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Appendix A: Templates for a Reusable Building Block and Diagrams 
This template summarizes all components of an RBB, see also the online template: 
https://www.agentblocks.org/assets/frontend/media/RBB_template.pdf. Once you log in to 
contribute an RBB to the platform, you will be asked to describe these components for your RBB. 
 
Every RBB consists of two parts:  

Part 1: RBB ‘Main Description’ (‘Main’ in the online version) – is the general description of 
an RBB, independent of model-specific design choices or programming language. It provides 
information on the theoretical foundations, context, purpose and scale, and describes a 
common shape this RBB takes in an ABM: what (types) of agents does it concern, and how is 
it connected to the rest of the model in terms of input/output?  
Part 2: RBB ‘Implementation’ (‘Impl.N[Language]’ in the online version) – is a model-specific 
description of an RBB, including its implementation in a specific programming language, so 
that various RBB Implementations can co-exist for a single RBB. For example, this applies to 
domain-specific alternatives representing the same process. Part 2 provides information on 
the process flow, the (model-specific) input and output parameters, the position of the RBB 
in the full ABM, and contains a working implementation in a specific programming language.  

 
The ‘Main Description’ and ‘Implementation’ parts of the RBB consist of the obligatory and optional 
components, following the two-tier approach (Berger at al 2024). Besides programming language 
and discipline, the list of fields one needs to provide information for includes: 
 

Part 1: RBB ‘Main Description’ Fields Function 

 Identifier Title  Needed for the citable references 
 Authors 

Background and purpose Background & purpose Describe the purpose of this RBB. 
Communicate the underlying problem 
and context where this process/action 
matters (in the real world and/or in the 
full ABM). 
Describe theoretical foundations of the 
modelled process/action. 

[* Optional] Overview 
figure 

Provide a visual overview of the theory 
or process captured by this RBB. 
You may provide an existing figure, or 
create one using this template. 
Do not mix it with figure of the full ABM: 
please provide here only the conceptual 
figure describing the relevant RBB to 
help others understand what it models. 

Key concepts and definitions Key concepts and 
definitions 

Communicate the underlying semantic 
ontology, including key concepts and 
underlying assumptions. 
How can this RBB parameterized? What 
kind of additional information or 
empirical data are needed to inform this 
RBB? 

[* Optional] Scale If relevant, describe spatial and 
temporal scales/resolution at which this 
RBB applies. 

https://www.agentblocks.org/assets/frontend/media/RBB_template.pdf
https://viewer.diagrams.net/?tags=%7B%7D&highlight=0000ff&edit=_blank&layers=1&nav=1&title=RBB_template_diagrams.drawio#Uhttps%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D1JfGAzfeMivl4KvN6enCnDg1jH5YLKKdc%26export%3Ddownload
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Detailed specification 
 
 
 

Input description Provide a verbal description of a 
(common) input to this RBB (on a 
conceptual level, any implementation-
specific inputs and numerical values 
may be provided in Part 2) 

Output description Provide a verbal description of a 
(common) output of this RBB (on a 
conceptual level, any implementation-
specific inputs and numerical values 
may be provided in Part 2) 

Level of interactions Specify processes/actions at which level 
of interactions – just within a single 
agent, among agents or between agent 
and its environment – your RBB aims to 
capture. Choose from: 

• Single Agent 
• Multiple Agents(same type) 
• Multiple Agents (different  
         types) 
• Agent(s) and the Environment 

Agent definition For all types of agents - based on the 
level of interactions specified above – 
provide: 

1. Agent type (e.g. household, 
farmer, government, ...) 
2. Attributes of this agent type 
3. Functions of this agent type 

 
 

Part 2: RBB ‘Implementation’ Fields Function 

Process flow Flow chart Visual overview of the process flow of 
this implementation of the RBB. 
You may provide an existing figure, or 
create one using this template 

Input and output 
 

Input Provide the input parameters required 
for this implementation of the RBB 

Output Provide the output produced by your 
implementation of the RBB (this may be 
output parameters, or changes to the 
model- or agent states) 

Position in an ABM Sequence diagram Visual overview of the position of the 
RBB in an ABM. 
You may provide an existing figure, or 
create one using this template 

Pseudocode Pseudocode Describe the process flow in the form of 
pseudocode 

Reusable code block Code Provide a working example of the RBB 
as it is employed in your ABM in a 
specific programming language 

Agent-based model 
 

Model description Provide a short description of the ABM 
in which you employ this RBB. 

https://viewer.diagrams.net/?tags=%7B%7D&highlight=0000ff&edit=_blank&layers=1&nav=1&title=RBB_template_diagrams.drawio#Uhttps%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D1JfGAzfeMivl4KvN6enCnDg1jH5YLKKdc%26export%3Ddownload
https://viewer.diagrams.net/?tags=%7B%7D&highlight=0000ff&edit=_blank&layers=1&nav=1&title=RBB_template_diagrams.drawio#Uhttps%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D1JfGAzfeMivl4KvN6enCnDg1jH5YLKKdc%26export%3Ddownload
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 Model code Provide a link to the original model 
code 

[* Optional] Published 
material 

Provide a link to published material 
describing the full model 

 
Besides the Template for an RBB, we also offer Templates for the development of the diagrams. 
Often agent-based modelers already have a diagram for the full ABM but not always for the specific 
code snippet they are ready to make an RBB from. In case you do not have diagrams of the process 
flow of the targeted RBB or its position in the full ABM, you can create one using these open access 
online Diagram templates. To access the editable version, please select ‘Edit’ in the bottom panel 
and mind that there are three tabs depicting different diagrams: 

 
 
The AGENTBLOCKS platform currently offers three diagram templates with editable drag & drop 
elements (Figure A.1). If you want to offer another template, feel free to reach out to us or just add 
it using the “+” sign in the online Diagrams app. 
 
