a
5‘ » JAE ;E ;S
! .‘;o‘.”

'HE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION

Supplementary Materials to:
Journal of Artificial Societies and Social Simulation 28 (4) 11 <https://www.jasss.org/28/4/11.html>
DOI: 10.18564/jasss.5831

AGENTBLOCKS: a community platform
for sharing, comparing, and improving reusable
building blocks for (agent-based) models

Tatiana Filatova?, Liz Verbeek?, Martin Warnier!, Amineh Ghorbani, Igor Nikolic?, Volker Grimm??,
Uta Berger®, Michael Barton®, Andrew Bell®, Allen Lee®, Nicholas Magliocca’ and Thorid Wagenblast®

1 Delft University of Technology, Faculty of Technology Policy and Management, Department of Multi Actor Systems, Jaffalaan 5,
2628 BX, Delft The Netherlands

2 Helmholtz Centre for Environmental Research — UFZ, Department of Ecological Modelling, Permoserstr. 15, 04318 Leipzig,

Germany

University of Potsdam, Plant Ecology and Nature Conservation, ZeppelinstraBe 48A, 14471 Potsdam, Germany

TU Dresden, Faculty of Environmental Sciences, Department of Forest Sciences, 01062 Dresden, Germany

School of Complex Adaptive Systems, Arizona State University, 1031 S. Palm Walk

Tempe, AZ 85281-2701, USA

Department of Global Development, Cornell University, Warren 266, Cornell University, Ithaca, NY, 14850, USA

Department of Geography, The University of Alabama, Box 870322, Tuscaloosa, AL 35401, USA

00N O U bW

Table of Contents

Appendix A: Templates for a Reusable Building Block and Diagramscccceeeeveeeeens 2
Appendix B: Architecture of the open access AGENTBLOCKS Platform for reusable building
] oo < 6
Appendix C: Examples of the first Reusable Building BIOCKScccceeeeeeeeeeeeeeeieeneneeneneennnns 7
Example 1: Theory of Planned BEhavioreeeeeeeeeeeeeeeeeeenemmnemmmmnmennmnmmsmnsssssssssssssssssssssssssssnssnnns 7
Example 2: Opinion Dynamics Model of Social Influence...........eeeeeeeeeeeeeeeeeeeeenneeeneneennnnnnneennnnnnne. 16
Example 3: Agent Expectation FOrmationeeeeeeeeeeeeeeeeeeneemnmnemmesmssmsssmsssssssssssssssssssssssssssnsnns 22
Appendix D: Criteria for RBB review and instructions for reviewers...............ccceeeueceeeernennn. 30

¢
':‘ g J
\ L‘ h "
\ v"!

'HE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION

Appendix A: Templates for a Reusable Building Block and Diagrams

This template summarizes all components of an RBB, see also the online template:
https://www.agentblocks.org/assets/frontend/media/RBB template.pdf. Once you log in to
contribute an RBB to the platform, you will be asked to describe these components for your RBB.

Every RBB consists of two parts:

Part 1: RBB ‘Main Description’ (‘Main’ in the online version) — is the general description of
an RBB, independent of model-specific design choices or programming language. It provides
information on the theoretical foundations, context, purpose and scale, and describes a
common shape this RBB takes in an ABM: what (types) of agents does it concern, and how is
it connected to the rest of the model in terms of input/output?

Part 2: RBB ‘Implementation’ (‘Impl.N[Language]’ in the online version) — is a model-specific
description of an RBB, including its implementation in a specific programming language, so
that various RBB Implementations can co-exist for a single RBB. For example, this applies to
domain-specific alternatives representing the same process. Part 2 provides information on
the process flow, the (model-specific) input and output parameters, the position of the RBB
in the full ABM, and contains a working implementation in a specific programming language.

The ‘Main Description’ and ‘Implementation’ parts of the RBB consist of the obligatory and optional
components, following the two-tier approach (Berger at al 2024). Besides programming language
and discipline, the list of fields one needs to provide information for includes:

Part 1: RBB ‘Main Description’ Fields Function
Identifier Title Needed for the citable references
Authors
Background and purpose Background & purpose Describe the purpose of this RBB.

Communicate the underlying problem
and context where this process/action
matters (in the real world and/or in the
full ABM).

Describe theoretical foundations of the
modelled process/action.

[* Optional] Overview Provide a visual overview of the theory
figure or process captured by this RBB.

You may provide an existing figure, or
create one using this template.

Do not mix it with figure of the full ABM:
please provide here only the conceptual
figure describing the relevant RBB to
help others understand what it models.
Key concepts and definitions Key concepts and Communicate the underlying semantic
definitions ontology, including key concepts and
underlying assumptions.

How can this RBB parameterized? What
kind of additional information or
empirical data are needed to inform this
RBB?

[* Optional] Scale If relevant, describe spatial and
temporal scales/resolution at which this
RBB applies.

https://www.agentblocks.org/assets/frontend/media/RBB_template.pdf
https://viewer.diagrams.net/?tags=%7B%7D&highlight=0000ff&edit=_blank&layers=1&nav=1&title=RBB_template_diagrams.drawio#Uhttps%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D1JfGAzfeMivl4KvN6enCnDg1jH5YLKKdc%26export%3Ddownload

4 .
Wi g
'}d
‘."‘ h "
9“"’

'HE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION

Detailed specification Input description Provide a verbal description of a
(common) input to this RBB (on a
conceptual level, any implementation-
specific inputs and numerical values
may be provided in Part 2)

Output description Provide a verbal description of a
(common) output of this RBB (on a
conceptual level, any implementation-
specific inputs and numerical values
may be provided in Part 2)

Level of interactions Specify processes/actions at which level
of interactions — just within a single
agent, among agents or between agent
and its environment — your RBB aims to
capture. Choose from:

e Single Agent

e Multiple Agents(same type)

e Multiple Agents (different

types)

e Agent(s) and the Environment
Agent definition For all types of agents - based on the
level of interactions specified above —
provide:

1. Agenttype (e.g. household,

farmer, government, ...)

2. Attributes of this agent type

3. Functions of this agent type

Part 2: RBB ‘Implementation’ Fields Function

Process flow Flow chart Visual overview of the process flow of
this implementation of the RBB.

You may provide an existing figure, or
create one using this template

Input and output Input Provide the input parameters required
for this implementation of the RBB
Output Provide the output produced by your

implementation of the RBB (this may be
output parameters, or changes to the
model- or agent states)

Position in an ABM Sequence diagram Visual overview of the position of the
RBB in an ABM.

