
1

Supplementary Materials to:
 Journal of Artificial Societies and Social Simulation 28 (4) 11 <https://www.jasss.org/28/4/11.html>
DOI: 10.18564/jasss.5831

AGENTBLOCKS: a community platform

for sharing, comparing, and improving reusable
building blocks for (agent-based) models

Tatiana Filatova1, Liz Verbeek1, Martin Warnier1, Amineh Ghorbani1, Igor Nikolic1, Volker Grimm2,3,

Uta Berger4, Michael Barton5, Andrew Bell6, Allen Lee5, Nicholas Magliocca7 and Thorid Wagenblast1

1 Delft University of Technology, Faculty of Technology Policy and Management, Department of Multi Actor Systems, Jaffalaan 5,

2628 BX, Delft The Netherlands

2 Helmholtz Centre for Environmental Research – UFZ, Department of Ecological Modelling, Permoserstr. 15, 04318 Leipzig,

Germany

3 University of Potsdam, Plant Ecology and Nature Conservation, Zeppelinstraße 48A, 14471 Potsdam, Germany

4 TU Dresden, Faculty of Environmental Sciences, Department of Forest Sciences, 01062 Dresden, Germany

5 School of Complex Adaptive Systems, Arizona State University, 1031 S. Palm Walk

6 Tempe, AZ 85281-2701, USA

7 Department of Global Development, Cornell University, Warren 266, Cornell University, Ithaca, NY, 14850, USA
8 Department of Geography, The University of Alabama, Box 870322, Tuscaloosa, AL 35401, USA

Table of Contents

Appendix A: Templates for a Reusable Building Block and Diagrams 2

Appendix B: Architecture of the open access AGENTBLOCKS Platform for reusable building

blocks.. 6

Appendix C: Examples of the first Reusable Building Blocks ... 7

Example 1: Theory of Planned Behavior ... 7

Example 2: Opinion Dynamics Model of Social Influence .. 16

Example 3: Agent Expectation Formation ... 22

Appendix D: Criteria for RBB review and instructions for reviewers 30

2

Appendix A: Templates for a Reusable Building Block and Diagrams
This template summarizes all components of an RBB, see also the online template:
https://www.agentblocks.org/assets/frontend/media/RBB_template.pdf. Once you log in to
contribute an RBB to the platform, you will be asked to describe these components for your RBB.

Every RBB consists of two parts:

Part 1: RBB ‘Main Description’ (‘Main’ in the online version) – is the general description of
an RBB, independent of model-specific design choices or programming language. It provides
information on the theoretical foundations, context, purpose and scale, and describes a
common shape this RBB takes in an ABM: what (types) of agents does it concern, and how is
it connected to the rest of the model in terms of input/output?
Part 2: RBB ‘Implementation’ (‘Impl.N[Language]’ in the online version) – is a model-specific
description of an RBB, including its implementation in a specific programming language, so
that various RBB Implementations can co-exist for a single RBB. For example, this applies to
domain-specific alternatives representing the same process. Part 2 provides information on
the process flow, the (model-specific) input and output parameters, the position of the RBB
in the full ABM, and contains a working implementation in a specific programming language.

The ‘Main Description’ and ‘Implementation’ parts of the RBB consist of the obligatory and optional
components, following the two-tier approach (Berger at al 2024). Besides programming language
and discipline, the list of fields one needs to provide information for includes:

Part 1: RBB ‘Main Description’ Fields Function

 Identifier Title Needed for the citable references
 Authors

Background and purpose Background & purpose Describe the purpose of this RBB.
Communicate the underlying problem
and context where this process/action
matters (in the real world and/or in the
full ABM).
Describe theoretical foundations of the
modelled process/action.

[* Optional] Overview
figure

Provide a visual overview of the theory
or process captured by this RBB.
You may provide an existing figure, or
create one using this template.
Do not mix it with figure of the full ABM:
please provide here only the conceptual
figure describing the relevant RBB to
help others understand what it models.

Key concepts and definitions Key concepts and
definitions

Communicate the underlying semantic
ontology, including key concepts and
underlying assumptions.
How can this RBB parameterized? What
kind of additional information or
empirical data are needed to inform this
RBB?

[* Optional] Scale If relevant, describe spatial and
temporal scales/resolution at which this
RBB applies.

https://www.agentblocks.org/assets/frontend/media/RBB_template.pdf
https://viewer.diagrams.net/?tags=%7B%7D&highlight=0000ff&edit=_blank&layers=1&nav=1&title=RBB_template_diagrams.drawio#Uhttps%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D1JfGAzfeMivl4KvN6enCnDg1jH5YLKKdc%26export%3Ddownload

3

Detailed specification

Input description Provide a verbal description of a
(common) input to this RBB (on a
conceptual level, any implementation-
specific inputs and numerical values
may be provided in Part 2)

Output description Provide a verbal description of a
(common) output of this RBB (on a
conceptual level, any implementation-
specific inputs and numerical values
may be provided in Part 2)

Level of interactions Specify processes/actions at which level
of interactions – just within a single
agent, among agents or between agent
and its environment – your RBB aims to
capture. Choose from:

• Single Agent
• Multiple Agents(same type)
• Multiple Agents (different
 types)
• Agent(s) and the Environment

Agent definition For all types of agents - based on the
level of interactions specified above –
provide:

1. Agent type (e.g. household,
farmer, government, ...)
2. Attributes of this agent type
3. Functions of this agent type

Part 2: RBB ‘Implementation’ Fields Function

Process flow Flow chart Visual overview of the process flow of
this implementation of the RBB.
You may provide an existing figure, or
create one using this template

Input and output

Input Provide the input parameters required
for this implementation of the RBB

Output Provide the output produced by your
implementation of the RBB (this may be
output parameters, or changes to the
model- or agent states)

Position in an ABM Sequence diagram Visual overview of the position of the
RBB in an ABM.
You may provide an existing figure, or
create one using this template

Pseudocode Pseudocode Describe the process flow in the form of
pseudocode

Reusable code block Code Provide a working example of the RBB
as it is employed in your ABM in a
specific programming language

Agent-based model

Model description Provide a short description of the ABM
in which you employ this RBB.

