provide a formal technique for grouping parameters, but it is easier
for the modeler to make an educated guess.

4.7 By executing the first step of parameter calibration over function f̂ (the surrogate model), with a reduced num-
ber of parameters, we are able to explore the whole search space faster, identifying hot spots more easily and fa-
cilitating the second step that is initialized with more favourable conditions. We believe that this extensive cov-
erage is especially determinant for providing the desired consistency in our method. Furthermore, our method
is less likely to be trapped on local minimums with a suboptimal configuration of the values of the parame-
ters. The characteristics of the search space of the parameters of an ODE are largely more tractable than one of
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the agent-based model parameters. First, because a space with lower dimensionality is easier to explore, and
second because of the nature of the parameters that need to be calibrated: their range of variation and their
variability are smaller (sometimes orders of magnitude smaller). Additionally, estimating the initial values is
smooth - they just need to allow the ODE to describe the expected stylized shape.

4.8 Algorithm 1 describes the whole process. The requirement of efficiency is fulfilled by the usage of the Model
Library, which provides a lightweight method for the creation of the surrogate model. Note that we adopted
RMSE to measure the error between observed data and the template curves in our Model Library, but it is pos-
sible to choose any preferred measure (e.g., MAPE, MSE etc) as long as the algorithm can properly differentiate
between the modes of behaviour. Sometimes, such identification of the template curve can be done even visu-
ally, and the step of automatically selecting the template curve can be skipped and the user might go straight
to the step of calibrating the surrogate model parameters.

Algorithm 1 2LevelCalibration process: (1) selecting and calibrating surrogate from Model Library and (2) esti-
mating the parameters of the agent-based model

▷ Receive as input a time-series
1: procedure GENERATEMODEL(data)
2: bestRMSE ←∞

▷ Every model is a candidate f̂
3: for model ∈ModelLibrary do

▷ Calibrate the model starting with an initial set of values v0
4: RMSE, params← CALIBRATE(model, data, v0)
5: if RMSE ≤ bestRMSE then
6: bestRMSE ← RMSE
7: bestODEParams← params
8: bestModelID ← model.ID
9: end if

10: end for
▷ Return the type of model, and the parameters of the calibrated equation

11: return bestModelID, bestODEparams
12: end procedure
13:

▷ The second calibration starts with initial values set to the previously calculated parameters, and can be
seen as a local search

14: procedure FINALCALIBRATION(data, bestODEparams, agentModel)
▷ Now the calibration is performed over the agent-based model with best ODE parameters as v0

15: RMSE, params← CALIBRATE(agentModel, data, bestODEParams)
16: return RMSE, params
17: end procedure

4.9 With our method 2LevelCalibration we are able to combine several advantages of the previously mentioned
techniques, without compromising the computational cost. As in Importance Sampling, we can concentrate on
the hot spots of the search space. With the first step of our method (procedure GenerateModel from Algorithm
1), we mostly calibrate the parameters with samples that come from the cheapest model (the surrogate), just
like in Multi Level Monte Carlo. As in History matching, the tested set of parameters is confronted against all
historical system behaviour to increase our certainty on their values, although as we already have the structure
of the behaviour pre-defined by our Model Library, this process is computationally cheaper and more precise.
The use of the models from SD substitutes the step of sensitive analysis methods as the behavioural pattern
of the system over time acts similarly as an indicator of the dominant parameters - in a sense, it acts as the
stepwise regression. Similarly, as in Variance-based sensitivity analysis, we use the ODE’s parameters as a cluster
of correlated parameters of the agent-based model, avoiding the Curse of Dimensionality. In the same way as
ANOVA, we first analyse a group of parameters and then expand gradually the dimensionality of the analysis in
the second step of 2LevelCalibration (procedure FinalCalibration from Algorithm 1).

Model library

4.10 The first challenge of our method is to define the strategy to choose the function f̂ that describes the surro-
gate model in an inexpensive way. Thereafter, we propose to use a Model Library that incorporates the most
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common patterns of behaviours in social systems. Our decision is based on the fact that in SD there are some
canonical behaviours, known as fundamental modes (Sterman 2000), whose originating structures are identi-
fied and presented in Figure 3.