(a) 

 
 

https://viewer.diagrams.net/?tags=%7B%7D&highlight=0000ff&edit=_blank&layers=1&nav=1&title=RBB_template_diagrams.drawio#Uhttps%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D1JfGAzfeMivl4KvN6enCnDg1jH5YLKKdc%26export%3Ddownload
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(b)  
 
 

(c)  
 
Figure A.1: Examples of open access templates for diagrams to facilitate the meta data description 
of a Reusable Building Block. Panel (a) offers the template for the ‘Conceptual overview’ of an RBB 
meant to supplement Part 1 – RBB ‘Main Description’. Panel (b) offers the template for the ‘Flow 
chart’ diagram for the core processes coded by an RBB. Panel (c) offers the template for the 
‘Sequence diagram’ to indicate the position of the RBB in the full ABM. The last two diagrams are 
meant to support Part 2 – RBB ‘Implementation’. 
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Appendix B: Architecture of the open access AGENTBLOCKS Platform 

for reusable building blocks  
Figure B.1 provides the ontological structure of the backend of the AGENTBLOCKS repository of 

RBBs. 

 

 

Figure B.1: Relational database in the backend of the AGENTBLOCKS platform for reusable building 

blocks 
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Appendix C: Examples of the first Reusable Building Blocks 

Example 1: Theory of Planned Behavior  
See the latest version online: https://www.agentblocks.org/rbb/under-development-theory-of-

planned-behavior-for-agents-decision-making 

Part 1: RBB ‘Main Description’  

Identifier: Title, Authors: 

Theory of Planned Behavior for individual decision-making – Tatiana Filatova, Liz 

Verbeek 

 Background and purpose: 

Background & purpose: 

Developed in the early 1990s by Ajzen [1], the Theory of Planned Behavior is one of 

the most influential theories in social and health psychology, and has been used in 

many environmental studies to describe behavioral change. In ABMs, TPB is often 

used as an alternative to perfect rationality in individual decision-making processes. 

TPB assumes that a person's intention to change their behavior is driven by: 1) their 

attitude towards the behavior, 2) subjective norms (perceived social pressure to 

perform the behavior), and 3) perceived behavioral control (the degree to which 

they believe they're able to perform the behavior). 

The figure below shows these three core components of TPB. 

Empirical survey studies have demonstrated that TPB performs well in explaining 

patterns of real-world behavior changes across a wide range of applications, 

including actions like improving health, investing in new resource-efficient 

technologies, choosing travel modes, nature and resource conservation, choosing 

organic food, using bioplastics, adapting to climate change and so on. Consequently, 

in ABMs, TPB is used to study e.g. technology diffusion among households; 

migration; decision-making processes by farmers; waste recycling; urban 

development and travel behavior (see [2] for review of applications). 

References 

[1] Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and 

human decision processes, 50(2), 179-211. https://doi.org/10.1016/0749-

5978(91)90020-T  

[2] Muelder, H. and Filatova, T. (2018). One theory-many formalizations: Testing 

different code implementations of the theory of planned behaviour in energy agent-

based models. Journal of Artificial Societies and Social Simulation, 21(4), 5. 

https://doi.org/10.18564/jasss.3855  

 

[* Optional] Overview figure: 

https://www.agentblocks.org/rbb/under-development-theory-of-planned-behavior-for-agents-decision-making
https://www.agentblocks.org/rbb/under-development-theory-of-planned-behavior-for-agents-decision-making
https://doi.org/10.1016/0749-5978(91)90020-T
https://doi.org/10.1016/0749-5978(91)90020-T
https://doi.org/10.18564/jasss.3855
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 Key concepts and definitions 

Key concepts and definitions: 

A change in behavior happens through pursuing certain actions. As mentioned 

above, TPB assumes that the decision to pursue a certain (behavior changing) action 

is driven by three groups of behavioral and socio-economic factors: attitudes, 

subjective norms and perceived behavioral control [1]. 

Attitudes describe an individuals own judgement of whether specific behavior is 

positive and to what degree it is favorable. 

The subjective norm component in TPB captures the influence of external social 

pressure: one's perception of whether others expect them to perform certain 

actions. 

Finally, person naturally should have control over their decision to perform certain 

behavior, as well as over opportunities and resources to pursue the ‘planned’ action. 

This is described by the perceived behavioral control (PBC) component, which 

indicates a subjective judgement about one's own ability to implement the behavior 

(based on e.g. general ease of implementation, past experience, perceived barriers, 

or self-efficacy). 

Like in most behavioral theories, TPB assumes that behavior is predicted by 

intentions (i.e. the stronger the intention towards a specific behavior, the more 

likely the person will engage in it), but this intention does not necessarily result in 

immediate action (e.g. because of a time lag or prioritization of other measures) [2]. 

In some ABM implementations, intentions and actions are equated (having the 

intention to act directly leads to action). Since in reality having the intention to do 

something does not always (and usually does not) directly result in taking action, we 

recommend to model this so-called intention-behavior gap explicitly, for example 

by adding stochasticity serving as a probabilistic barrier between intention and 

action. 

Use of data 
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To formalize TPB in an agent-based model, the above-mentioned components 

(attitude, subjective norm and PBC) need to be quantified in some way. Usually, this 

is achieved by collecting (or utilizing existing) survey data on the behavior of 

interest. 

In such surveys, attitudes are typically parameterized by knowledge, awareness and 

overall evaluation of the topic, and can be quantified by measuring (dis)agreement 

with specific statements related to the topic. 

The parameterization of subjective norm typically includes data on the number of 

people in a social circle (e.g. friends, neighbors, family) who have already 

implemented the behavior of interest, and individual perceptions of the 

expectations of these peers regarding the particular action. In, ABMs the subjective 

norm can be updated endogenously as simulation unfolds and the number of agents 

pursuing or abandoning the action changes. 

Survey data informing the PBC component describes financial constraints (e.g. 

payback period; whether one has sufficient savings or income to fund an action; the 

benefit/cost ratio of (not) performing the action), information (e.g. objective vs. 

biased information about technical specification or costs of an action), questions on 

self-efficacy (to what extent one believes to be able to perform the action) and past 

experience. Although frequently measured in surveys, the latter two are rarely 

included in formalizations of TPB in agent-based models. 

References 

[1] Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and 

human decision processes, 50(2), 179-211. https://doi.org/10.1016/0749-

5978(91)90020-T  

[2] Weinstein, N. D., Rothman, A. J., & Nicolich, M. (1998). Use of correlational data 

to examine the effects of risk perceptions on precautionary behavior. Psychology 

and Health, 13(3), 479-501. https://doi.org/10.1080/08870449808407305  

 

[* Optional] Scale 

As TPB describes a decision-making process, it may operate on any scale in which 

choices by individual agents are relevant. It is thus scale-agnostic for spatial scale. 