https://viewer.diagrams.net/?tags=%7B%7D&highlight=0000ff&edit=_blank&layers=1&nav=1&title=RBB_template_diagrams.drawio#Uhttps%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D1JfGAzfeMivl4KvN6enCnDg1jH5YLKKdc%26export%3Ddownload
https://viewer.diagrams.net/?tags=%7B%7D&highlight=0000ff&edit=_blank&layers=1&nav=1&title=RBB_template_diagrams.drawio#Uhttps%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D1JfGAzfeMivl4KvN6enCnDg1jH5YLKKdc%26export%3Ddownload

4

 Model code Provide a link to the original model
code

[* Optional] Published
material

Provide a link to published material
describing the full model

Besides the Template for an RBB, we also offer Templates for the development of the diagrams.
Often agent-based modelers already have a diagram for the full ABM but not always for the specific
code snippet they are ready to make an RBB from. In case you do not have diagrams of the process
flow of the targeted RBB or its position in the full ABM, you can create one using these open access
online Diagram templates. To access the editable version, please select ‘Edit’ in the bottom panel
and mind that there are three tabs depicting different diagrams:

The AGENTBLOCKS platform currently offers three diagram templates with editable drag & drop
elements (Figure A.1). If you want to offer another template, feel free to reach out to us or just add
it using the “+” sign in the online Diagrams app.

(a)

https://viewer.diagrams.net/?tags=%7B%7D&highlight=0000ff&edit=_blank&layers=1&nav=1&title=RBB_template_diagrams.drawio#Uhttps%3A%2F%2Fdrive.google.com%2Fuc%3Fid%3D1JfGAzfeMivl4KvN6enCnDg1jH5YLKKdc%26export%3Ddownload

5

(b)

(c)

Figure A.1: Examples of open access templates for diagrams to facilitate the meta data description
of a Reusable Building Block. Panel (a) offers the template for the ‘Conceptual overview’ of an RBB
meant to supplement Part 1 – RBB ‘Main Description’. Panel (b) offers the template for the ‘Flow
chart’ diagram for the core processes coded by an RBB. Panel (c) offers the template for the
‘Sequence diagram’ to indicate the position of the RBB in the full ABM. The last two diagrams are
meant to support Part 2 – RBB ‘Implementation’.

6

Appendix B: Architecture of the open access AGENTBLOCKS Platform

for reusable building blocks
Figure B.1 provides the ontological structure of the backend of the AGENTBLOCKS repository of

RBBs.

Figure B.1: Relational database in the backend of the AGENTBLOCKS platform for reusable building

blocks

7

Appendix C: Examples of the first Reusable Building Blocks

Example 1: Theory of Planned Behavior
See the latest version online: https://www.agentblocks.org/rbb/under-development-theory-of-

planned-behavior-for-agents-decision-making

Part 1: RBB ‘Main Description’

Identifier: Title, Authors:

Theory of Planned Behavior for individual decision-making – Tatiana Filatova, Liz

Verbeek

 Background and purpose:

Background & purpose:

Developed in the early 1990s by Ajzen [1], the Theory of Planned Behavior is one of

the most influential theories in social and health psychology, and has been used in

many environmental studies to describe behavioral change. In ABMs, TPB is often

used as an alternative to perfect rationality in individual decision-making processes.

TPB assumes that a person's intention to change their behavior is driven by: 1) their

attitude towards the behavior, 2) subjective norms (perceived social pressure to

perform the behavior), and 3) perceived behavioral control (the degree to which

they believe they're able to perform the behavior).

The figure below shows these three core components of TPB.

Empirical survey studies have demonstrated that TPB performs well in explaining

patterns of real-world behavior changes across a wide range of applications,

including actions like improving health, investing in new resource-efficient

technologies, choosing travel modes, nature and resource conservation, choosing

organic food, using bioplastics, adapting to climate change and so on. Consequently,

in ABMs, TPB is used to study e.g. technology diffusion among households;

migration; decision-making processes by farmers; waste recycling; urban

development and travel behavior (see [2] for review of applications).

References

[1] Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and

human decision processes, 50(2), 179-211. https://doi.org/10.1016/0749-

5978(91)90020-T

[2] Muelder, H. and Filatova, T. (2018). One theory-many formalizations: Testing

different code implementations of the theory of planned behaviour in energy agent-

based models. Journal of Artificial Societies and Social Simulation, 21(4), 5.

https://doi.org/10.18564/jasss.3855

[* Optional] Overview figure:

https://www.agentblocks.org/rbb/under-development-theory-of-planned-behavior-for-agents-decision-making
https://www.agentblocks.org/rbb/under-development-theory-of-planned-behavior-for-agents-decision-making
https://doi.org/10.1016/0749-5978(91)90020-T
https://doi.org/10.1016/0749-5978(91)90020-T
https://doi.org/10.18564/jasss.3855

8

 Key concepts and definitions

Key concepts and definitions:

A change in behavior happens through pursuing certain actions. As mentioned

above, TPB assumes that the decision to pursue a certain (behavior changing) action

is driven by three groups of behavioral and socio-economic factors: attitudes,

subjective norms and perceived behavioral control [1].

Attitudes describe an individuals own judgement of whether specific behavior is

positive and to what degree it is favorable.

The subjective norm component in TPB captures the influence of external social

pressure: one's perception of whether others expect them to perform certain

actions.

Finally, person naturally should have control over their decision to perform certain

behavior, as well as over opportunities and resources to pursue the ‘planned’ action.

This is described by the perceived behavioral control (PBC) component, which

indicates a subjective judgement about one's own ability to implement the behavior

(based on e.g. general ease of implementation, past experience, perceived barriers,

or self-efficacy).

Like in most behavioral theories, TPB assumes that behavior is predicted by

intentions (i.e. the stronger the intention towards a specific behavior, the more

likely the person will engage in it), but this intention does not necessarily result in

immediate action (e.g. because of a time lag or prioritization of other measures) [2].

In some ABM implementations, intentions and actions are equated (having the

intention to act directly leads to action). Since in reality having the intention to do

something does not always (and usually does not) directly result in taking action, we

recommend to model this so-called intention-behavior gap explicitly, for example

by adding stochasticity serving as a probabilistic barrier between intention and

action.