Figure 3: Fundamental modes of behaviour.

4.11 When the basic modes of behaviour 25 are combined and interact with each other in a nonlinear manner, other
more complex behavioural pattern emerge (Sterman 2000). Still, they are recurrent both on physical and so-
cial systems and are presented in Figure 4. Other more complex behavioural modes were not implemented as
their erratic behaviour makes their forecasts less useful and consequently limits the relevance of a parameter
calibration task.
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Figure 4: Fundamental modes of behaviour.

4.12 In our approach, collected data is compared against such template curves in the Model Library to infer which
one better suits the observed phenomena, as represented in lines 3-10 in Algorithm 1.

4.13 The method used to calibrate both ODEs and agent-based model’s parameters is another cornerstone of our
method, but it can be chosen freely as the effectiveness of our method stems from the multi-phase approach26.
In order to demonstrate that a phased strategy satisfies our requirements for effectiveness and consistency, we
executed an experiment comparing our 2LevelCalibration method coupled with different sampling techniques
against the strategy of calibrating all the parameters at once of the agent-based model.

Housing market: A testbed for our approach

4.14 An iconic example of the strength of agent-based models was largely advocated after the housing market crisis
in 2008. Several researchers have discussed the adequacy of agent-based models in foreseeing the economic
crisis, such as in Farmer & Foley (2009) and in The Economist (2010).
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4.15 The housing market in São Paulo was chosen for our experiment. Data was obtained from a publicly available
repository FIPEZAP (FIPE 2023). For this experiment, we will consider a time series of the price of m2 in São
Paulo, the biggest city in Brazil, from January 2008 to March 2018.

4.16 It is worth mentioning that we developed a model of the housing market to use as a testbed for the evaluation
of the performance of our method and, above all, to validate whether it met our efficiency and consistency re-
quirements. The model presented here is not meant to describe the housing market in the best possible way -
the model should simply contain a level of complexity that portrays a common agent-based model under devel-
opment to test our calibration method and to show how the process of downscaling the parameters of the ODE
can be aided by the use of structure feedback loops diagrams from SD. Moreover, with a testbed model, we were
able to add certain properties that are the major causes of parameter calibration methods’ non-convergence,
which are notably a large number of dependent parameters and those that follow probability distributions that
might present infinite variance.

4.17 It is straightforward that the dynamics of prices of the housing market emerge from the interaction of buyers
and sellers. Buyers clearly have a higher limit of money they can afford to pay for a house (this limit could stem
from income and credit access) that is described in our model as savings variable, which cannot be exceeded
under any circumstance. Having available a given amount of money does not mean that this will be the offered
price for the house, though. A buyer will analyse the charged prices in the near past to see what was the average
practiced price for a target region. This concept is represented in the model as variable proposedPrice, that is
calculated in a way that savings is not surpassed and allowing a slight increase on current practiced prices by
a percentage that is individual, and that describes the behavioural economic concept of willingness to pay,
modelled as wtp.

4.18 Seller agents, on the other hand, try to increase houses’ prices without a higher superior constraint, but they
have a lower value they accept for an offer, as values below this limit are credited to be less than the house is
worth (variable lowerPrice). This lower price cannot diverge too much from the practiced price in the near past
and is also influenced by the time the seller is offering his house without a buyer - the longer the time the seller
does not succeed in selling the house, the lower the price he accepts as an offer. Additionally, how much a seller
waits until he decreases the price is also particular to each agent and is incorporated in our model as variable
noSell. How much he decreases the charged price and the lowest price is individual and is modelled as variable
profitMargin. Otherwise, if a sell was successful, the seller increases the asked price and the lowest price for the
next timestep - both variables are updated according to the individual profitMargin variable.

4.19 In a nutshell, the execution of the model’s simulation requires the calibration of those variables:

1. price0, that reflects the price used as a starting reference of practiced price. This variable should be cali-
brated and not only inferred as the initial value of the time series: the optimum combination of parame-
ters might not contain exactly this value.