For its temporal extent it is important to note that the interval between deliberation 

moments should be realistic (e.g. considering adopting energy-efficient technologies 

like solar panels on a daily basis does not make sense; one or several timesteps per 

year would be a more realistic time scale). Of course, the total temporal extent of 

the ABM should follow the same reasoning and should match the timestep intervals. 

 

 Detailed specification  

Input description 

Any implementation of TPB in an agent-based model includes (at least) the following 

input factors: 

https://doi.org/10.1016/0749-5978(91)90020-T
https://doi.org/10.1016/0749-5978(91)90020-T
https://doi.org/10.1080/08870449808407305
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1. Attitude towards the behavior 

2. Subjective norm 

3. Perceived behavioral control (PBC) 

In addition, for some applications, and if data is available, the following factors may 

be included: 

1. Self-efficacy (which may be included in the PBC component) 

2. Past experience or behavior 

Output description 

Level of interactions 

Single Agent 

Agent definition 

Agent type: Household 

Description: A typical TPB process in an ABM parameterizes its three core 

components (attitude, subjective norm and PBC) as agents' attributes, where the 

agents typically represent households or individual people. These three factors form 

the input for the TPB process that computes the agents' intention to take action, 

which is in turn translated to a binary decision to take action or not. 

Attributes: 

• attitude 

• subjective norm 

• PBC 

Functions: 

• compute intention 

• take action (yes/no?) 

 

Part 2: RBB ‘Implementation’ 

Description 

This implementation of the TPB building block in the Energy ABM, where TPB represents the 

decision-making process of households in the Netherlands that consider installing PV panels. 

In this example implementation, TPB is formalized as a sequence of several processes. First, 

agents compare the (expected) utility of installing PV panels to the (expected) utility of not 

installing PV panels, which informs their intention to take action (or not). These utility 

functions are weighted averages of the TPB components - attitude, subjective norm and 

PBC. 

The attitudes of the agents towards PV panels are parameterized using survey data on PV 

panel installation in the Netherlands (see link to the published material for more information 

on the survey). 

The same survey data provides the weights for each of the input factors of the utility 

function(s). 
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It is assumed that subjective norms stem from social norms. The social norms in this model 

are formalized as the fraction of connections in an agent's social network (representing 

friends, family, neighbors) that have already installed PV panels. These social norms are 

dynamic: they are updated every timestep as PV uptake increases. 

In the Energy ABM, it is assumed that PBC represents only financial constraints. It is 

formalized as an individual cost-benefit analysis of installing PV panels: every agent 

computes the Net Present Value (NPV) for installing PV panels (based on an expected 

payback time) as well as for doing nothing. 

After computing an agent's intention to take action, a probabilistic barrier is added to 

represent the intention-behavior gap. 

 Process flow (Flow chart) 

 

 

Notes 

This flow chart represents the implementation of TPB in the Energy ABM. The 

subjective norms are formed by endogenous (dynamic) social norms arising from the 

https://en.wikipedia.org/wiki/Net_present_value
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behavior of other agents. PBC is computed as the Net Present Value (cost-benefit 

analysis) of installing PV panels or doing nothing. Attitudes and weights are static 

and paramterized using survey data. Together, they contribute to the agent's 

(expected) utility of taking action or not. 

After computing the utility for both taking action (installing PV panels) and doing 

nothing, the agent compares the two. If the utility of doing nothing is higher, the 

agent does not take action. If the utility of installing PV panels is higher, however, 

the agent considers - has the intention to - taking action. Before actually taking 

action, some stochasticity is added to represent the intention-behavior gap. Thus, 

some agents with the intention to take action actually do so, others don't. 

 Parameters and output 

  Input to RBB: 

1. Behavior of others 

2. Attitude 

3. Weights 

Output of RBB 

1. Binary decision to take action 

Position in an ABM 

 

 Pseudocode 

function TPB(agent): 
get attitude, social norm from agent 
PBCaction ← NPVaction(expected costs, expected benefits) 
PBCno_action ← NPVno_action(expected costs, expected benefits) 
utilityaction ← weighted function of attitude, social_norm and PBCaction 
utilityno_action ← weighted function of -attitude, social_norm and PBCno_action 
if utilityaction > utilityno_action then 

barrier passed? ← Draw Bernoulli(pbarrier) 
if barrier passed? then 

take action? = True 
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else 
take action? = False 

end if 
else 

take action? = False 
end if 

return take action? 
 

 Reusable code block 

Programming language: Python 

MIT LICENSE Copyright (c) 2025 Tatiana Filatova, Liz Verbeek 
 
Permission is hereby granted, free of charge, to any person obtaining a copy of this software 
and associated documentation files (the “Software”), to deal in the Software without 
restriction, including without limitation the rights to use, copy, modify, merge, publish, 
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the 
Software is furnished to do so, subject to the following conditions: The above copyright 
notice and this permission notice shall be included in all copies or substantial portions of the 
Software. 
 
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 
DEALINGS IN THE SOFTWARE. 

 
# -*- coding: utf-8 -*- 
""" 
@author: e.verbeek@tudelft.nl 
Python implementation of Theory of Planned Behavior for household decision-making. This code contains a 
Household class employing the TPB decision-making module described by this building block. In addition, it 
includes code for a Model class required to implement TPB decision-making in an agent-based model. 
 
""" 
 
import numpy as np 
 
from scipy.stats import bernoulli 
from mesa import Model 
from mesa import Agent 
from mesa.time import RandomActivation 
 
class TPB_Model(Model): 
    """Model class. """ 

 
    def __init__(self, n_households, n_connections, HH_TPB_weights, attitudes,  
                        measure_benefits, measure_costs): 
        """Initialization of an ABM employing TPB as decision-making module. 
      