Use of data

9

To formalize TPB in an agent-based model, the above-mentioned components

(attitude, subjective norm and PBC) need to be quantified in some way. Usually, this

is achieved by collecting (or utilizing existing) survey data on the behavior of

interest.

In such surveys, attitudes are typically parameterized by knowledge, awareness and

overall evaluation of the topic, and can be quantified by measuring (dis)agreement

with specific statements related to the topic.

The parameterization of subjective norm typically includes data on the number of

people in a social circle (e.g. friends, neighbors, family) who have already

implemented the behavior of interest, and individual perceptions of the

expectations of these peers regarding the particular action. In, ABMs the subjective

norm can be updated endogenously as simulation unfolds and the number of agents

pursuing or abandoning the action changes.

Survey data informing the PBC component describes financial constraints (e.g.

payback period; whether one has sufficient savings or income to fund an action; the

benefit/cost ratio of (not) performing the action), information (e.g. objective vs.

biased information about technical specification or costs of an action), questions on

self-efficacy (to what extent one believes to be able to perform the action) and past

experience. Although frequently measured in surveys, the latter two are rarely

included in formalizations of TPB in agent-based models.

References

[1] Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and

human decision processes, 50(2), 179-211. https://doi.org/10.1016/0749-

5978(91)90020-T

[2] Weinstein, N. D., Rothman, A. J., & Nicolich, M. (1998). Use of correlational data

to examine the effects of risk perceptions on precautionary behavior. Psychology

and Health, 13(3), 479-501. https://doi.org/10.1080/08870449808407305

[* Optional] Scale

As TPB describes a decision-making process, it may operate on any scale in which

choices by individual agents are relevant. It is thus scale-agnostic for spatial scale.

For its temporal extent it is important to note that the interval between deliberation

moments should be realistic (e.g. considering adopting energy-efficient technologies

like solar panels on a daily basis does not make sense; one or several timesteps per

year would be a more realistic time scale). Of course, the total temporal extent of

the ABM should follow the same reasoning and should match the timestep intervals.

 Detailed specification

Input description

Any implementation of TPB in an agent-based model includes (at least) the following

input factors:

https://doi.org/10.1016/0749-5978(91)90020-T
https://doi.org/10.1016/0749-5978(91)90020-T
https://doi.org/10.1080/08870449808407305

10

1. Attitude towards the behavior

2. Subjective norm

3. Perceived behavioral control (PBC)

In addition, for some applications, and if data is available, the following factors may

be included:

1. Self-efficacy (which may be included in the PBC component)

2. Past experience or behavior

Output description

Level of interactions

Single Agent

Agent definition

Agent type: Household

Description: A typical TPB process in an ABM parameterizes its three core

components (attitude, subjective norm and PBC) as agents' attributes, where the

agents typically represent households or individual people. These three factors form

the input for the TPB process that computes the agents' intention to take action,

which is in turn translated to a binary decision to take action or not.

Attributes:

• attitude

• subjective norm

• PBC

Functions:

• compute intention

• take action (yes/no?)

Part 2: RBB ‘Implementation’

Description

This implementation of the TPB building block in the Energy ABM, where TPB represents the

decision-making process of households in the Netherlands that consider installing PV panels.

In this example implementation, TPB is formalized as a sequence of several processes. First,

agents compare the (expected) utility of installing PV panels to the (expected) utility of not

installing PV panels, which informs their intention to take action (or not). These utility

functions are weighted averages of the TPB components - attitude, subjective norm and

PBC.

The attitudes of the agents towards PV panels are parameterized using survey data on PV

panel installation in the Netherlands (see link to the published material for more information

on the survey).

The same survey data provides the weights for each of the input factors of the utility

function(s).

11

It is assumed that subjective norms stem from social norms. The social norms in this model

are formalized as the fraction of connections in an agent's social network (representing

friends, family, neighbors) that have already installed PV panels. These social norms are

dynamic: they are updated every timestep as PV uptake increases.

In the Energy ABM, it is assumed that PBC represents only financial constraints. It is

formalized as an individual cost-benefit analysis of installing PV panels: every agent

computes the Net Present Value (NPV) for installing PV panels (based on an expected

payback time) as well as for doing nothing.

After computing an agent's intention to take action, a probabilistic barrier is added to

represent the intention-behavior gap.

 Process flow (Flow chart)

Notes

This flow chart represents the implementation of TPB in the Energy ABM. The

subjective norms are formed by endogenous (dynamic) social norms arising from the

https://en.wikipedia.org/wiki/Net_present_value

12

behavior of other agents. PBC is computed as the Net Present Value (cost-benefit

analysis) of installing PV panels or doing nothing. Attitudes and weights are static

and paramterized using survey data. Together, they contribute to the agent's

(expected) utility of taking action or not.

After computing the utility for both taking action (installing PV panels) and doing

nothing, the agent compares the two. If the utility of doing nothing is higher, the

agent does not take action. If the utility of installing PV panels is higher, however,

the agent considers - has the intention to - taking action. Before actually taking

action, some stochasticity is added to represent the intention-behavior gap. Thus,

some agents with the intention to take action actually do so, others don't.

 Parameters and output

 Input to RBB:

1. Behavior of others

2. Attitude

3. Weights

Output of RBB

1. Binary decision to take action

Position in an ABM

 Pseudocode

function TPB(agent):
get attitude, social norm from agent
PBCaction ← NPVaction(expected costs, expected benefits)
PBCno_action ← NPVno_action(expected costs, expected benefits)
utilityaction ← weighted function of attitude, social_norm and PBCaction
utilityno_action ← weighted function of -attitude, social_norm and PBCno_action
if utilityaction > utilityno_action then

barrier passed? ← Draw Bernoulli(pbarrier)
if barrier passed? then

take action? = True

13

else
take action? = False

end if
else

take action? = False
end if

return take action?