You may provide an existing figure, or
create one using this template

Pseudocode Pseudocode Describe the process flow in the form of
pseudocode
Reusable code block Code Provide a working example of the RBB

as it is employed in your ABM in a
specific programming language
Agent-based model Model description Provide a short description of the ABM
in which you employ this RBB.

https://viewer.diagrams.net/?tags=%7B%7D&highlight=0000ff&edit=_blank&layers=1&nav=1&title=RBB_template_diagrams.drawio#Uhttps%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D1JfGAzfeMivl4KvN6enCnDg1jH5YLKKdc%26export%3Ddownload
https://viewer.diagrams.net/?tags=%7B%7D&highlight=0000ff&edit=_blank&layers=1&nav=1&title=RBB_template_diagrams.drawio#Uhttps%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D1JfGAzfeMivl4KvN6enCnDg1jH5YLKKdc%26export%3Ddownload

2 JASSS

I'HE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION
Model code Provide a link to the original model
code
[* Optional] Published Provide a link to published material
material describing the full model

Besides the Template for an RBB, we also offer Templates for the development of the diagrams.
Often agent-based modelers already have a diagram for the full ABM but not always for the specific
code snippet they are ready to make an RBB from. In case you do not have diagrams of the process
flow of the targeted RBB or its position in the full ABM, you can create one using these open access
online Diagram templates. To access the editable version, please select ‘Edit’ in the bottom panel
and mind that there are three tabs depicting different diagrams:

(> QA SO L2

The AGENTBLOCKS platform currently offers three diagram templates with editable drag & drop
elements (Figure A.1). If you want to offer another template, feel free to reach out to us or just add
it using the “+” sign in the online Diagrams app.

(a)

input A Concept
L e ey £
input A Concept

Your building block (title)

.....................

https://viewer.diagrams.net/?tags=%7B%7D&highlight=0000ff&edit=_blank&layers=1&nav=1&title=RBB_template_diagrams.drawio#Uhttps%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D1JfGAzfeMivl4KvN6enCnDg1jH5YLKKdc%26export%3Ddownload

variable

€2 JASSS

\\("’

THE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION

Your building block (title)

variables (endogenous in RBB)
/7 variables from outside RBB
processes (endogenous in RBB)

() output processes

- decisions
variable 1 <Process>
variable 2
variable 3 / l
<Variable>
@ NO i
<Decision>
Yes
(b)
Time step Model Agent Agent | Agent
L] T T L]
1 1 1
4 other_processes() ! other_process() :
Initialization other_process()
- L
init_process() | 1 <|:|
init_process() 1 1 1
init_process() 1 1 other_process() 1
1 1 g other_process() 1
1 T » other_process() |
1 1 | 1
1 1 LI i
1 1 1
1 1 t
! RBB_output()] !
< 1 1
< 1 your_RBB()
1
X L] RBB_output)
other processes() 1]
1 1
\- 1
> I:::I 1
1 > 1 1
Y | 1 1
()

Figure A.1: Examples of open access templates for diagrams to facilitate the meta data description
of a Reusable Building Block. Panel (a) offers the template for the ‘Conceptual overview’ of an RBB
meant to supplement Part 1 — RBB ‘Main Description’. Panel (b) offers the template for the ‘Flow
chart’ diagram for the core processes coded by an RBB. Panel (c) offers the template for the
‘Sequence diagram’ to indicate the position of the RBB in the full ABM. The last two diagrams are

meant to support Part 2 — RBB ‘Implementation’.

S

yats

’ \ %
";‘g sé.

JASSS

THE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION

Appendix B: Architecture of the open access AGENTBLOCKS Platform

for reusable building blocks
Figure B.1 provides the ontological structure of the backend of the AGENTBLOCKS repository of

RBBs.

Background + purpose

~description - text 1
-figure foptional] - figure

Reference

itle: text
-journal: text

-year: date

-authors: Author(1.."]
-weblink: URL

Key concepts and definitions

—key concepts: text

-RBB_contributor: User[1]
ile: text

-authors: Author{1..*]
—references: Referencel0.."]
-Dal

-use of data [optional] - text

Detailed specification

Author

-*| -surname: text

-name: text

-affiliation
-contact information

User

-name: text

_rale: UserType()
-affiliation

~contact information

-input/output specification: text
-RBB Type: RBB Type[1."]

RBB Type

-type: text
-attributes: list
-functions: list

-

Example implementation

Agent Based Model

-authors: Author1. "]
-Dol

~code contributor: User[1]

-ABM: Agent Based Model [1..7]

-name: text
~description: text
~wehblink: URL
-publications: URL

t

1

User types can be

1. Admin: can overwrite & change ontology

2. Editor: based on reviews decides whether to publish a RBB
and for Code

3. Reviewer: writes a review of an RBEB / Code

4. RBB_Contributor: writes a RBB

5 Code_Contributor: writes a Code

6. Viewer: only views

For all classes: (x) refers to the coresponding section in the
RBE template/on our temporary website:

hitps:/inotes. desy.de/X40EIWUISQqzyLKhgygSTA (homepage)
hitps:/inotes.desy.de/gZbj1jtyTia2Zjct-UvSQ (RBB template)

Parameters
Flowchart Sequence diagram Pseudocode and output Code block
—chart: figure _diagram: figure —code: text -input: list code: (formatted) text
-description: text -description: text -description -putput: list -language: text

Figure B.1: Relational database in the backend of the AGENTBLOCKS platform for reusable building

blocks

'HE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCI

Appendix C: Examples of the first Reusable Building Blocks

Example 1: Theory of Planned Behavior
See the latest version online: https://www.agentblocks.org/rbb/under-development-theory-of-
planned-behavior-for-agents-decision-making

Part 1: RBB ‘Main Description’

Identifier: Title, Authors:

Theory of Planned Behavior for individual decision-making — Tatiana Filatova, Liz
Verbeek

Background and purpose:

Background & purpose:

Developed in the early 1990s by Ajzen [1], the Theory of Planned Behavior is one of
the most influential theories in social and health psychology, and has been used in
many environmental studies to describe behavioral change. In ABMs, TPB is often
used as an alternative to perfect rationality in individual decision-making processes.

TPB assumes that a person's intention to change their behavior is driven by: 1) their
attitude towards the behavior, 2) subjective norms (perceived social pressure to
perform the behavior), and 3) perceived behavioral control (the degree to which
they believe they're able to perform the behavior).

The figure below shows these three core components of TPB.

Empirical survey studies have demonstrated that TPB performs well in explaining
patterns of real-world behavior changes across a wide range of applications,
including actions like improving health, investing in new resource-efficient
technologies, choosing travel modes, nature and resource conservation, choosing
organic food, using bioplastics, adapting to climate change and so on. Consequently,
in ABMs, TPB is used to study e.g. technology diffusion among households;
migration; decision-making processes by farmers; waste recycling; urban
development and travel behavior (see [2] for review of applications).