        Args: 
            n_households (int)        : Number of households 
            n_connections (int)       : Number of social connections per household 

mailto:e.verbeek@tudelft.nl
mailto:e.verbeek@tudelft.nl
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            HH_TPB_weights (list) : Homogeneous weights for TPB function 
            attitudes (list)                : HH attitude towards taking action 
            measure_benefits         : Estimated yearly benefits of taking action 
            measure_costs             : Estimated yearly costs of taking action 
        """ 
 
        # Keep track of agent IDs and number of households 
        self.current_id = 0 
        self.n_households = n_households 
        # Add schedule. The type of schedule can be chosen by the user 
        self.schedule = RandomActivation(self) 
 
        # Save TPB weights (homogeneous) 
        self.HH_TPB_weights = HH_TPB_weights 
        # Initialize households 
        for n in range(n_households): 
            hh = Household(self, attitudes[n], measure_benefits[n], measure_costs) 
            self.schedule.add(hh) 
        # Add social connections (randomly select n) 
        for hh in self.schedule.agents: 
            others = [HH for HH in self.schedule.agents if HH != hh] 
            hh.connections = np.random.choice(self.schedule.agents, n_connections) 
 
        # Save maximum Net Present Value for normalization 
        self.max_NPV = max(max(hh.compute_NPV() for hh in self.schedule.agents)) 
 
        # ... other model initialization functions ... # 
 
    def step(self): 
        """Model step""" 
        self.schedule.step() 
 
 class Household(Agent): 
    """Household agent class.""" 
 
    def __init__(self, model, attitude, measure_benefits, measure_costs): 
        """Initialization of a household agent. 
 
        Args: 
            model (Model)      : Model containing the household agent 
            attitude (list)    : Value for attitude towards taking action 
        """ 
        super().__init__(model.next_id(), model) 
 
        self.measure = False 
        self.attitude = attitude 
        # Parameters for Net Present Value estimation 
        # Please note that for simplicity, the costs are homogeneous 
        # in this example implementation, while in reality, of course, these 
        # usually differ per household and depend on other factors 
        self.measure_benefits = measure_benefits 
        self.measure_costs = measure_costs 
 
        # ... other Household initialization functions ... 
 
    def TPB(self, TPB_weights, barrier=True, barrier_prob=0.5): 
        """Theory of planned behavior for household decision-making. 
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        Args: 
            TPB_weights  : Vector of predefined weights for PMT function. 
                                          Here, weights are estimated using logistic regression on survey data. 
            barrier             : Boolean (True/False) to either apply or not apply probabilistic barrier between intention 
and action 
            barrier_prob : Probability to pass the barrier 
        """ 
 
        social_norm_action, social_norm_no_action = self.get_social_norm() 
        PBC_action, PBC_no_action = self.compute_NPV() 
        # Normalize PBC 
        PBC_action = PBC_action/self.model.max_NPV 
        PBC_no_action = PBC_no_action/self.model.max_NPV 
        # Get TPB input vectors 
        TPB_vars_action = [self.attitude, social_norm_action, PBC_action] 
        TPB_vars_no_action = [-self.attitude, social_norm_no_action, PBC_no_action] 
 
        # Compute utility of taking action or not 
        utility_action = TPB_weights @ TPB_vars_action 
        utility_no_action = TPB_weights @ TPB_vars_no_action 
        if utility_action > utility_no_action: 
            # (Optional) Apply probabilistic barrier between intention and action 
            if barrier: 
                if bernoulli.rvs(barrier_prob) == 1: 
                    self.measure = True 
                    # ... other consequences of applying the measure ... # 
            else: 
                self.measure = True 
                # ... other consequences of applying the measure ... # 
 
    return 
 
    def compute_NPV(self, timespan=10, interest_rate=0.05): 
        """Compute Net Present Value (NPV) of taking action (or not). 
 
        Args: 
            timespan (int)             : Number of years to take into account 
            interest_rate (float)  : Bank interest rate 
        """ 
 
        # Yearly benefits (assumed these to not change over time) 
        benefits = self.measure_benefits 
        # Investment costs (only spend in first year) 
        costs = np.zeros(timespan) 
        costs[0] = self.measure_costs 
        # Discount rates are typically based on bank interest rate 
        timesteps = np.linspace(0, timespan - 1, timespan) 
        discount_rates = (1 + interest_rate)**timesteps 
 
        # Compute Net Present Value 
        NPV_measure = sum((benefits - costs) / discount_rates) 
        NPV_not_measure = sum((costs - benefits) / discount_rates) 
 
        return NPV_measure, NPV_not_measure 
 
    def get_social_norm(self): 
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        """Update household social norm based on actions of social connections""" 
 
        # Get number of social connections that have taken measure or not 
        taken_measure = sum(hh.measure for hh in self.connections) 
        not_taken_measure = sum(not hh.measure for hh in self.connections) 
 
        # Return as fraction of total social connections 
        return (taken_measure/len(self.connections),  not_taken_measure/len(self.connections)) 
 
    def step(self): 
        """Household agent step""" 
        self.TPB(self.model.HH_TPB_weights) 
 
# To run the model, please specify: n_households (int), HH_TPB weights (list of 3 weights) 
# attitudes (list of attitude per household), measure_benefits (list), measure_costs (int) 
# and run the following: 
model = TPB_Model(n_households, n_connections, HH_TPB_weights, attitudes,  
  measure_beneasure_benefits, measure_costs) 
n_steps = 100 for n in range(n_steps): model.step() 
 
 
Code instructions: 
To run this example code, specify the number of households, weights for the TPB building block (list of 3), 
attitude values for all households, a list of the financial benefit of implementing the measure per agent (this 
can also be determined endogenously in the model) and the costs of implementing the measure. 
 
 Agent-based model  
  Model name: Energy ABM  
Model description: 
The TPB building block is employed in the Energy ABM for household decision-making on PV panel installation. 
This model can be used to estimate the uptake of solar panels and resulting changes in greenhouse gas 
emissions (GHG) in the Netherlands. 
In the model, three household decision-making modules can be compared: rational decision-making, 
behavioral decision-making based on the Theory of Planned Behavior, and behavioral decision-making with 
opinion diffusion. 
Weblink to model code: 
https://github.com/SC3-TUD/PNAS-Simulating-Institutional-Heterogeneity-in-Sustainability-Science  
Link to the published material:  
https://doi.org/10.1073/pnas.2215674121  
 

 

 

 

 

Example 2: Opinion Dynamics Model of Social Influence 
See the latest version online: https://www.agentblocks.org/rbb/degrootian-opinion-dynamics-

model-of-social-influence  

Part 1: RBB ‘Main Description’  

 Identifier: Degrootian Opinion Dynamics Model of Social Influence, Thorid Wagenblast   

https://github.com/SC3-TUD/PNAS-Simulating-Institutional-Heterogeneity-in-Sustainability-Science
https://doi.org/10.1073/pnas.2215674121
https://www.agentblocks.org/rbb/degrootian-opinion-dynamics-model-of-social-influence
https://www.agentblocks.org/rbb/degrootian-opinion-dynamics-model-of-social-influence
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 Background and purpose: Often, agent-based modeling is used to model the interaction of 

people or households. The attributes of these agents can be factual (e.g., income or location) but can 

also contain perceptions and opinions regarding different matters. In the real world, people are 

influenced by those around them and change their opinions over time. There are numerous models 

describing how opinion transfer happens (see [1] for an overview). This building block can be used to 

model the opinion diffusion among agents based on the DeGroot opinion dynamics model [2]. It is 

an assimilative social influence model (i.e., opinion differences get reduced) and treats the 

individuals or agents exchanging opinions as nodes in a network. The links do not change over time 

and a weight is assigned to each link. In the ABM it can be used to model the exchange of continuous 

opinions or information of agents that interact within a network or based on proximity. 