 Reusable code block

Programming language: Python

MIT LICENSE Copyright (c) 2025 Tatiana Filatova, Liz Verbeek

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions: The above copyright
notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

-*- coding: utf-8 -*-
"""
@author: e.verbeek@tudelft.nl
Python implementation of Theory of Planned Behavior for household decision-making. This code contains a
Household class employing the TPB decision-making module described by this building block. In addition, it
includes code for a Model class required to implement TPB decision-making in an agent-based model.

"""

import numpy as np

from scipy.stats import bernoulli
from mesa import Model
from mesa import Agent
from mesa.time import RandomActivation

class TPB_Model(Model):
 """Model class. """

 def __init__(self, n_households, n_connections, HH_TPB_weights, attitudes,
 measure_benefits, measure_costs):
 """Initialization of an ABM employing TPB as decision-making module.

 Args:
 n_households (int) : Number of households
 n_connections (int) : Number of social connections per household

mailto:e.verbeek@tudelft.nl
mailto:e.verbeek@tudelft.nl

14

 HH_TPB_weights (list) : Homogeneous weights for TPB function
 attitudes (list) : HH attitude towards taking action
 measure_benefits : Estimated yearly benefits of taking action
 measure_costs : Estimated yearly costs of taking action
 """

 # Keep track of agent IDs and number of households
 self.current_id = 0
 self.n_households = n_households
 # Add schedule. The type of schedule can be chosen by the user
 self.schedule = RandomActivation(self)

 # Save TPB weights (homogeneous)
 self.HH_TPB_weights = HH_TPB_weights
 # Initialize households
 for n in range(n_households):
 hh = Household(self, attitudes[n], measure_benefits[n], measure_costs)
 self.schedule.add(hh)
 # Add social connections (randomly select n)
 for hh in self.schedule.agents:
 others = [HH for HH in self.schedule.agents if HH != hh]
 hh.connections = np.random.choice(self.schedule.agents, n_connections)

 # Save maximum Net Present Value for normalization
 self.max_NPV = max(max(hh.compute_NPV() for hh in self.schedule.agents))

 # ... other model initialization functions ... #

 def step(self):
 """Model step"""
 self.schedule.step()

 class Household(Agent):
 """Household agent class."""

 def __init__(self, model, attitude, measure_benefits, measure_costs):
 """Initialization of a household agent.

 Args:
 model (Model) : Model containing the household agent
 attitude (list) : Value for attitude towards taking action
 """
 super().__init__(model.next_id(), model)

 self.measure = False
 self.attitude = attitude
 # Parameters for Net Present Value estimation
 # Please note that for simplicity, the costs are homogeneous
 # in this example implementation, while in reality, of course, these
 # usually differ per household and depend on other factors
 self.measure_benefits = measure_benefits
 self.measure_costs = measure_costs

 # ... other Household initialization functions ...

 def TPB(self, TPB_weights, barrier=True, barrier_prob=0.5):
 """Theory of planned behavior for household decision-making.

15

 Args:
 TPB_weights : Vector of predefined weights for PMT function.
 Here, weights are estimated using logistic regression on survey data.
 barrier : Boolean (True/False) to either apply or not apply probabilistic barrier between intention
and action
 barrier_prob : Probability to pass the barrier
 """

 social_norm_action, social_norm_no_action = self.get_social_norm()
 PBC_action, PBC_no_action = self.compute_NPV()
 # Normalize PBC
 PBC_action = PBC_action/self.model.max_NPV
 PBC_no_action = PBC_no_action/self.model.max_NPV
 # Get TPB input vectors
 TPB_vars_action = [self.attitude, social_norm_action, PBC_action]
 TPB_vars_no_action = [-self.attitude, social_norm_no_action, PBC_no_action]

 # Compute utility of taking action or not
 utility_action = TPB_weights @ TPB_vars_action
 utility_no_action = TPB_weights @ TPB_vars_no_action
 if utility_action > utility_no_action:
 # (Optional) Apply probabilistic barrier between intention and action
 if barrier:
 if bernoulli.rvs(barrier_prob) == 1:
 self.measure = True
 # ... other consequences of applying the measure ... #
 else:
 self.measure = True
 # ... other consequences of applying the measure ... #

 return

 def compute_NPV(self, timespan=10, interest_rate=0.05):
 """Compute Net Present Value (NPV) of taking action (or not).

 Args:
 timespan (int) : Number of years to take into account
 interest_rate (float) : Bank interest rate
 """

 # Yearly benefits (assumed these to not change over time)
 benefits = self.measure_benefits
 # Investment costs (only spend in first year)
 costs = np.zeros(timespan)
 costs[0] = self.measure_costs
 # Discount rates are typically based on bank interest rate
 timesteps = np.linspace(0, timespan - 1, timespan)
 discount_rates = (1 + interest_rate)**timesteps

 # Compute Net Present Value
 NPV_measure = sum((benefits - costs) / discount_rates)
 NPV_not_measure = sum((costs - benefits) / discount_rates)

 return NPV_measure, NPV_not_measure

 def get_social_norm(self):

16

 """Update household social norm based on actions of social connections"""

 # Get number of social connections that have taken measure or not
 taken_measure = sum(hh.measure for hh in self.connections)
 not_taken_measure = sum(not hh.measure for hh in self.connections)

 # Return as fraction of total social connections
 return (taken_measure/len(self.connections), not_taken_measure/len(self.connections))

 def step(self):
 """Household agent step"""
 self.TPB(self.model.HH_TPB_weights)

To run the model, please specify: n_households (int), HH_TPB weights (list of 3 weights)
attitudes (list of attitude per household), measure_benefits (list), measure_costs (int)
and run the following:
model = TPB_Model(n_households, n_connections, HH_TPB_weights, attitudes,
 measure_beneasure_benefits, measure_costs)
n_steps = 100 for n in range(n_steps): model.step()

Code instructions:
To run this example code, specify the number of households, weights for the TPB building block (list of 3),
attitude values for all households, a list of the financial benefit of implementing the measure per agent (this
can also be determined endogenously in the model) and the costs of implementing the measure.