2. savings, which determine the maximum amount of money a buyer can afford to pay. Each buyer presents
its own savings, that is set at the moment of its creation. The calibration process should determine an
average value for the savings variable, that will be used as the mean of a student’s T distribution with 3
degrees of freedom, and from where the individual value of a buyer’s savings should be sampled from.
The probability distribution was chosen in a way to generate savings values with large variance, testing
the performance of the calibration method under conditions that are frequent under social systems and
that at the same time make most traditional methods fail.

3. wtp, that describes how much a buyer accepts to inflate the current practiced prices in order to purchase
the house. Variable wtp represents the percentage the agent uses to inflate practiced prices in order to
calculate proposedPrice. The calibration method should estimate the value of the mean of a normal dis-
tribution from which the simulator samples to determine the individual value for the buyer during its
creation process.

4. profitMargin variable determines the percentage by which the seller will inflate current practiced prices
when calculating the price to charge for his house. Again, profitMargin values’ are particular for each seller
and are within the interval of 0 and 1. The parameter calibration method stipulates the mean of a normal
distribution that dictates the distribution of profitMargin values for the population of seller agents.

5. lowerPrice represents the bottom price a seller is willing to accept as an offer for this house. Clearly, low-
erPrice should be inferior to askedPrice, that is the result of applying agent’s personal profitMargin to the
current price. In our model, lowerPrice is defined also as a percentage, varying from 0 to 1, which is ap-
plied over profitMargin multiplied by askedPrice.
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6. noSell describes how many timesteps the seller waits until he decreases the askedPrice. This variable’s
range is defined by the interval between 1 and the maximum value provided by the calibration method.
Each seller has a uniform probability of receiving one of the values within this interval.

4.20 This model was used in a way that two types of agents (50 sellers and 50 buyers) repeatedly negotiate houses’
prices. To calibrate the parameters of the model, we should find the set of parameters that generates a time
series that depicts more closely the evolution of real-world prices. The source code of the simulation can be
found at https://github.com/priavegliano/2LevelCalibration.

Constructing the surrogate model with System Dynamics

4.21 As we can see in Figure 5, the evolution of prices over time resembles the S-shaped growth fundamental mode.
Mathematically, the S-shaped growth pattern can be modelled as the following ordinary differential equation
(ODE), which was used as the surrogate function f̂ in our experiment:

df̂

dt
= ẋ = αx− β

x2

limit
(1)

Figure 5: Evolution of index-price through time.

4.22 In this context, variable x represents the index price portrayed by the time series. We can see that there are two
acting forces that define how muchxvary from one time step to another, that are precisely the positive feedback
loop, present on the therm αx of the equation, and the balancing negative loop, represented by β x2

limit .

4.23 From the dynamics of the S-shaped growth pattern of feedback dominance, we can relate the α variable that
governs the positive feedback loop to the forcing power of buyers, which increases the practiced prices with
their associated wtp variable. On the other hand they simultaneously contribute to limiting this increase with
their associated variable savings, which can be represented by variable limit of the function f̂ . Sellers, on the
other hand, also interfere on the negative feedback loop by determining the lowerPrice that they accept. As the
definition of the lowerPrice is dependent of variables profitMargin and noSell, we have encapsulated all of these
variables into β term of f̂ . The reaction between parameters of surrogate function f̂ and the parameters of the
agent-based model is depicted in Figure 6. Notably, that is a benefit brought by the usage of SD’s fundamental
modes of behaviour: by bringing along a structure of positive and negative feedback loops that result in the
observed behaviour, it is easier to perform the downscale of the parameters (i.e, it is easier to identify which of
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the parameters of the agent-based models are represented on the reduced set of parameters of the surrogate
model).