References

[1] Ajzen, 1. (1991). The theory of planned behavior. Organizational behavior and
human decision processes, 50(2), 179-211. https://doi.org/10.1016/0749-
5978(91)90020-T

[2] Muelder, H. and Filatova, T. (2018). One theory-many formalizations: Testing
different code implementations of the theory of planned behaviour in energy agent-
based models. Journal of Artificial Societies and Social Simulation, 21(4), 5.
https://doi.org/10.18564/jasss.3855

[* Optional] Overview figure:

AL SIMULAT

ION

https://www.agentblocks.org/rbb/under-development-theory-of-planned-behavior-for-agents-decision-making
https://www.agentblocks.org/rbb/under-development-theory-of-planned-behavior-for-agents-decision-making
https://doi.org/10.1016/0749-5978(91)90020-T
https://doi.org/10.1016/0749-5978(91)90020-T
https://doi.org/10.18564/jasss.3855

‘f;-
\.Lo ‘= “"’

'HE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION

e.g. data on
awareness

......................

e.g. data from S . ;
‘. ¢ _—
" social network "] Subjective norm Intention Behavior

A Attitude

/' e.qg. resources, : :
: i . Perceived behavioral
./ own experience, ‘> trol O 2

barriers ,/ goma [Theory of planned behavior (TPB)

.....................

Key concepts and definitions

Key concepts and definitions:

A change in behavior happens through pursuing certain actions. As mentioned
above, TPB assumes that the decision to pursue a certain (behavior changing) action
is driven by three groups of behavioral and socio-economic factors: attitudes,
subjective norms and perceived behavioral control [1].

Attitudes describe an individuals own judgement of whether specific behavior is
positive and to what degree it is favorable.

The subjective norm component in TPB captures the influence of external social
pressure: one's perception of whether others expect them to perform certain
actions.

Finally, person naturally should have control over their decision to perform certain
behavior, as well as over opportunities and resources to pursue the ‘planned’ action.
This is described by the perceived behavioral control (PBC) component, which
indicates a subjective judgement about one's own ability to implement the behavior
(based on e.g. general ease of implementation, past experience, perceived barriers,
or self-efficacy).

Like in most behavioral theories, TPB assumes that behavior is predicted by
intentions (i.e. the stronger the intention towards a specific behavior, the more
likely the person will engage in it), but this intention does not necessarily result in
immediate action (e.g. because of a time lag or prioritization of other measures) [2].

In some ABM implementations, intentions and actions are equated (having the
intention to act directly leads to action). Since in reality having the intention to do
something does not always (and usually does not) directly result in taking action, we
recommend to model this so-called intention-behavior gap explicitly, for example
by adding stochasticity serving as a probabilistic barrier between intention and
action.

Use of data

/‘m\

JASSS

'HE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION

To formalize TPB in an agent-based model, the above-mentioned components
(attitude, subjective norm and PBC) need to be quantified in some way. Usually, this
is achieved by collecting (or utilizing existing) survey data on the behavior of
interest.

In such surveys, attitudes are typically parameterized by knowledge, awareness and
overall evaluation of the topic, and can be quantified by measuring (dis)agreement
with specific statements related to the topic.

The parameterization of subjective norm typically includes data on the number of
people in a social circle (e.g. friends, neighbors, family) who have already
implemented the behavior of interest, and individual perceptions of the
expectations of these peers regarding the particular action. In, ABMs the subjective
norm can be updated endogenously as simulation unfolds and the number of agents
pursuing or abandoning the action changes.

Survey data informing the PBC component describes financial constraints (e.g.
payback period; whether one has sufficient savings or income to fund an action; the
benefit/cost ratio of (not) performing the action), information (e.g. objective vs.
biased information about technical specification or costs of an action), questions on
self-efficacy (to what extent one believes to be able to perform the action) and past
experience. Although frequently measured in surveys, the latter two are rarely
included in formalizations of TPB in agent-based models.

References

[1] Ajzen, 1. (1991). The theory of planned behavior. Organizational behavior and
human decision processes, 50(2), 179-211. https://doi.org/10.1016/0749-
5978(91)90020-T

[2] Weinstein, N. D., Rothman, A. J., & Nicolich, M. (1998). Use of correlational data
to examine the effects of risk perceptions on precautionary behavior. Psychology
and Health, 13(3), 479-501. https://doi.org/10.1080/08870449808407305

[* Optional] Scale

As TPB describes a decision-making process, it may operate on any scale in which
choices by individual agents are relevant. It is thus scale-agnostic for spatial scale.

For its temporal extent it is important to note that the interval between deliberation
moments should be realistic (e.g. considering adopting energy-efficient technologies
like solar panels on a daily basis does not make sense; one or several timesteps per
year would be a more realistic time scale). Of course, the total temporal extent of
the ABM should follow the same reasoning and should match the timestep intervals.

Detailed specification

Input description

Any implementation of TPB in an agent-based model includes (at least) the following
input factors:

https://doi.org/10.1016/0749-5978(91)90020-T
https://doi.org/10.1016/0749-5978(91)90020-T
https://doi.org/10.1080/08870449808407305

'HE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCI

1. Attitude towards the behavior
2. Subjective norm
3. Perceived behavioral control (PBC)

In addition, for some applications, and if data is available, the following factors may
be included:

1. Self-efficacy (which may be included in the PBC component)
2. Past experience or behavior

Output description
Level of interactions
Single Agent
Agent definition
Agent type: Household

Description: A typical TPB process in an ABM parameterizes its three core
components (attitude, subjective norm and PBC) as agents' attributes, where the
agents typically represent households or individual people. These three factors form
the input for the TPB process that computes the agents' intention to take action,
which is in turn translated to a binary decision to take action or not.

Attributes:

e attitude
e subjective norm
e PBC

Functions:

e compute intention
e take action (yes/no?)

Part 2: RBB ‘Implementation’

Description

This implementation of the TPB building block in the Energy ABM, where TPB represents the
decision-making process of households in the Netherlands that consider installing PV panels.
In this example implementation, TPB is formalized as a sequence of several processes. First,
agents compare the (expected) utility of installing PV panels to the (expected) utility of not
installing PV panels, which informs their intention to take action (or not). These utility
functions are weighted averages of the TPB components - attitude, subjective norm and
PBC.

The attitudes of the agents towards PV panels are parameterized using survey data on PV
panel installation in the Netherlands (see link to the published material for more information
on the survey).

The same survey data provides the weights for each of the input factors of the utility
function(s).

10

N

400
(

[=
H e
Vat b/
Wi J

L

'HE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION

i

It is assumed that subjective norms stem from social norms. The social norms in this model
are formalized as the fraction of connections in an agent's social network (representing
friends, family, neighbors) that have already installed PV panels. These social norms are
dynamic: they are updated every timestep as PV uptake increases.

In the Energy ABM, it is assumed that PBC represents only financial constraints. It is
formalized as an individual cost-benefit analysis of installing PV panels: every agent
computes the Net Present Value (NPV) for installing PV panels (based on an expected
payback time) as well as for doing nothing.

After computing an agent's intention to take action, a probabilistic barrier is added to
represent the intention-behavior gap.