References:  

[1] Flache, A., Mäs, M., Feliciani, T., Chattoe-Brown, E., Deffuant, G., Huet, S., & Lorenz, J. (2017). Models of Social 
Influence: Towards the Next Frontiers. Journal of Artificial Societies and Social Simulation, 20(4), 
2. https://doi.org/10.18564/jasss.3521 
[2] Degroot, M. H. (1974). Reaching a Consensus. Journal of the American Statistical Association, 69(345), 118–
121. https://doi.org/10.1080/01621459.1974.10480137 

 

 Key concepts and definitions: A change in opinion occurs through the influence of those 

around us. In an ABM, this means that an agent’s perception attributes are influenced by those it 

interacts with. These can be the closest neighbors or connecting nodes within a network. 

The Degrootian opinion dynamics model calculates the opinion formation based on one's own and 

surrounding opinions, putting a weight on each of them [1]. It can be summarized through 

Fij = ∑k
j=1 Fj * pij  

where Fij is the new opinion of an agent based on their own opinion and those of others Fj. Each 
opinion (own and those of others) has a weight pij assigned to it, denoting the importance given to 
the own opinion and the opinions of neighbors or other connections in a network. k denotes the 
total number of connections this agent has in their network.  
Since people are not expected to change their opinion entirely from one moment to the next, each 
agent as a certain basic own trust which represents how much agents trust their own opinion. Some 
individuals are more confident in their own opinion, while others attach more value to social expec-
tations. The social expectation is an optional factor that can be included Together, these variables 
determine the weights pij assigned to each of the opinions (including one’s own).  
In order to implement this model of opinion dynamics in an agent-based model, the values for 
the basic own trust (and social expectation) variables should be quantified. To do so, there are two 
options:  

1. You set the basic own trust (and social expectation) yourself. The basic own 
trust should be the same for all agents, the social expectation, if included,  can vary 
(e.g., drawing from a normal distribution). Both values should be between 0 and 1. 

2.  You use empirical data to inform these variables. Then, the basic own trust is still 
the same for all agents, but their social expectation varies based on answers given 
in a survey. Both values should also be between 0 and 1. 

 Scale: As opinion dynamics is an inter-agent process, it can operate on any spatial scale. You 

might choose to let the interaction happen in relation to spatial scale (e.g., interaction based on 

agents being neighbors on a grid), but this does not need to be the case (agents can interact 

irrespective of spatial distance).  

Regarding the temporal scale: The combination of basic own trust and social 

expectation determines how fast the opinions change from step to step. Aligning this with the topic 

of interaction makes sense. For example, if your step represents 1 minute, you might want to choose 

https://doi.org/10.18564/jasss.3521
https://doi.org/10.1080/01621459.1974.10480137
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a higher basic own trust/social expectation combination because it is unlikely that people radically 

change their opinion from one step to the next, whereas if your step corresponds to multiple years, 

a lower basic own trust/social expectation combination might make more sense. This might differ 

from opinion to opinion (e.g., political views might change slower than opinions on food 

preference).  

 

 Detailed specification  

  Input description: An implementation of the Degroot opinion dynamics model 

should consider – at least – the following input factors: 

• Basic own trust: How much of the opinion the agent always keeps. Determines to some degree 
how fast the opinions change. 

• Opinion: What opinion of perception is changing?  
 

Optional inputs: 

• Social expectation: Agent-specific variation of how much of their opinion they keep. Only makes 
sense to include when wanting different weights assigned between agents. Collected in survey 
through a question like “Do your family, friends and/or social network expect you to ...?” 

• Other opinions: You need at least one opinion/perception that you want to update through so-
cial interaction but can opt for a multitude. 
 

  Output description: The output of the opinion dynamics implementation would be 

the adjusted opinion of the agents.  

  Level of interactions: Multiple agents (same type) 

Agent type: Household, Individual 

This RBB describes agents that exchange and adjust opinions or perceptions such as households or 

individuals. 

Attributes: 
• Basic own trust, social expectation, perception/opinion value, interacting agents 

Functions: 
• Get other opinions, update opinion 

•  

Part 2: RBB ‘Implementation’ 

 Process flow (Flow chart) 
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 Input and output  

   Input 

1. Basic own trust 

2. Social expectation 

3. Opinion/perception 

  Output 

1. Updated opinion/perception 

 Position in an ABM 

Sequence Diagram 

 

 Pseudocode 

function UPDATE_OPINION(): 
compute influence weights from basic own trust and social expectation 
get agent connections 
compute worryothers from agent connections 
compute Δworry from influence weights, worryothers 
update worryown by Δworry 

end function 
 
 Reusable code block 
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Code: PYTHON 

MIT LICENSE 
Copyright (c) 2024 Thorid Wagenblast 
 
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and 
associated documentation files (the “Software”), to deal in the Software without restriction, includ-
ing without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or 
sell copies of the Software, and to permit persons to whom the Software is furnished to do so, sub-
ject to the following conditions: 
The above copyright notice and this permission notice shall be included in all copies or substantial 
portions of the Software. 
 
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICU-
LAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLD-
ERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CON-
TRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR 
THE USE OR OTHER DEALINGS IN THE SOFTWARE. 
 