Figure 6: Downscaling the parameters of surrogate function to agent-based parameters

Experiment

4.24 In the experiment, our method 2LevelCalibration was applied in the following way: the first step was to select
the method to calibrate the parameters of the surrogate models in our Model Library to automatically identify
the surrogate function f̂ that best describes the observed output of the system. After performing this step,
we receive calibrated values for variables α, β, limit and price0 (i.e., we have calibrated the parameters of our
surrogate function f̂ ). We then used these calibrated variables as the initial values for the process of calibration
of the six parameters that describe the behaviour of our complete agent-based model. With this approach,
we were able to find more easily potential areas of a good combination of parameters. In our experiment, we
applied the same calibration method used to estimate the parameters of the surrogate function (4 variables)
and the full agent-based models (6 parameters), but this is not a constraint of our approach, as we could apply
different calibration methods on the different stages.

4.25 In order to comparatively assess the performance of our method, we used the outcome of calibrating the agent-
based model directly as a benchmark, without using the surrogate, which we will reference henceforth as raw
calibration.

4.26 As the model exhibits randomness, we have executed the calibration process, both with our proposed method
and with the raw calibration, 130 times. Moreover, to account whether the performance was actually associ-
ated with the process of performing a multi-stage calibration, and not with the selected method for parameter
calibration, we compared the outcome of two different calibration methods: CMA-ES and Monte Carlo Markov
Chain. Both methods were selected because they are agnostic to some important properties of social agent-
based models. The results of both calibration processes are shown in Table 2.

Table 2: Mean and standard deviation values of RMSE for 130 executions of parameter calibration.
MCMC CMA-ES

Mean σ Mean σ

Raw calibration 28.86 16.24 16.81 10.07
2LevelCalibration 20.35 9.36 9.77 1.13

4.27 In most executions, the raw calibration was not able to find suitable parameters to satisfactory replicate impor-
tant features of the real system, shown by higher mean error of the model with the raw calibration. This is quite
relevant as this can be a misleading result: this could invalidate a viable agent-based model that did not capture
the dynamics of real-world due to poor parameter calibration. On the other hand, we can clearly see that using
our 2LevelCalibration method we can obtain a reasonably good result generated by the simulation (smaller er-
ror) in a consistent manner (smaller deviation). This is an important feature, as parameter calibration can make
part of the modelling process of agent-based simulation. Reaching quickly the desired behaviour can enhance
this process, as one can easily see if the definitions and assumptions of the model are correct. Moreover, our
method is flexible enough to be used in combination with other approaches, such as in History matching, by
preventing the discard of useful portions of the search space.

4.28 Figure 7 depicts comparatively several outputs of different calibration strategies. In some situations, we can see
that even when RMSE indicated a superiority in performance of raw calibration, the output of 2LevelCalibration
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was better at emulating the dynamic of real-world data (the shape of the simulator output was similar to the
shape of real data despite a larger total distance point to point). In order to overcome this limitation of RMSE
analysis, the Fréchet distance was also applied to assess how much the output of the calibrated agent-based
simulator properly captured the dynamics of real-world data (Har-Peled et al. 2002). The Fréchet distance is a
widely adopted measure (Aronov et al. 2006) that was chosen to capture how similar the behaviour of curves is
over time: as it has embedded on its calculation the structure of the target curves (Har-Peled & Raichel 2014),
Fréchet distance measures if both curves go simultaneously in the same direction. The comparative perfor-
mance of the Raw calibration and our 2LevelCalibration is presented in Table 3.

Figure 7: Examples of calibrated models with different approaches. In all figures, the red line represents real
data, used as ground truth for the simulation. The blue line shows the output of the agent-based model with the
raw calibration (i.e, all 6 parameters at once). The yellow line represents the output of the calibrated surrogate
function f̂ (4 parameters). The green line is the resulting output of the agent-based model, calibrated with our
proposed method 2LevelCalibration (6 parameters, with initial conditions defined as the best set of parameters
calibrated for the surrogate function f̂ ).

Table 3: Mean and standard deviation values of Fréchet distance for 130 executions of parameter calibration.
MCMC CMA-ES

Mean σ Mean σ

Raw calibration 38.55 25.26 35.57 18.24
2LevelCalibration 25.87 16.20 19.01 1.50
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4.29 Given the randomness of the model and the calibration methods, we can see that sometimes the raw calibra-
tion provides good results. This is not a guaranteed behaviour though, as often the output of the calibrated
model differs markedly from real-world data. On the other hand, our method provides satisfactory and con-
sistent results, converging to the desired behaviour. This occurs because generating the surrogate model and
performing a calibration on a reduced space search eases the task of finding suitable values. It is known that the
higher the dimension of the search space, the harder it is to find the zone of interest (Tarantola 2005). The step
of defining the surrogate model provided clues about the region of interest to perform the search for suitable
values, assuring the consistency of the results.