Process flow (Flow chart)

et Theory of planned behavior (TPB)
variables (endogenous in RBB)
l /7 variables from outside RBB
/ behavior of orhers/Lr update social norm procassts (encogenacs fnHEH)
C) output processes
l decisions
compute NPV, ion
social norm — compute NPVno o
PBC l
PBC action compute utility,tion-
no_action . :
compute utility,, action

attitude,
weights

utility zction >,7 &—> Do nothing
Ut"'tyno_action £

lYes

Intention

'

Barrier

|

No
Take action? —~—————» Do nothing

lYes

Action

Notes

This flow chart represents the implementation of TPB in the Energy ABM. The
subjective norms are formed by endogenous (dynamic) social norms arising from the

11

https://en.wikipedia.org/wiki/Net_present_value

AR,
09
V“ '
CRcRe
WS
I'HE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION

behavior of other agents. PBC is computed as the Net Present Value (cost-benefit
analysis) of installing PV panels or doing nothing. Attitudes and weights are static
and paramterized using survey data. Together, they contribute to the agent's
(expected) utility of taking action or not.

After computing the utility for both taking action (installing PV panels) and doing
nothing, the agent compares the two. If the utility of doing nothing is higher, the
agent does not take action. If the utility of installing PV panels is higher, however,
the agent considers - has the intention to - taking action. Before actually taking
action, some stochasticity is added to represent the intention-behavior gap. Thus,
some agents with the intention to take action actually do so, others don't.

Parameters and output

Input to RBB:

1. Behavior of others
2. Attitude
3. Weights

Output of RBB

1. Binary decision to take action

Position in an ABM

Time step

Model Household
init_households() = init_income()
ializati == E P init_energy_use()
Initialization | init_social_network() > >init_attitude(]
B [] update_savings()
step() > update_social_normy()
>TPB_decision_making()
> install_PVs()
update_N_PVs()
v o
Pseudocode

function TPB(agent):

get attitude, social norm from agent
PBCaction € NPVacion(€Xpected costs, expected benefits)
PBCro_action € NPVno action(€Xpected costs, expected benefits)
utilityaciion ¢ Weighted function of attitude, social_norm and PBCjction
utilityno_action € Weighted function of -attitude, social_norm and PBCnc_action
if utilityaction > Utilityno_action then

barrier passed? ¢ Draw Bernoulli(poarrier)

if barrier passed? then

take action? = True

12

/‘m \

 JASSS

'HE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION

else
take action? = False
end if
else
take action? = False
end if

return take action?

Reusable code block

Programming language: Python

MIT LICENSE Copyright (c) 2025 Tatiana Filatova, Liz Verbeek

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions: The above copyright
notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

-*- coding: utf-8 -*-

@author: e.verbeek@tudelft.nl

Python implementation of Theory of Planned Behavior for household decision-making. This code contains a
Household class employing the TPB decision-making module described by this building block. In addition, it
includes code for a Model class required to implement TPB decision-making in an agent-based model.

import numpy as np

from scipy.stats import bernoulli

from mesa import Model

from mesa import Agent

from mesa.time import RandomActivation

class TPB_Model(Model):

"""Model class.

__init__(self, n_households, n_connections, HH_TPB_weights, attitudes,

measure_benefits, measure_costs):

"""Initialization of an ABM employing TPB as decision-making module.

Args:

n_households (int) : Number of households
n_connections (int) : Number of social connections per household

13

mailto:e.verbeek@tudelft.nl
mailto:e.verbeek@tudelft.nl

‘f;-
\.Lo ‘= “"’

'HE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION

HH_TPB_weights (list) : Homogeneous weights for TPB function

attitudes (list) : HH attitude towards taking action
measure_benefits : Estimated yearly benefits of taking action
measure_costs : Estimated yearly costs of taking action

Keep track of agent IDs and number of households
self.current_id =0

self.n_households = n_households

Add schedule. The type of schedule can be chosen by the user
self.schedule = RandomActivation(self)

Save TPB weights (homogeneous)
self. HH_TPB_weights = HH_TPB_weights
Initialize households
for nin range(n_households):
hh = Household(self, attitudes[n], measure_benefits[n], measure_costs)
self.schedule.add(hh)
Add social connections (randomly select n)
for hh in self.schedule.agents:
others = [HH for HH in self.schedule.agents if HH != hh]
hh.connections = np.random.choice(self.schedule.agents, n_connections)

Save maximum Net Present Value for normalization
self.max_NPV = max(max(hh.compute_NPV() for hh in self.schedule.agents))

... other model initialization functions ...

def step(self):
"""Model step"""
self.schedule.step()

class Household(Agent):
"""Household agent class."""

def __init__(self, model, attitude, measure_benefits, measure_costs):
"""Initialization of a household agent.

Args:
model (Model) : Model containing the household agent
attitude (list) :Value for attitude towards taking action

super().__init__(model.next_id(), model)

self.measure = False

self.attitude = attitude

Parameters for Net Present Value estimation

Please note that for simplicity, the costs are homogeneous

in this example implementation, while in reality, of course, these
usually differ per household and depend on other factors
self.measure_benefits = measure_benefits

self.measure_costs = measure_costs

... other Household initialization functions ...
def TPB(self, TPB_weights, barrier=True, barrier_prob=0.5):

"""Theory of planned behavior for household decision-making.

14

el f ;E ;
5‘ ‘ 9 QIA S
‘.L’ n"
\""‘!

g
I'HE JOURNAL OIF ICIAL SOCIETIES AND SOCIAL SIMULATION
Args:
TPB_weights : Vector of predefined weights for PMT function.
Here, weights are estimated using logistic regression on survey data.
barrier : Boolean (True/False) to either apply or not apply probabilistic barrier between intention

and action
barrier_prob : Probability to pass the barrier

social_norm_action, social_norm_no_action = self.get_social_norm()
PBC_action, PBC_no_action = self.compute_NPV()

Normalize PBC

PBC_action = PBC_action/self.model.max_NPV

PBC_no_action = PBC_no_action/self.model.max_NPV

Get TPB input vectors

TPB_vars_action = [self.attitude, social_norm_action, PBC_action]
TPB_vars_no_action = [-self.attitude, social_norm_no_action, PBC_no_action]

Compute utility of taking action or not
utility_action = TPB_weights @ TPB_vars_action
utility_no_action = TPB_weights @ TPB_vars_no_action
if utility_action > utility_no_action:
(Optional) Apply probabilistic barrier between intention and action
if barrier:
if bernoulli.rvs(barrier_prob) == 1:
self.measure =True
... other consequences of applying the measure ...
else:
self.measure = True
... other consequences of applying the measure ...

return

def compute_NPV(self, timespan=10, interest_rate=0.05):
"""Compute Net Present Value (NPV) of taking action (or not).