# -*- coding: utf-8 -*- 
""" 
@author: t.wagenblast@tudelft.nl 
""" 
import random 
import numpy as np 
from mesa import Model 
from mesa import Agent 
from mesa.time import RandomActivation 
 
class OD_Model(Model): 
    """Agent-based model employing opinion diffusion in a social network.""" 
 
    def __init__(self, n_households, n_connections): 
        """Model initialization 
 
        Args: 
            n_households        : Number of households 
            n_connections       : Number of social connections per household 
        """ 
 
        # Keep track of agent IDs and number of households 
        self.current_id = 0 
        self.n_households = n_households 
        # Add schedule; the type of schedule can be chosen by the user 
        self.schedule = RandomActivation(self) 
 
        # Initialize households 
        for i in range(n_households): 
            hh = Household(self, 
                           worry=random.random(), 
                           social_expectation=random.random(), 
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                           basic_own_trust=0.5) 
            self.schedule.add(hh) 
 
        # Create social network 
        for hh in self.schedule.agents: 
            others = [household for household in self.schedule.agents 
                      if household != hh] 
            hh.social_connections = np.random.choice(others, n_connections, 
                                                     replace=False) 
 
        # ... other model initialization functions ... # 
 
    def step(self): 
        """Model step.""" 
        self.schedule.step() 
 
 
class Household(Agent): 
    """Household agent.""" 
 
    def __init__(self, model, worry, social_expectation, basic_own_trust=0.5): 
        """Initialization of a household agent. 
 
        Args: 
            model (Model)               : Model containing the household agent 
            worry (float)               : Worry value, may change over time 
            social_expectation (float)  : Weight assigned to opinion of others 
            basic_own_trust (float)     : Weight assigned to own opinion 
                                          (default = 0.5). 
        """ 
        super().__init__(model.next_id(), model) 
 
        # Perception value that changes through the opinion diffusion 
        self.worry = worry 
 
        # Calculate trust into other (i.e. weight assigned to opinion of others) 
        self.trust_in_others = (social_expectation * (1 - basic_own_trust)) 
        self.trust_in_oneself = 1 - self.trust_in_others 
 
        # Social connections are created after all households are initialized 
        self.social_connections = [] 
 
    def get_other_opinions(self, attribute): 
        """Get opinions of agents' social connections. 
 
        Args: 
            attribute (string)      : Attribute to collect opinions for 
        """ 
        return [getattr(hh, attribute) for hh in self.social_connections] 
 
    def update_opinion(self, attribute, other_opinions): 
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        """Get new opinion from influence of social network. 
 
        Args: 
            attribute (string)      : Attribute influenced by social network 
            other_opinions (list)   : Opinions of others 
        """ 
 
        # Update household's current opinion 
        old_value = getattr(self, attribute) 
        social_influence = sum((np.array(other_opinions) * self.trust_in_others) 
                               / len(other_opinions)) 
        new_value = old_value * self.trust_in_oneself + social_influence 
 
        # Update own opinion 
        setattr(self, attribute, new_value) 
 
    def step(self): 
        """Household step.""" 
 
        # Update household worry value 
        other_opinions = self.get_other_opinions("worry") 
        self.update_opinion("worry", other_opinions) 
 
        # ... other Household step functions ... 
 
n_households = 1000 
n_connections = 7 
model = OD_Model(n_households, n_connections) 
 
steps = 50 
for i in range(steps): 
    print("STEP", i+1) 
    model.step() 
 

 Agent-based model: Social Influence in Private Adaptation ABM 

   Model description: This model explores the uptake of flood adaptation measures of 

households under the influence of social interaction.  

The idea is to see how different network structures (Barabasi-Albert scale-free network, Watts-

Strogatz small-world network, and Erdös-Renyi random network) and the exchange of different 

perceptions regarding flood adaptation impact the adaptation uptake and damage figures over a 

larger area. 

  Model code: https://github.com/thoridw/SIPAABM 

  Published material: http://dx.doi.org/10.2139/ssrn.4763672 

 

Example 3: Agent Expectation Formation  
See the latest version online: https://www.agentblocks.org/rbb/agent-expectation-formation  

https://github.com/thoridw/SIPAABM
http://dx.doi.org/10.2139/ssrn.4763672
https://www.agentblocks.org/rbb/agent-expectation-formation
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Part 1: RBB ‘Main Description’  

 Identifier: “Agent Expectation Formation”, Nicholas R. Magliocca  

 Background and purpose: 

The purpose of the Agent Expectation Formation RBB is to represent a set of 

competing, simplified mental models individual agents can use to form expectations 

of future states of interest. This form of expectation formation is consistent with 

bounded rationality and relies on inductive reseasoning (Arthur, 1994). This mode of 

expectation formation assumes that agents can observe and learn from past states 

but may not have complete information of all past states. The conceptual basis for 

these expectation formation models was described in the El Farol Bar problem 

(Arthur, 1994) and was designed to predict the number of attendees at a future time 

based on past attendance information. This was subsequently adapted to form 

expectations of future stock prices in applications of the Santa Fe Institute's artifical 

stock market (LeBaron et al., 1999). The generalized formalization of this RBB futher 

modifies these expectation models for broader applicability, such as housing prices 

(Magliocca et al., 2011, 2014b) and crop prices and yields (Magliocca et al., 2013, 

2014a). 

  [Optional] Overview figure 

 Key concepts and definitions 

Expectations of future states are often used to inform decisions in the current time 

period. There are many ways to represent expectation formation ranging from 

implicit (i.e., assuming the future will replicate the past; e.g., habitual behavior or 

reinforcement learning) to explicit (e.g., forecasting; Macal and North, 2005). 

Evidence from experimental psychology suggests that expectation formation more 

closely resembles bounded rationality (Kahneman, 2003) and relies on heuristics 

and/or simple mental models that reside somewhere between the implicit and 

explicit extremes (Tversky and Kahneman, 1974). The conceptual structure proposed 

by Arthur (1994) uses a set of diverse mental models, or 'ecology of beliefs', in which 

no single mental model can remain the most accurate indefinitely because of 

stochasticity, emergent dynamics, and/or strategic behaviors inherent in complex 

adaptive systems. 

Scale: In principle, the spatial and temporal scales of applicability of this RBB are not 

constrained, because an agent may have access to historical information that was 

not directly observed. However, if the implementation considers only direct 

observation/experience with whatever is being predicted, there are implicit 

assumptions about the cognitive capacities of decision-makers that would likely limit 

the temporal extent of implementation to those that decision-makers could be 

plausibly recalled. 