Conclusion

5.1 We have proposed a new method of parameter calibration for social agent-based models. Our contribution is
twofold: firstly and most importantly, is the use of a surrogate model to reduce space search dimensionality, as-
suring the convergence of the result; secondly, we have presented an efficient method to identify the surrogate
model, based on a Model Library that wisely explores SD’s fundamental modes of behaviour. We validated both
concepts with real-world data from the housing market scenario, comparing the performance of our method
against two robust and agnostic methods for parameter calibration.

5.2 Our 2LevelCalibration strategy showed valuable properties for the parameter calibration task. It has a lightweight
implementation that performs a cheap model order reduction step because it relies on a few predefined pat-
terns of behaviour from our Model Library. Additionally, it achieves consistent results with lower uncertainty,
denoted by the substantial reduction of the mean error and, more importantly, its associated standard devia-
tion. With these two important properties, our method 2LevelCalibration emerges as an option for the recurrent
and challenging task of parameter calibration of agent-based models as long as the dynamics of the target sys-
tem can be modelled with an analytical set of differential equations.

Notes

1The mean and variance of a finite set of sample is, of course, finite, but the probability distribution that
gives rise to the observed samples might present infinite mean or variance, depending on its parameters.

2It is common to find an allusion to 2k Factorial or 3k Factorial in the literature, especially in DoE-related
works. This denomination tells us in how many different levels we have divided the range of variation of our
target variable. For instance, a 2k Factorial design splits the possible values between high and low. It is advisable
to start the experiments with a smaller number of levels to identify major interactions and contributions of each
parameter, sparing also computational resources (Cox & Reid 2000).

3When one of the involved variables belong to a heavy-tailed family of probability distributions, the number
of samples to properly calculate the mean and variance can be prohibitive (Taleb 2020).

4When Sobol’ indices are calculated for black-box models and cannot be based on the analytical formula
(Brevault et al. 2013).

5This situation can be overcome with the construction of surrogate models (Hart et al. 2017).
6These terms are used interchangeably in this work.
7The complexity of a Gaussian Process is cubic (Liu et al. 2020) and thus it can be prohibitive depending on

the number of variables involved.
8Random variables that belong to the Power Law class of probability distributions can present infinite mo-

ments. The famous 80-20 Pareto distribution, for instance, presents an infinite variance.
9Those samples, in reality, bring much more information than any regular sample.

10An adapted version of the quasi-random sampling based on Sobol’ sequences
11More precisely, extremely boosted gradient trees (XG-Boost)
12Deep Learning Neural Net
13Nearly Orthogonal version
14The method requires that at least one sample is classified into a desired category
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15CatBoost, a decision tree boosting algorithm
16Particle filtering, that is based on importance sampling
17Support vector regression
18Based on Random Forest
19ROPE: Robust Optimized Parameter Estimation, a regression with steroids (Bárdossy & Singh 2008)
20Coupled with Bayesian Optimization
21Adam optimizer, that relies on the first-order derivative and fast convergence
22With an emphasis on a simulation pipeline from data to results exploration, that encompasses model pa-

rameter calibration. The focus of the framework though is agent-based models for demography, more restric-
tive than the broad use of agent-based models in general.

23By agnostic we refer to methods that are capable of properly approximating a broad range of models with
different properties.

24Consistency is especially desired on an agent-based modelling approach, as a model structure can be com-
pletely disregarded if results are not satisfactory; but the error could be on the parameters that were not prop-
erly calibrated, not the model structure itself.

25Every mode of behaviour is described as one model in our Library.
26In fact, one could choose different sampling strategies: one for calibrating ODEs parameters and one for

the agent-based models.
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