 Agent-based model
 Model name: Energy ABM
Model description:
The TPB building block is employed in the Energy ABM for household decision-making on PV panel installation.
This model can be used to estimate the uptake of solar panels and resulting changes in greenhouse gas
emissions (GHG) in the Netherlands.
In the model, three household decision-making modules can be compared: rational decision-making,
behavioral decision-making based on the Theory of Planned Behavior, and behavioral decision-making with
opinion diffusion.
Weblink to model code:
https://github.com/SC3-TUD/PNAS-Simulating-Institutional-Heterogeneity-in-Sustainability-Science
Link to the published material:
https://doi.org/10.1073/pnas.2215674121

Example 2: Opinion Dynamics Model of Social Influence
See the latest version online: https://www.agentblocks.org/rbb/degrootian-opinion-dynamics-

model-of-social-influence

Part 1: RBB ‘Main Description’

 Identifier: Degrootian Opinion Dynamics Model of Social Influence, Thorid Wagenblast

https://github.com/SC3-TUD/PNAS-Simulating-Institutional-Heterogeneity-in-Sustainability-Science
https://doi.org/10.1073/pnas.2215674121
https://www.agentblocks.org/rbb/degrootian-opinion-dynamics-model-of-social-influence
https://www.agentblocks.org/rbb/degrootian-opinion-dynamics-model-of-social-influence

17

 Background and purpose: Often, agent-based modeling is used to model the interaction of

people or households. The attributes of these agents can be factual (e.g., income or location) but can

also contain perceptions and opinions regarding different matters. In the real world, people are

influenced by those around them and change their opinions over time. There are numerous models

describing how opinion transfer happens (see [1] for an overview). This building block can be used to

model the opinion diffusion among agents based on the DeGroot opinion dynamics model [2]. It is

an assimilative social influence model (i.e., opinion differences get reduced) and treats the

individuals or agents exchanging opinions as nodes in a network. The links do not change over time

and a weight is assigned to each link. In the ABM it can be used to model the exchange of continuous

opinions or information of agents that interact within a network or based on proximity.

References:

[1] Flache, A., Mäs, M., Feliciani, T., Chattoe-Brown, E., Deffuant, G., Huet, S., & Lorenz, J. (2017). Models of Social
Influence: Towards the Next Frontiers. Journal of Artificial Societies and Social Simulation, 20(4),
2. https://doi.org/10.18564/jasss.3521
[2] Degroot, M. H. (1974). Reaching a Consensus. Journal of the American Statistical Association, 69(345), 118–
121. https://doi.org/10.1080/01621459.1974.10480137

 Key concepts and definitions: A change in opinion occurs through the influence of those

around us. In an ABM, this means that an agent’s perception attributes are influenced by those it

interacts with. These can be the closest neighbors or connecting nodes within a network.

The Degrootian opinion dynamics model calculates the opinion formation based on one's own and

surrounding opinions, putting a weight on each of them [1]. It can be summarized through

Fij = ∑k
j=1 Fj * pij

where Fij is the new opinion of an agent based on their own opinion and those of others Fj. Each
opinion (own and those of others) has a weight pij assigned to it, denoting the importance given to
the own opinion and the opinions of neighbors or other connections in a network. k denotes the
total number of connections this agent has in their network.
Since people are not expected to change their opinion entirely from one moment to the next, each
agent as a certain basic own trust which represents how much agents trust their own opinion. Some
individuals are more confident in their own opinion, while others attach more value to social expec-
tations. The social expectation is an optional factor that can be included Together, these variables
determine the weights pij assigned to each of the opinions (including one’s own).
In order to implement this model of opinion dynamics in an agent-based model, the values for
the basic own trust (and social expectation) variables should be quantified. To do so, there are two
options:

1. You set the basic own trust (and social expectation) yourself. The basic own
trust should be the same for all agents, the social expectation, if included, can vary
(e.g., drawing from a normal distribution). Both values should be between 0 and 1.

2. You use empirical data to inform these variables. Then, the basic own trust is still
the same for all agents, but their social expectation varies based on answers given
in a survey. Both values should also be between 0 and 1.

 Scale: As opinion dynamics is an inter-agent process, it can operate on any spatial scale. You

might choose to let the interaction happen in relation to spatial scale (e.g., interaction based on

agents being neighbors on a grid), but this does not need to be the case (agents can interact

irrespective of spatial distance).

Regarding the temporal scale: The combination of basic own trust and social

expectation determines how fast the opinions change from step to step. Aligning this with the topic

of interaction makes sense. For example, if your step represents 1 minute, you might want to choose

https://doi.org/10.18564/jasss.3521
https://doi.org/10.1080/01621459.1974.10480137

18

a higher basic own trust/social expectation combination because it is unlikely that people radically

change their opinion from one step to the next, whereas if your step corresponds to multiple years,

a lower basic own trust/social expectation combination might make more sense. This might differ

from opinion to opinion (e.g., political views might change slower than opinions on food

preference).

 Detailed specification

 Input description: An implementation of the Degroot opinion dynamics model

should consider – at least – the following input factors:

• Basic own trust: How much of the opinion the agent always keeps. Determines to some degree
how fast the opinions change.

• Opinion: What opinion of perception is changing?

Optional inputs:

• Social expectation: Agent-specific variation of how much of their opinion they keep. Only makes
sense to include when wanting different weights assigned between agents. Collected in survey
through a question like “Do your family, friends and/or social network expect you to ...?”

• Other opinions: You need at least one opinion/perception that you want to update through so-
cial interaction but can opt for a multitude.

 Output description: The output of the opinion dynamics implementation would be

the adjusted opinion of the agents.

 Level of interactions: Multiple agents (same type)

Agent type: Household, Individual

This RBB describes agents that exchange and adjust opinions or perceptions such as households or

individuals.