Args:
timespan (int) : Number of years to take into account
interest_rate (float) : Bank interest rate

Yearly benefits (assumed these to not change over time)
benefits = self.measure_benefits

Investment costs (only spend in first year)

costs = np.zeros(timespan)

costs[0] = self.measure_costs

Discount rates are typically based on bank interest rate
timesteps = np.linspace(0, timespan - 1, timespan)
discount_rates = (1 + interest_rate)**timesteps

Compute Net Present Value
NPV_measure = sum((benefits - costs) / discount_rates)
NPV_not_measure = sum((costs - benefits) / discount_rates)

return NPV_measure, NPV_not_measure

def get_social_norm(self):

15

‘f;-
\.Lo ‘= “"’

'HE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION

"""Update household social norm based on actions of social connections

Get number of social connections that have taken measure or not
taken_measure = sum(hh.measure for hh in self.connections)
not_taken_measure = sum(not hh.measure for hh in self.connections)

Return as fraction of total social connections
return (taken_measure/len(self.connections), not_taken_measure/len(self.connections))

def step(self):
"""Household agent step
self. TPB(self.model.HH_TPB_weights)

To run the model, please specify: n_households (int), HH_TPB weights (list of 3 weights)

attitudes (list of attitude per household), measure_benefits (list), measure_costs (int)

and run the following:

model = TPB_Model(n_households, n_connections, HH_TPB_weights, attitudes,
measure_beneasure_benefits, measure_costs)

n_steps = 100 for n in range(n_steps): model.step()

Code instructions:

To run this example code, specify the number of households, weights for the TPB building block (list of 3),
attitude values for all households, a list of the financial benefit of implementing the measure per agent (this
can also be determined endogenously in the model) and the costs of implementing the measure.

Agent-based model
Model name: Energy ABM

Model description:

The TPB building block is employed in the Energy ABM for household decision-making on PV panel installation.
This model can be used to estimate the uptake of solar panels and resulting changes in greenhouse gas
emissions (GHG) in the Netherlands.

In the model, three household decision-making modules can be compared: rational decision-making,
behavioral decision-making based on the Theory of Planned Behavior, and behavioral decision-making with
opinion diffusion.

Weblink to model code:
https://github.com/SC3-TUD/PNAS-Simulating-Institutional-Heterogeneity-in-Sustainability-Science

Link to the published material:

https://doi.org/10.1073/pnas.2215674121

Example 2: Opinion Dynamics Model of Social Influence
See the latest version online: https://www.agentblocks.org/rbb/degrootian-opinion-dynamics-
model-of-social-influence

Part 1: RBB ‘Main Description’

Identifier: Degrootian Opinion Dynamics Model of Social Influence, Thorid Wagenblast

16

https://github.com/SC3-TUD/PNAS-Simulating-Institutional-Heterogeneity-in-Sustainability-Science
https://doi.org/10.1073/pnas.2215674121
https://www.agentblocks.org/rbb/degrootian-opinion-dynamics-model-of-social-influence
https://www.agentblocks.org/rbb/degrootian-opinion-dynamics-model-of-social-influence

THE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION

Background and purpose: Often, agent-based modeling is used to model the interaction of
people or households. The attributes of these agents can be factual (e.g., income or location) but can
also contain perceptions and opinions regarding different matters. In the real world, people are
influenced by those around them and change their opinions over time. There are numerous models
describing how opinion transfer happens (see [1] for an overview). This building block can be used to
model the opinion diffusion among agents based on the DeGroot opinion dynamics model [2]. Itis
an assimilative social influence model (i.e., opinion differences get reduced) and treats the
individuals or agents exchanging opinions as nodes in a network. The links do not change over time
and a weight is assigned to each link. In the ABM it can be used to model the exchange of continuous
opinions or information of agents that interact within a network or based on proximity.

References:

[1] Flache, A., Mas, M., Feliciani, T., Chattoe-Brown, E., Deffuant, G., Huet, S., & Lorenz, J. (2017). Models of Social
Influence: Towards the Next Frontiers. Journal of Artificial Societies and Social Simulation, 20(4),

2. https://doi.org/10.18564/jasss.3521

[2] Degroot, M. H. (1974). Reaching a Consensus. Journal of the American Statistical Association, 69(345), 118—
121. https://doi.org/10.1080/01621459.1974.10480137

Key concepts and definitions: A change in opinion occurs through the influence of those
around us. In an ABM, this means that an agent’s perception attributes are influenced by those it
interacts with. These can be the closest neighbors or connecting nodes within a network.

The Degrootian opinion dynamics model calculates the opinion formation based on one's own and
surrounding opinions, putting a weight on each of them [1]. It can be summarized through

Fij =351 F * pi
where Fjis the new opinion of an agent based on their own opinion and those of others F;. Each
opinion (own and those of others) has a weight pj; assigned to it, denoting the importance given to
the own opinion and the opinions of neighbors or other connections in a network. k denotes the
total number of connections this agent has in their network.
Since people are not expected to change their opinion entirely from one moment to the next, each
agent as a certain basic own trust which represents how much agents trust their own opinion. Some
individuals are more confident in their own opinion, while others attach more value to social expec-
tations. The social expectation is an optional factor that can be included Together, these variables
determine the weights pj assigned to each of the opinions (including one’s own).
In order to implement this model of opinion dynamics in an agent-based model, the values for
the basic own trust (and social expectation) variables should be quantified. To do so, there are two
options:
1. You set the basic own trust (and social expectation) yourself. The basic own
trust should be the same for all agents, the social expectation, if included, can vary
(e.g., drawing from a normal distribution). Both values should be between 0 and 1.
2. You use empirical data to inform these variables. Then, the basic own trust is still
the same for all agents, but their social expectation varies based on answers given
in a survey. Both values should also be between 0 and 1.

Scale: As opinion dynamics is an inter-agent process, it can operate on any spatial scale. You
might choose to let the interaction happen in relation to spatial scale (e.g., interaction based on
agents being neighbors on a grid), but this does not need to be the case (agents can interact
irrespective of spatial distance).

Regarding the temporal scale: The combination of basic own trust and social
expectation determines how fast the opinions change from step to step. Aligning this with the topic
of interaction makes sense. For example, if your step represents 1 minute, you might want to choose

17

https://doi.org/10.18564/jasss.3521
https://doi.org/10.1080/01621459.1974.10480137

€2 JASSS

\\‘ﬁé

THE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION

a higher basic own trust/social expectation combination because it is unlikely that people radically
change their opinion from one step to the next, whereas if your step corresponds to multiple years,
a lower basic own trust/social expectation combination might make more sense. This might differ
from opinion to opinion (e.g., political views might change slower than opinions on food
preference).

Detailed specification

Input description: An implementation of the Degroot opinion dynamics model
should consider — at least — the following input factors:

e Basic own trust: How much of the opinion the agent always keeps. Determines to some degree
how fast the opinions change.
e Opinion: What opinion of perception is changing ?

Optional inputs:

e Social expectation: Agent-specific variation of how much of their opinion they keep. Only makes
sense to include when wanting different weights assigned between agents. Collected in survey
through a question like “Do your family, friends and/or social network expect you to ...?”

e Other opinions: You need at least one opinion/perception that you want to update through so-
cial interaction but can opt for a multitude.