 Detailed specification  

Input description: Inputs to this RBB include: 1) directly sensed or otherwise 

observed past states of the metric being predicted; 2) time horizons for considering 

past information; and 3) stored and evaluated performances of individual prediction 

models to select the best performing prediction model at each time step. 
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Output description: The output of the RBB is an expectation of the future state of a 

metric of interest in time t+1. 

  Level of interactions: Agent(s) and the Environment 

Agent definition: Individual or household 

An agent is given a set of twenty prediction models. Each prediction model may 

use one of six different prediction methods, and there may be more than one 

model applying the same prediction method in the agent’s set of twenty models. 

Some of these prediction methods map past and present metrics into the next 

period using various extrapolation methods. Other methods translate changes 

from only last period’s metrics to next period’s metrics. 

Attributes: 

1. Time horizon (i.e., memory) 

2. unique set of prediction models 

3. model performance update rate 

Functions: 

1. Observe past information 

2. evaluate prediction model performance 

select most successful model   

 

Part 2: RBB ‘Implementation’ 

Description: In this implementation, housing developers and farmers make pricing 
decisions informed by expectations of future housing and land prices, respectively. 
Adapted from price expectation models used in agent-based financial literature (e.g. 
Arthur, 1994, 2006; Axtell, 2005), agents try to predict next period’s price based on 
current and past price information. An agent is given a set of twenty prediction models. 
Each prediction model may use one of six different prediction methods, and there may 
be more than one model applying the same prediction method in the agent’s set of 
twenty models. Some of these prediction methods map past and present prices (P) into 
the next period using various extrapolation methods. 

1. Mean model: predicts that P(t+1) will be the mean price of the last x periods of the 
agent's memory. 

P(t+1) = P(t-x:t)/x; 

2. Cycle model: predicts that P(t+1) will be the same as x periods ago (cycle detector). 

P(t+1) = P(t-x); 

3. Projection model: predicts that P(t+1) will be the least-squares, non-linear trend over 
the last x periods. 

P(t+1)= aP(ts)2 + bPts + c; where ts is the time span of t-x to t, and a, b, and c are 
coefficients of fit. 
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Other methods translate changes from only last period’s price to next period’s price. 

4. Mirror model: predicts that P(t+1) will be a given fraction ξ of the difference in this 
period’s price, P(t), from last period’s price, P(t-1), from the mirror image around half of 
P(t). 

P(t+1) = 0.5P(t) + [0.5P(t) - (1 - ξ)(P(t) - P(t-1))]; 

5. Re-scale model: predicts that P(t+1) will be a given factor ζ of this period’s price 
bounded by [0,2]. 

P(t+1) = ζP(t); 

6. Regional model: predicts that P(t+1) is influenced by regional price information 
coming from neighboring agents. 

For farmers, land prices are a function land scarcity as measured by the number of 
remaining farmers, Nf, in the region at time t. 

P(t+1) = P(t)(1 - 1/Nf); 

For developers, the expected price of house types with size, h, on lot size, l, in a given 
neighborhood, Nb, is the mean of prices of house and lots of the same sizesP in adjacent 
neighborhoods, Nnei. Nnei are neighbors in the cardinal directions. 

P(Nb,h,l,t+1) = mean{P(Nnei,h,l,t)}; 

All models in the agent’s set of prediction models are used to predict the price in the 
next time period (P(t+1)). In time t+1, the actual price is known and an error squared is 
calculated for each model by squaring the difference between the predicted price and 
the actual price. The prediction model with the least error is used to make the agent’s 
pricing decisions in the current period. This same process of prediction and evaluation is 
used every period so that the most successful prediction model is used every time. 

 Process flow (Flow chart) 
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 Input and output  

   Input 

• Current price 

• Past prices 
  Output: 

• Expected price 

 

 Position in an ABM 

 

 Pseudocode 

function assign price prediction models( ): 

number of price prediction models ← 20 

assign type of each price prediction model from random number 1:6 

assign agent memory from random number 1:10 

end 
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function predict price( ): 

compute current model errors from current price compared to expected price 

model error ← current model error + past model error 

compute expected prices from price prediction models and agent memory 

select prediction of model with lowest model error 

expected price ← prediction of best performing price prediction model 

end 

 

 Reusable code block 

%%%%%%%%%%%%%% Agent Expectation Formation %%%%%%%%%%%%%%% 

Nagents=100; %example agent population  

TSTART=10; %end of spin-up period  

TMAX=30; %total number of time steps  

NUMMODEL=20; %Number of prediction models per agent  

PRODCLASS=6; %number of yield prediction model types  

PRICECLASS=5; %number of price prediction model types  

MAXMEANMODEL=10; %maximum time steps into the past to calculate mean 

MAXCYCLEMODEL=10; %maximum time steps into the past to calculate cycle 

MAXPROJECT=10; %maximum time steps into the past to calculate trend  

DELTA=0.6; 

 

priceproj=zeros(Nagents,TMAX); %{[iown,NUMMMODEL] Nuse} 

priceerror=zeros(Nagents,TMAX); %cumulative model error 

ipricebestSAVE=zeros(Nagents,TMAX); %index of best performing model 

ExptPrice=zeros(Nagents,TMAX); %prediction of best performing model 

pricemodelSAVE=zeros(Nagents,TMAX); %best performing model 

 

%%% Price EXPECTATIONS  

pricemodel = ceil(PRICECLASS*rand(Nagents,NUMMODEL)); %full heterogeneity 

priceclass1=find(pricemodel == 1);  

priceclass2=find(pricemodel == 2);  

priceclass3=find(pricemodel == 3);  

priceclass4=find(pricemodel == 4);  

priceclass5=find(pricemodel == 5);  

priceclass6=find(pricemodel == 6); 

 

% Initialization  

bb = zeros(Nagents,NUMMODEL,'single');  

 

%Price models  

for i = 1:PRICECLASS  

     if i == 1 % mirror model  

bb(priceclass1) = rand(1); % fraction that pred is away from 1/2 from mirror image  
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     elseif i == 2 % mean model  

bb(priceclass2) = ceil(MAXMEANMODELrand(length(priceclass2),1)); 

     elseif i == 3 %cycle model  

bb(priceclass3) = ceil(MAXCYCLEMODELrand(length(priceclass3),1));  

     elseif i == 4 % projection model  

bb(priceclass4) = ceil(2+((MAXPROJECT-1)-2)rand(length(priceclass4),1));  

     elseif i == 5 % rescale model  

bb(priceclass5) = 2rand(length(priceclass5),1);  

     elseif i == 6 %regional trends  

bb(prodclass6) = ceil(MAXMEANMODEL*rand(length(priceclass6),1));  

     end  

end 

 