Attributes:
• Basic own trust, social expectation, perception/opinion value, interacting agents

Functions:
• Get other opinions, update opinion

•

Part 2: RBB ‘Implementation’

 Process flow (Flow chart)

19

 Input and output

 Input

1. Basic own trust

2. Social expectation

3. Opinion/perception

 Output

1. Updated opinion/perception

 Position in an ABM

Sequence Diagram

 Pseudocode

function UPDATE_OPINION():
compute influence weights from basic own trust and social expectation
get agent connections
compute worryothers from agent connections
compute Δworry from influence weights, worryothers
update worryown by Δworry

end function

 Reusable code block

20

Code: PYTHON

MIT LICENSE
Copyright (c) 2024 Thorid Wagenblast

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “Software”), to deal in the Software without restriction, includ-
ing without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is furnished to do so, sub-
ject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICU-
LAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLD-
ERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CON-
TRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

-*- coding: utf-8 -*-
"""
@author: t.wagenblast@tudelft.nl
"""
import random
import numpy as np
from mesa import Model
from mesa import Agent
from mesa.time import RandomActivation

class OD_Model(Model):
 """Agent-based model employing opinion diffusion in a social network."""

 def __init__(self, n_households, n_connections):
 """Model initialization

 Args:
 n_households : Number of households
 n_connections : Number of social connections per household
 """

 # Keep track of agent IDs and number of households
 self.current_id = 0
 self.n_households = n_households
 # Add schedule; the type of schedule can be chosen by the user
 self.schedule = RandomActivation(self)

 # Initialize households
 for i in range(n_households):
 hh = Household(self,
 worry=random.random(),
 social_expectation=random.random(),

21

 basic_own_trust=0.5)
 self.schedule.add(hh)

 # Create social network
 for hh in self.schedule.agents:
 others = [household for household in self.schedule.agents
 if household != hh]
 hh.social_connections = np.random.choice(others, n_connections,
 replace=False)

 # ... other model initialization functions ... #

 def step(self):
 """Model step."""
 self.schedule.step()

class Household(Agent):
 """Household agent."""

 def __init__(self, model, worry, social_expectation, basic_own_trust=0.5):
 """Initialization of a household agent.

 Args:
 model (Model) : Model containing the household agent
 worry (float) : Worry value, may change over time
 social_expectation (float) : Weight assigned to opinion of others
 basic_own_trust (float) : Weight assigned to own opinion
 (default = 0.5).
 """
 super().__init__(model.next_id(), model)

 # Perception value that changes through the opinion diffusion
 self.worry = worry

 # Calculate trust into other (i.e. weight assigned to opinion of others)
 self.trust_in_others = (social_expectation * (1 - basic_own_trust))
 self.trust_in_oneself = 1 - self.trust_in_others

 # Social connections are created after all households are initialized
 self.social_connections = []

 def get_other_opinions(self, attribute):
 """Get opinions of agents' social connections.

 Args:
 attribute (string) : Attribute to collect opinions for
 """
 return [getattr(hh, attribute) for hh in self.social_connections]

 def update_opinion(self, attribute, other_opinions):

22

 """Get new opinion from influence of social network.

 Args:
 attribute (string) : Attribute influenced by social network
 other_opinions (list) : Opinions of others
 """

 # Update household's current opinion
 old_value = getattr(self, attribute)
 social_influence = sum((np.array(other_opinions) * self.trust_in_others)
 / len(other_opinions))
 new_value = old_value * self.trust_in_oneself + social_influence

 # Update own opinion
 setattr(self, attribute, new_value)

 def step(self):
 """Household step."""

 # Update household worry value
 other_opinions = self.get_other_opinions("worry")
 self.update_opinion("worry", other_opinions)

 # ... other Household step functions ...

n_households = 1000
n_connections = 7
model = OD_Model(n_households, n_connections)

steps = 50
for i in range(steps):
 print("STEP", i+1)
 model.step()

 Agent-based model: Social Influence in Private Adaptation ABM

 Model description: This model explores the uptake of flood adaptation measures of

households under the influence of social interaction.

The idea is to see how different network structures (Barabasi-Albert scale-free network, Watts-

Strogatz small-world network, and Erdös-Renyi random network) and the exchange of different

perceptions regarding flood adaptation impact the adaptation uptake and damage figures over a

larger area.

 Model code: https://github.com/thoridw/SIPAABM

 Published material: http://dx.doi.org/10.2139/ssrn.4763672

Example 3: Agent Expectation Formation
See the latest version online: https://www.agentblocks.org/rbb/agent-expectation-formation

https://github.com/thoridw/SIPAABM
http://dx.doi.org/10.2139/ssrn.4763672
https://www.agentblocks.org/rbb/agent-expectation-formation

23

Part 1: RBB ‘Main Description’

 Identifier: “Agent Expectation Formation”, Nicholas R. Magliocca

 Background and purpose:

The purpose of the Agent Expectation Formation RBB is to represent a set of

competing, simplified mental models individual agents can use to form expectations

of future states of interest. This form of expectation formation is consistent with

bounded rationality and relies on inductive reseasoning (Arthur, 1994). This mode of

expectation formation assumes that agents can observe and learn from past states

but may not have complete information of all past states. The conceptual basis for

these expectation formation models was described in the El Farol Bar problem

(Arthur, 1994) and was designed to predict the number of attendees at a future time

based on past attendance information. This was subsequently adapted to form

expectations of future stock prices in applications of the Santa Fe Institute's artifical

stock market (LeBaron et al., 1999). The generalized formalization of this RBB futher

modifies these expectation models for broader applicability, such as housing prices

(Magliocca et al., 2011, 2014b) and crop prices and yields (Magliocca et al., 2013,

2014a).

 [Optional] Overview figure

 Key concepts and definitions

Expectations of future states are often used to inform decisions in the current time

period. There are many ways to represent expectation formation ranging from

implicit (i.e., assuming the future will replicate the past; e.g., habitual behavior or

reinforcement learning) to explicit (e.g., forecasting; Macal and North, 2005).

Evidence from experimental psychology suggests that expectation formation more

closely resembles bounded rationality (Kahneman, 2003) and relies on heuristics

and/or simple mental models that reside somewhere between the implicit and

explicit extremes (Tversky and Kahneman, 1974). The conceptual structure proposed

by Arthur (1994) uses a set of diverse mental models, or 'ecology of beliefs', in which

no single mental model can remain the most accurate indefinitely because of

stochasticity, emergent dynamics, and/or strategic behaviors inherent in complex

adaptive systems.