Output description: The output of the opinion dynamics implementation would be
the adjusted opinion of the agents.

Level of interactions: Multiple agents (same type)

Agent type: Household, Individual

This RBB describes agents that exchange and adjust opinions or perceptions such as households or
individuals.
Attributes:

e Basic own trust, social expectation, perception/opinion value, interacting agents

Functions:
e Get other opinions, update opinion

Part 2: RBB ‘Implementation’

Process flow (Flow chart)

18

Opinion diffusion
/7 variables (endogenous in RBB)
/7 variables from outside RBB

|| processes (endogenous in RBB)
() output processes

social network Get opinions of agents
connections connections
Opinions

other agents

own opinion /L l
Yy AN o

influence weights, i

Input and output

Input

1. Basic own trust

2. Social expectation

3. Opinion/perception
Output

1. Updated opinion/perception

Position in an ABM

Sequence Diagram

Time step Model Household
T
init_social_network() init_households()
init_opinions()
< Initialization
ik flood_damage() ﬂ
step() ’

Opinion diffusion get_social_connections()
compute_influence()
update_opinions()
compute_intention()
check_savings_threshold()
take_adaptation_measure()

L
1
|}
1
L}
1
v '
Pseudocode

function UPDATE_OPINION():

THE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION

compute influence weights from basic own trust and social expectation

get agent connections
compute worryomers from agent connections
compute Aworry from influence weights, worryothers
update worryown by Aworry

end function

Reusable code block

19

4"‘ ‘@;0\

T JASSS

\\("’

'HE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION

Code: PYTHON

MIT LICENSE
Copyright (c) 2024 Thorid Wagenblast

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction, includ-
ing without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is furnished to do so, sub-
ject to the following conditions

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICU-
LAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLD-
ERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CON-
TRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE

-*- coding: utf-8 -*-

nmnn

@author: t.wagenblast@tudelft.nl

import random

import numpy as np

from mesa import Model

from mesa import Agent

from mesa.time import RandomActivation

class OD_Model(Model
"""Agent-based model employing opinion diffusion in a social network."""

def init_ (self, n_households, n_connections
"""Model initialization

Args:
n_households : Number of households
n_connections : Number of social connections per household

Keep track of agent IDs and number of households
self.current_id =0

self.n_households = n_households

Add schedule; the type of schedule can be chosen by the user
self.schedule = RandomActivation(self

Initialize households
foriin range(n_households
hh = Household(self
worry=random.random
social_expectation=random.random

20

w
T

THE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION

basic_own_trust=0.5)
self.schedule.add(hh)

Create social network
for hh in self.schedule.agents:
others = [household for household in self.schedule.agents
if household != hh]
hh.social_connections = np.random.choice(others, n_connections,
replace=False)

... other model initialization functions ...
def step(self):

"""Model step."""
self.schedule.step()

class Household(Agent):
"""Household agent."""

def _init_ (self, model, worry, social_expectation, basic_own_trust=0.5):
"""[nitialization of a household agent.

Args:
model (Model) : Model containing the household agent
worry (float) : Worry value, may change over time

social_expectation (float) : Weight assigned to opinion of others
basic_own_trust (float) : Weight assigned to own opinion
(default = 0.5).

super().__init__(model.next_id(), model)

Perception value that changes through the opinion diffusion
self.worry = worry

Calculate trust into other (i.e. weight assigned to opinion of others)
self.trust_in_others = (social_expectation * (1 - basic_own_trust))
self.trust_in_oneself = 1 - self.trust_in_others

Social connections are created after all households are initialized
self.social_connections = [|

def get_other_opinions(self, attribute):
"""Get opinions of agents' social connections.

Args:
attribute (string) : Attribute to collect opinions for

return [getattr(hh, attribute) for hh in self.social_connections]

def update_opinion(self, attribute, other_opinions):

\ 0

21

£y
€5 JASSS

R

THE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION

"""Get new opinion from influence of social network.

Args:
attribute (string) : Attribute influenced by social network
other_opinions (list) : Opinions of others

Update household's current opinion

old_value = getattr(self, attribute)

social_influence = sum((np.array(other_opinions) * self.trust_in_others)
/ len(other_opinions))

new_value = old_value * self.trust_in_oneself + social_influence

Update own opinion
setattr(self, attribute, new_value)

def step(self):
"""Household step.

Update household worry value
other_opinions = self.get_other_opinions("worry")
self.update_opinion("worry", other_opinions)

... other Household step functions ...

n_households = 1000
n_connections = 7
model = OD_Model(n_households, n_connections)

steps = 50

foriin range(steps):
print("STEP", i+1)
model.step()

Agent-based model: Social Influence in Private Adaptation ABM

Model description: This model explores the uptake of flood adaptation measures of
households under the influence of social interaction.
The idea is to see how different network structures (Barabasi-Albert scale-free network, Watts-
Strogatz small-world network, and Erdds-Renyi random network) and the exchange of different
perceptions regarding flood adaptation impact the adaptation uptake and damage figures over a
larger area.

Model code: https://github.com/thoridw/SIPAABM

Published material: http://dx.doi.org/10.2139/ssrn.4763672

Example 3: Agent Expectation Formation
See the latest version online: https://www.agentblocks.org/rbb/agent-expectation-formation

22

https://github.com/thoridw/SIPAABM
http://dx.doi.org/10.2139/ssrn.4763672
https://www.agentblocks.org/rbb/agent-expectation-formation

2 JASSS

'HE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION

Part 1: RBB ‘Main Description’

Identifier: “Agent Expectation Formation”, Nicholas R. Magliocca
Background and purpose:

The purpose of the Agent Expectation Formation RBB is to represent a set of
competing, simplified mental models individual agents can use to form expectations
of future states of interest. This form of expectation formation is consistent with
bounded rationality and relies on inductive reseasoning (Arthur, 1994). This mode of
expectation formation assumes that agents can observe and learn from past states
but may not have complete information of all past states. The conceptual basis for
these expectation formation models was described in the El Farol Bar problem
(Arthur, 1994) and was designed to predict the number of attendees at a future time
based on past attendance information. This was subsequently adapted to form
expectations of future stock prices in applications of the Santa Fe Institute's artifical
stock market (LeBaron et al., 1999). The generalized formalization of this RBB futher
modifies these expectation models for broader applicability, such as housing prices
(Magliocca et al., 2011, 2014b) and crop prices and yields (Magliocca et al., 2013,
2014a).

[Optional] Overview figure
Key concepts and definitions

Expectations of future states are often used to inform decisions in the current time
period. There are many ways to represent expectation formation ranging from
implicit (i.e., assuming the future will replicate the past; e.g., habitual behavior or
reinforcement learning) to explicit (e.g., forecasting; Macal and North, 2005).
Evidence from experimental psychology suggests that expectation formation more
closely resembles bounded rationality (Kahneman, 2003) and relies on heuristics
and/or simple mental models that reside somewhere between the implicit and
explicit extremes (Tversky and Kahneman, 1974). The conceptual structure proposed
by Arthur (1994) uses a set of diverse mental models, or 'ecology of beliefs', in which
no single mental model can remain the most accurate indefinitely because of
stochasticity, emergent dynamics, and/or strategic behaviors inherent in complex
adaptive systems.