% Dynamics 

for t=TSTART+1:TMAX 

     for n=1:Nagents 

           ipriceclass1=find(pricemodel(n,:)==1); 

           ipriceclass2=find(pricemodel(n,:)==2); 

           ipriceclass3=find(pricemodel(n,:)==3); 

           ipriceclass4=find(pricemodel(n,:)==4); 

           ipriceclass5=find(pricemodel(n,:)==5); 

           ipriceclass6=find(pricemodel(n,:)==6); 

           for i = 1:PRICECLASS 

               if i == 1 % mirror models 

     priceproj(n,ipriceclass1) = priceproj(n,t)+(1-bb(n,ipriceclass1)).*  

(0.5*priceproj(n,t)-(priceproj(n,t)-priceproj(n,t-1))); 

               elseif i == 2 % mean model 

                   for jl = 1:length(ipriceclass2) 

          priceproj(n,ipriceclass2(jl)) = mean(priceproj(n,t:-1:(t-bb(n,ipriceclass2(jl))))); 

     end 

elseif i == 3   %cycle model 

     priceproj(n,ipriceclass3) = priceproj(n,t-round(max(1,bb(n,ipriceclass3)))); 

elseif i == 4 % projection model 

     for jl = 1:length(ipriceclass4)    %Nonlinear Forecast 

          indata=priceproj(n,t-(1+bb(n,ipriceclass4(jl))):t); 

          pcoef=polyfit(1:length(indata),indata,1); 

          pline=pcoef(1).*(1:length(indata)+1)+pcoef(2); 

          priceproj(n,ipriceclass4(jl))=pline(length(pline)); 

     end 

elseif i == 5 % rescale model 

     priceproj(n,ipriceclass5) = bb(n,ipriceclass5)*priceproj(n,t); 

elseif i == 6  % local(0) or regional(1) trends 

     ipricelocal=(bb(n,ipriceclass6)==0); 

     ipricereg=(bb(n,ipriceclass6)==1); 

     if isempty(Nagents)==1 

break 

     end 

     priceproj(n,ipriceclass6(ipricelocal)) = priceproj(n,t).*(1+1/length(Nagents)); 
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end 

           end 

      end 

      priceerror(n,:) = (1-DELTA)*priceerror(n,:)+DELTA*abs(priceproj(n,t)-priceproj(n,:)); 

      [pricebest,ipricebest] = min(priceerror(n,:),[],2); 

      ipricebestSAVE(n,t) = ipricebest; 

      pricemodelSAVE(n,t) = pricemodel(n,ipricebest); 

       ExptPrice(n,t+1) = priceproj(n,ipricebest); 

end 

 

Agent-based model  

 Model description: The overall purpose of this model is to explore how feedbacks 

between housing and land markets influence the conversion of undeveloped land 

(e.g., agriculture) to residential housing. The agent-based model (ABM) presented 

here is a version of the CHALMS model (Magliocca et al., 2011, 2012) that has been 

adapted to a coastal landscape subject to uncertain impacts from coastal storms (C-

CHALMS). The goal of the model is not to simulate the development patterns and 

market dynamics of any particular location. Rather, the aim is to isolate 

psychological and perceptual factors that influence location and adaptation 

decisions and their effects on key interactions between housing and land markets 

(particularly the timing and proximity to the coast of land conversion. The model 

investigates how agent-level decisions and interactions through markets link to 

market- and landscape-level outcomes, such as housing and land prices and extent 

and configuration of residential development, respectively. Further, the goal is to 

understand how residential housing consumers make trade-offs between amenities 

and risks of damages from storms given location near the coast, and how those 

trade-offs do or do not influence adaptive decisions in response to storms, such as 

purchasing insurance and/or relocating to less risky areas. 

  Model code: https://github.com/nickmags13/CHALMS_coastal_simple 

  Published material: https://doi.org/10.1016/j.compenvurbsys.2018.03.009 

  

https://github.com/nickmags13/CHALMS_coastal_simple
https://doi.org/10.1016/j.compenvurbsys.2018.03.009
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Appendix D: Criteria for RBB review and instructions for reviewers  
 

RBB ‘Description’ RBB ‘Implementation’ 

Please provide any specific feedback on the 

Reusable Building Block. Consider using the 

Reviewer Guide below as an optional guide 

and provide your professional reflections. 

Your general recommendations for the 

improvement of the description of the RBB 

are very welcome. Thank you very much for 

your time and remember: 

• Clarity of Description: Please reflect 

briefly whether the author has 

clearly explained the motivation 

behind the RBB, its theoretical 

underpinning and its purpose. 

• Clarity of Assumptions: Do the 

authors sufficiently explain the 

assumptions that underlie this RBB? 

• Potential Reusability: From your 

point of view, can this RBB be used 

in other models and/or in other 

application domains? Feel free to 

note which ones. 

• Novelty: Does the RBB describe an 

original (not yet existing in the 

database) component of an ABM? 

 

Please provide any specific feedback on the 

Reusable Building Block. Consider using the 

Reviewer Guide below as an optional guide and 

provide your professional reflections. Your general 

recommendations for the improvement of the 

implementation of the RBB are very welcome. 

Thank you very much for your time and remember: 

• Modularity: Briefly explain whether the 

described RBB is sufficiently modular. 

Would it be more usable if its scope were 

narrower or broader, or is the current level 

of modularity appropriate? 

• Clarity and Logic: Can this RBB be used in 

other (agent-based) models based on the 

provided implementation (in terms of 

algorithm, pseudo-code, and/or access to 

the simulation program itself). Specifically: 

o Are the inputs/outputs clearly 

specified? 

o Is the provided algorithm/pseudo-

code organized and logical? 

• Reusability in other ABMs: Please assess 

whether the provided implementation 

code is usable as a part in other (agent-

based) models. 

o Is the provided code 

implementation organized and 

logical? 

o To what extent does the 

implementation code help 

understand how the RBB can be 

used in an ABM? 

o Check if the diagram describing 

the place of RBB in the full ABM is 

easy to follow. 

• Weblinks: Is the link to the full ABM using 

this RBB provided? Does it work? 

 

 