Scale: In principle, the spatial and temporal scales of applicability of this RBB are not

constrained, because an agent may have access to historical information that was

not directly observed. However, if the implementation considers only direct

observation/experience with whatever is being predicted, there are implicit

assumptions about the cognitive capacities of decision-makers that would likely limit

the temporal extent of implementation to those that decision-makers could be

plausibly recalled.

 Detailed specification

Input description: Inputs to this RBB include: 1) directly sensed or otherwise

observed past states of the metric being predicted; 2) time horizons for considering

past information; and 3) stored and evaluated performances of individual prediction

models to select the best performing prediction model at each time step.

24

Output description: The output of the RBB is an expectation of the future state of a

metric of interest in time t+1.

 Level of interactions: Agent(s) and the Environment

Agent definition: Individual or household

An agent is given a set of twenty prediction models. Each prediction model may

use one of six different prediction methods, and there may be more than one

model applying the same prediction method in the agent’s set of twenty models.

Some of these prediction methods map past and present metrics into the next

period using various extrapolation methods. Other methods translate changes

from only last period’s metrics to next period’s metrics.

Attributes:

1. Time horizon (i.e., memory)

2. unique set of prediction models

3. model performance update rate

Functions:

1. Observe past information

2. evaluate prediction model performance

select most successful model

Part 2: RBB ‘Implementation’

Description: In this implementation, housing developers and farmers make pricing
decisions informed by expectations of future housing and land prices, respectively.
Adapted from price expectation models used in agent-based financial literature (e.g.
Arthur, 1994, 2006; Axtell, 2005), agents try to predict next period’s price based on
current and past price information. An agent is given a set of twenty prediction models.
Each prediction model may use one of six different prediction methods, and there may
be more than one model applying the same prediction method in the agent’s set of
twenty models. Some of these prediction methods map past and present prices (P) into
the next period using various extrapolation methods.

1. Mean model: predicts that P(t+1) will be the mean price of the last x periods of the
agent's memory.

P(t+1) = P(t-x:t)/x;

2. Cycle model: predicts that P(t+1) will be the same as x periods ago (cycle detector).

P(t+1) = P(t-x);

3. Projection model: predicts that P(t+1) will be the least-squares, non-linear trend over
the last x periods.

P(t+1)= aP(ts)2 + bPts + c; where ts is the time span of t-x to t, and a, b, and c are
coefficients of fit.

25

Other methods translate changes from only last period’s price to next period’s price.

4. Mirror model: predicts that P(t+1) will be a given fraction ξ of the difference in this
period’s price, P(t), from last period’s price, P(t-1), from the mirror image around half of
P(t).

P(t+1) = 0.5P(t) + [0.5P(t) - (1 - ξ)(P(t) - P(t-1))];

5. Re-scale model: predicts that P(t+1) will be a given factor ζ of this period’s price
bounded by [0,2].

P(t+1) = ζP(t);

6. Regional model: predicts that P(t+1) is influenced by regional price information
coming from neighboring agents.

For farmers, land prices are a function land scarcity as measured by the number of
remaining farmers, Nf, in the region at time t.

P(t+1) = P(t)(1 - 1/Nf);

For developers, the expected price of house types with size, h, on lot size, l, in a given
neighborhood, Nb, is the mean of prices of house and lots of the same sizesP in adjacent
neighborhoods, Nnei. Nnei are neighbors in the cardinal directions.

P(Nb,h,l,t+1) = mean{P(Nnei,h,l,t)};

All models in the agent’s set of prediction models are used to predict the price in the
next time period (P(t+1)). In time t+1, the actual price is known and an error squared is
calculated for each model by squaring the difference between the predicted price and
the actual price. The prediction model with the least error is used to make the agent’s
pricing decisions in the current period. This same process of prediction and evaluation is
used every period so that the most successful prediction model is used every time.

 Process flow (Flow chart)

26

 Input and output

 Input

• Current price

• Past prices
 Output:

• Expected price

 Position in an ABM

 Pseudocode

function assign price prediction models():

number of price prediction models ← 20

assign type of each price prediction model from random number 1:6

assign agent memory from random number 1:10

end

27

function predict price():

compute current model errors from current price compared to expected price

model error ← current model error + past model error

compute expected prices from price prediction models and agent memory

select prediction of model with lowest model error

expected price ← prediction of best performing price prediction model

end

 Reusable code block

%%%%%%%%%%%%%% Agent Expectation Formation %%%%%%%%%%%%%%%

Nagents=100; %example agent population

TSTART=10; %end of spin-up period

TMAX=30; %total number of time steps

NUMMODEL=20; %Number of prediction models per agent

PRODCLASS=6; %number of yield prediction model types

PRICECLASS=5; %number of price prediction model types

MAXMEANMODEL=10; %maximum time steps into the past to calculate mean

MAXCYCLEMODEL=10; %maximum time steps into the past to calculate cycle

MAXPROJECT=10; %maximum time steps into the past to calculate trend

DELTA=0.6;

priceproj=zeros(Nagents,TMAX); %{[iown,NUMMMODEL] Nuse}

priceerror=zeros(Nagents,TMAX); %cumulative model error

ipricebestSAVE=zeros(Nagents,TMAX); %index of best performing model

ExptPrice=zeros(Nagents,TMAX); %prediction of best performing model

pricemodelSAVE=zeros(Nagents,TMAX); %best performing model

%%% Price EXPECTATIONS

pricemodel = ceil(PRICECLASS*rand(Nagents,NUMMODEL)); %full heterogeneity

priceclass1=find(pricemodel == 1);

priceclass2=find(pricemodel == 2);

priceclass3=find(pricemodel == 3);

priceclass4=find(pricemodel == 4);

priceclass5=find(pricemodel == 5);

priceclass6=find(pricemodel == 6);

% Initialization

bb = zeros(Nagents,NUMMODEL,'single');

%Price models

for i = 1:PRICECLASS

 if i == 1 % mirror model

bb(priceclass1) = rand(1); % fraction that pred is away from 1/2 from mirror image