Scale: In principle, the spatial and temporal scales of applicability of this RBB are not
constrained, because an agent may have access to historical information that was
not directly observed. However, if the implementation considers only direct
observation/experience with whatever is being predicted, there are implicit
assumptions about the cognitive capacities of decision-makers that would likely limit
the temporal extent of implementation to those that decision-makers could be
plausibly recalled.

Detailed specification

Input description: Inputs to this RBB include: 1) directly sensed or otherwise
observed past states of the metric being predicted; 2) time horizons for considering
past information; and 3) stored and evaluated performances of individual prediction
models to select the best performing prediction model at each time step.

23

/‘m \

 JASSS

'HE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION

Output description: The output of the RBB is an expectation of the future state of a
metric of interest in time t+1.

Level of interactions: Agent(s) and the Environment
Agent definition: Individual or household

An agent is given a set of twenty prediction models. Each prediction model may
use one of six different prediction methods, and there may be more than one
model applying the same prediction method in the agent’s set of twenty models.
Some of these prediction methods map past and present metrics into the next
period using various extrapolation methods. Other methods translate changes
from only last period’s metrics to next period’s metrics.

Attributes:

1. Time horizon (i.e., memory)
2. unique set of prediction models
3. model performance update rate

Functions:

1. Observe past information
2. evaluate prediction model performance

select most successful model

Part 2: RBB ‘Implementation’

Description: In this implementation, housing developers and farmers make pricing
decisions informed by expectations of future housing and land prices, respectively.
Adapted from price expectation models used in agent-based financial literature (e.g.
Arthur, 1994, 2006; Axtell, 2005), agents try to predict next period’s price based on
current and past price information. An agent is given a set of twenty prediction models.
Each prediction model may use one of six different prediction methods, and there may
be more than one model applying the same prediction method in the agent’s set of
twenty models. Some of these prediction methods map past and present prices (P) into
the next period using various extrapolation methods.

1. Mean model: predicts that P(t+1) will be the mean price of the last x periods of the
agent's memory.

P(t+1) = P(t-x:t)/x;
2. Cycle model: predicts that P(t+1) will be the same as x periods ago (cycle detector).
P(t+1) = P(t-x);

3. Projection model: predicts that P(t+1) will be the least-squares, non-linear trend over
the last x periods.

P(t+1)= aP(t)* + bPts + c; where t; is the time span of t-x to t, and a, b, and c are
coefficients of fit.

24

'HE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION

Other methods translate changes from only last period’s price to next period’s price.

4. Mirror model: predicts that P(t+1) will be a given fraction ¢ of the difference in this
period’s price, P(t), from last period’s price, P(t-1), from the mirror image around half of
P(t).

P(t+1) = 0.5P(t) + [0.5P(t) - (1 - §)(P(t) - P(t-1))];

5. Re-scale model: predicts that P(t+1) will be a given factor of this period’s price
bounded by [0,2].

P(t+1) = TP(t);

6. Regional model: predicts that P(t+1) is influenced by regional price information
coming from neighboring agents.

For farmers, land prices are a function land scarcity as measured by the number of
remaining farmers, Ny, in the region at time t.

P(t+1) = P(t)(1 - 1/Ny);

For developers, the expected price of house types with size, h, on lot size, /, in a given
neighborhood, N,, is the mean of prices of house and lots of the same sizesP in adjacent
neighborhoods, Nyei. Nnei are neighbors in the cardinal directions.

P(Np,p,, t+1) = mean{P(Npein,, t)};

All models in the agent’s set of prediction models are used to predict the price in the
next time period (P(t+1)). In time t+1, the actual price is known and an error squared is
calculated for each model by squaring the difference between the predicted price and
the actual price. The prediction model with the least error is used to make the agent’s
pricing decisions in the current period. This same process of prediction and evaluation is
used every period so that the most successful prediction model is used every time.

Process flow (Flow chart)

25

€ JASSS

\\‘" ‘

THE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION

Start

l

Evaluate all
Pt) prediction models / betelel et /

P(t-x:t
(txt) Predict P(t+1)
T) Predicted
P(t+1)
Model
variables external to RBB selection

/] variables endogenous to RBB
[| RBB processes

O RBB output

Input and output

Expected
P(t+1)

Input
e Current price
e Past prices
Output:
e Expected price

Position in an ABM

Houwing Housing
G"°°h Consumers: &SP | 1. Housing [2¢™3d| Developer:
m Utility | Market |, Profit
Maximization | 8id Interactions | Ask | Maximization
X
o Q‘\('e
\ﬁ%e \\}“6
1.3 g
8-
Land Land
U::;‘e Developer: |Suply| 3.land [Demand| Farmers: Update
Modeis‘ Rent 5 Market Land Price >h:;:‘:;s
(t+1) Expectations | 8id | Interactions | Ask | Expectations (t+1)
Pseudocode

function assign price prediction models():
number of price prediction models & 20
assign type of each price prediction model from random number 1:6

assign agent memory from random number 1:10

end

26

" ‘0\ JAE ;f ;S
"A"
"L ‘;g

I'HE JOURN OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION

function predict price():
compute current model errors from current price compared to expected price
model error ¢ current model error + past model error
compute expected prices from price prediction models and agent memory
select prediction of model with lowest model error
expected price ¢ prediction of best performing price prediction model

end

Reusable code block

%% %%%%%%%%%%%% Agent Expectation Formation %%%%%%%%% %%%%%%
Nagents=100; %example agent population

TSTART=10; %end of spin-up period

TMAX=30; %total number of time steps

NUMMODEL=20; %Number of prediction models per agent

PRODCLASS=6; %number of yield prediction model types

PRICECLASS=5; %number of price prediction model types
MAXMEANMODEL=10; %maximum time steps into the past to calculate mean
MAXCYCLEMODEL=10; %maximum time steps into the past to calculate cycle
MAXPROJECT=10; %maximum time steps into the past to calculate trend
DELTA=0.6;

priceproj=zeros(Nagents,TMAX); %{[iown,NUMMMODEL] Nuse}
priceerror=zeros(Nagents,TMAX); %cumulative model error
ipricebestSAVE=zeros(Nagents,TMAX); %index of best performing model
ExptPrice=zeros(Nagents, TMAX); %prediction of best performing model
pricemodelSAVE=zeros(Nagents, TMAX); %best performing model

%%% Price EXPECTATIONS

pricemodel = ceil(PRICECLASS*rand(Nagents,NUMMODEL)); %full heterogeneity
priceclass1=find(pricemodel == 1);

priceclass2=find(pricemodel == 2);

priceclass3=find(pricemodel == 3);

priceclass4=find(pricemodel == 4);

priceclass5=find(pricemodel == 5);

priceclass6=find(pricemodel == 6);