28

 elseif i == 2 % mean model

bb(priceclass2) = ceil(MAXMEANMODELrand(length(priceclass2),1));

 elseif i == 3 %cycle model

bb(priceclass3) = ceil(MAXCYCLEMODELrand(length(priceclass3),1));

 elseif i == 4 % projection model

bb(priceclass4) = ceil(2+((MAXPROJECT-1)-2)rand(length(priceclass4),1));

 elseif i == 5 % rescale model

bb(priceclass5) = 2rand(length(priceclass5),1);

 elseif i == 6 %regional trends

bb(prodclass6) = ceil(MAXMEANMODEL*rand(length(priceclass6),1));

 end

end

% Dynamics

for t=TSTART+1:TMAX

 for n=1:Nagents

 ipriceclass1=find(pricemodel(n,:)==1);

 ipriceclass2=find(pricemodel(n,:)==2);

 ipriceclass3=find(pricemodel(n,:)==3);

 ipriceclass4=find(pricemodel(n,:)==4);

 ipriceclass5=find(pricemodel(n,:)==5);

 ipriceclass6=find(pricemodel(n,:)==6);

 for i = 1:PRICECLASS

 if i == 1 % mirror models

 priceproj(n,ipriceclass1) = priceproj(n,t)+(1-bb(n,ipriceclass1)).*

(0.5*priceproj(n,t)-(priceproj(n,t)-priceproj(n,t-1)));

 elseif i == 2 % mean model

 for jl = 1:length(ipriceclass2)

 priceproj(n,ipriceclass2(jl)) = mean(priceproj(n,t:-1:(t-bb(n,ipriceclass2(jl)))));

 end

elseif i == 3 %cycle model

 priceproj(n,ipriceclass3) = priceproj(n,t-round(max(1,bb(n,ipriceclass3))));

elseif i == 4 % projection model

 for jl = 1:length(ipriceclass4) %Nonlinear Forecast

 indata=priceproj(n,t-(1+bb(n,ipriceclass4(jl))):t);

 pcoef=polyfit(1:length(indata),indata,1);

 pline=pcoef(1).*(1:length(indata)+1)+pcoef(2);

 priceproj(n,ipriceclass4(jl))=pline(length(pline));

 end

elseif i == 5 % rescale model

 priceproj(n,ipriceclass5) = bb(n,ipriceclass5)*priceproj(n,t);

elseif i == 6 % local(0) or regional(1) trends

 ipricelocal=(bb(n,ipriceclass6)==0);

 ipricereg=(bb(n,ipriceclass6)==1);

 if isempty(Nagents)==1

break

 end

 priceproj(n,ipriceclass6(ipricelocal)) = priceproj(n,t).*(1+1/length(Nagents));

29

end

 end

 end

 priceerror(n,:) = (1-DELTA)*priceerror(n,:)+DELTA*abs(priceproj(n,t)-priceproj(n,:));

 [pricebest,ipricebest] = min(priceerror(n,:),[],2);

 ipricebestSAVE(n,t) = ipricebest;

 pricemodelSAVE(n,t) = pricemodel(n,ipricebest);

 ExptPrice(n,t+1) = priceproj(n,ipricebest);

end

Agent-based model

 Model description: The overall purpose of this model is to explore how feedbacks

between housing and land markets influence the conversion of undeveloped land

(e.g., agriculture) to residential housing. The agent-based model (ABM) presented

here is a version of the CHALMS model (Magliocca et al., 2011, 2012) that has been

adapted to a coastal landscape subject to uncertain impacts from coastal storms (C-

CHALMS). The goal of the model is not to simulate the development patterns and

market dynamics of any particular location. Rather, the aim is to isolate

psychological and perceptual factors that influence location and adaptation

decisions and their effects on key interactions between housing and land markets

(particularly the timing and proximity to the coast of land conversion. The model

investigates how agent-level decisions and interactions through markets link to

market- and landscape-level outcomes, such as housing and land prices and extent

and configuration of residential development, respectively. Further, the goal is to

understand how residential housing consumers make trade-offs between amenities

and risks of damages from storms given location near the coast, and how those

trade-offs do or do not influence adaptive decisions in response to storms, such as

purchasing insurance and/or relocating to less risky areas.

 Model code: https://github.com/nickmags13/CHALMS_coastal_simple

 Published material: https://doi.org/10.1016/j.compenvurbsys.2018.03.009

https://github.com/nickmags13/CHALMS_coastal_simple
https://doi.org/10.1016/j.compenvurbsys.2018.03.009

30

Appendix D: Criteria for RBB review and instructions for reviewers

RBB ‘Description’ RBB ‘Implementation’

Please provide any specific feedback on the

Reusable Building Block. Consider using the

Reviewer Guide below as an optional guide

and provide your professional reflections.

Your general recommendations for the

improvement of the description of the RBB

are very welcome. Thank you very much for

your time and remember:

• Clarity of Description: Please reflect

briefly whether the author has

clearly explained the motivation

behind the RBB, its theoretical

underpinning and its purpose.

• Clarity of Assumptions: Do the

authors sufficiently explain the

assumptions that underlie this RBB?

• Potential Reusability: From your

point of view, can this RBB be used

in other models and/or in other

application domains? Feel free to

note which ones.

• Novelty: Does the RBB describe an

original (not yet existing in the

database) component of an ABM?

Please provide any specific feedback on the

Reusable Building Block. Consider using the

Reviewer Guide below as an optional guide and

provide your professional reflections. Your general

recommendations for the improvement of the

implementation of the RBB are very welcome.

Thank you very much for your time and remember:

• Modularity: Briefly explain whether the

described RBB is sufficiently modular.

Would it be more usable if its scope were

narrower or broader, or is the current level

of modularity appropriate?

• Clarity and Logic: Can this RBB be used in

other (agent-based) models based on the

provided implementation (in terms of

algorithm, pseudo-code, and/or access to

the simulation program itself). Specifically:

o Are the inputs/outputs clearly

specified?

o Is the provided algorithm/pseudo-

code organized and logical?

• Reusability in other ABMs: Please assess

whether the provided implementation

code is usable as a part in other (agent-

based) models.

o Is the provided code

implementation organized and

logical?

o To what extent does the

implementation code help

understand how the RBB can be

used in an ABM?

o Check if the diagram describing

the place of RBB in the full ABM is

easy to follow.

• Weblinks: Is the link to the full ABM using

this RBB provided? Does it work?