% Initialization
bb = zeros(Nagents, NUMMODEL,'single');

%Price models
for i = 1:PRICECLASS
if i ==1 % mirror model
bb(priceclass1) = rand(1); % fraction that pred is away from 1/2 from mirror image

27

‘L A "l
\\(""
I'HE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION
elseif i == 2 % mean model
bb(priceclass2) = cei(MAXMEANMODELrand(length(priceclass2),1));
elseif i == 3 %cycle model

bb(priceclass3) = ceil MAXCYCLEMODELrand(length(priceclass3),1));
elseif i == 4 % projection model

bb(priceclass4) = ceil(2+((MAXPROJECT-1)-2)rand(length(priceclass4),1));
elseif i == 5 % rescale model

bb(priceclass5) = 2rand(length(priceclass5),1);
elseif i == 6 %regional trends

bb(prodclass6) = cei MAXMEANMODEL*rand(length(priceclass6),1));
end

end

% Dynamics
for t=TSTART+1:TMAX
for n=1:Nagents
ipriceclass1=find(pricemodel(n,:)==1);
ipriceclass2=find(pricemodel(n,:)==2);
ipriceclass3=find(pricemodel(n,:)==3);
ipriceclass4=find(pricemodel(n,:)==4);
ipriceclass5=find(pricemodel(n,:)==5);
ipriceclass6=find(pricemodel(n,:)==6);
for i = 1:PRICECLASS
if i == 1 % mirror models
priceproj(n,ipriceclassl1) = priceproj(n,t)+(1-bb(n,ipriceclass1)).*
(0.5*priceproj(n,t)-(priceproj(n,t)-priceproj(n,t-1)));
elseif i == 2 % mean model
for jl = 1:length(ipriceclass2)
priceproj(n,ipriceclass2(jl)) = mean(priceproj(n,t:-1:(t-bb(n,ipriceclass2(jl)))));

end
elseifi==3 %cycle model

priceproj(n,ipriceclass3) = priceproj(n,t-round(max(1,bb(n,ipriceclass3))));
elseif i == 4 % projection model

for jl = 1:length(ipriceclass4) %Nonlinear Forecast
indata=priceproj(n,t-(1+bb(n,ipriceclass4(jl))):t);
pcoef=polyfit(1:length(indata),indata,1);
pline=pcoef(1).*(1:length(indata)+1)+pcoef(2);
priceproj(n,ipriceclass4(jl))=pline(length(pline));

end
elseifi==5 % rescale model

priceproj(n,ipriceclass5) = bb(n,ipriceclass5)*priceproj(n,t);
elseifi==6 % local(0) or regional(1) trends

ipricelocal=(bb(n,ipriceclass6)==0);
ipricereg=(bb(n,ipriceclass6)==1);
if isempty(Nagents)==
break
end
priceproj(n,ipriceclass6(ipricelocal)) = priceproj(n,t).*(1+1/length(Nagents));

28

‘fﬁ
;‘ » JAE ;f ;S
W .‘;o‘.”

'HE JOURNAL OF ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION

end
end
end
priceerror(n,:) = (1-DELTA)*priceerror(n,:)+DELTA*abs(priceproj(n,t)-priceproj(n,:));
[pricebest,ipricebest] = min(priceerror(n,:),[],2);
ipricebestSAVE(n,t) = ipricebest;
pricemodelSAVE(n,t) = pricemodel(n,ipricebest);
ExptPrice(n,t+1) = priceproj(n,ipricebest);
end

Agent-based model
Model description: The overall purpose of this model is to explore how feedbacks
between housing and land markets influence the conversion of undeveloped land
(e.g., agriculture) to residential housing. The agent-based model (ABM) presented
here is a version of the CHALMS model (Magliocca et al., 2011, 2012) that has been
adapted to a coastal landscape subject to uncertain impacts from coastal storms (C-
CHALMS). The goal of the model is not to simulate the development patterns and
market dynamics of any particular location. Rather, the aim is to isolate
psychological and perceptual factors that influence location and adaptation
decisions and their effects on key interactions between housing and land markets
(particularly the timing and proximity to the coast of land conversion. The model
investigates how agent-level decisions and interactions through markets link to
market- and landscape-level outcomes, such as housing and land prices and extent
and configuration of residential development, respectively. Further, the goal is to
understand how residential housing consumers make trade-offs between amenities
and risks of damages from storms given location near the coast, and how those
trade-offs do or do not influence adaptive decisions in response to storms, such as
purchasing insurance and/or relocating to less risky areas.

Model code: https://github.com/nickmags13/CHALMS coastal simple

Published material: https://doi.org/10.1016/j.compenvurbsys.2018.03.009

29

https://github.com/nickmags13/CHALMS_coastal_simple
https://doi.org/10.1016/j.compenvurbsys.2018.03.009

'4' ‘0\

Vay

P JA: ;f ;S
i

I'HE JOU ARTIFICIAL SOCIETIES AND SOCIAL SIMULATION

Appendix D: Criteria for RBB review and instructions for reviewers

RBB ‘Description’ RBB ‘Implementation’

Please provide any specific feedback on the
Reusable Building Block. Consider using the
Reviewer Guide below as an optional guide and
provide your professional reflections. Your general
recommendations for the improvement of the
implementation of the RBB are very welcome.

Please provide any specific feedback on the
Reusable Building Block. Consider using the
Reviewer Guide below as an optional guide
and provide your professional reflections.
Your general recommendations for the
improvement of the description of the RBB

are very welcome. Thank you very much for
your time and remember:

e Clarity of Description: Please reflect
briefly whether the author has
clearly explained the motivation
behind the RBB, its theoretical
underpinning and its purpose.

e Clarity of Assumptions: Do the
authors sufficiently explain the
assumptions that underlie this RBB?

e Potential Reusability: From your
point of view, can this RBB be used
in other models and/or in other
application domains? Feel free to
note which ones.

e Novelty: Does the RBB describe an
original (not yet existing in the
database) component of an ABM?

Thank you very much for your time and remember:

Modularity: Briefly explain whether the
described RBB is sufficiently modular.
Would it be more usable if its scope were
narrower or broader, or is the current level
of modularity appropriate?

Clarity and Logic: Can this RBB be used in
other (agent-based) models based on the
provided implementation (in terms of
algorithm, pseudo-code, and/or access to
the simulation program itself). Specifically:

o Arethe inputs/outputs clearly
specified?

o Isthe provided algorithm/pseudo-
code organized and logical?

Reusability in other ABMs: Please assess
whether the provided implementation
code is usable as a part in other (agent-
based) models.

o Isthe provided code
implementation organized and
logical?

o To what extent does the
implementation code help
understand how the RBB can be
used in an ABM?

o Check if the diagram describing
the place of RBB in the full ABM is
easy to follow.

Weblinks: Is the link to the full ABM using
this RBB provided? Does it work?

30

