

Appendix H: Agent-Based Model Pseudo Code

This appendix provides essential pseudocode for the agent-based model implementation.
Keywords are in UPPERCASE, indentation denotes scope, and // begins comments.

Global Parameters and Initialization

``` 

// Simulation constants 

SIM_DURATION_YEARS ← 3                    // Jan 2011 - Jan 2014 

DAYS_PER_MONTH ← 30 

DAYS_PER_PREGNANCY ← 270 

NUM_FACILITIES ← 3                        // Facilities A, B, C 

 

// Key probabilities (calibrated) 

P_PREGNANT_MONTHLY ← 0.025               // Monthly conception rate 

P_LOST_PREGNANCY ← 0.20                  // Miscarriage/stillbirth 

P_DELIVERY_COMPLICATION ← 0.46           // Delivery complication 

 

// Behavioral modifiers (calibrated) 

M_FACILITY_EXP ← 0.30                    // Facility experience weight 

M_HOME_EXP ← 0.00                        // Home experience weight 

M_SOCIAL ← 0.35                          // Social influence weight 

M_TBA ← 0.35                             // TBA incentive weight 

 

PROCEDURE initializeSimulation(seed) 

    RNG.setSeed(seed) 



 

    tDay ← 0, tMonth ← 1 

     

    // Create 3 facilities with baseline attributes from data 

    FOR facilityID IN {"A", "B", "C"} DO 

        facility ← loadFacilityData(facilityID) 

        \\calibrated capacity based on nominal beds 

        facility.capacity ← facility.bedsNominal + 3 

        ADD facility TO facilities 

    END FOR 

     

    // Generate women population (1,866 total) 

    FOR facility IN facilities DO 

        numWomen ← calculateCatchmentSize(facility) 

        FOR i ← 1 TO numWomen DO 

            woman ← new Woman 

            woman.assignedFacility ← facility 

            sampleDemographics(woman , facility.id)  // Table 3 distributions 

            IF RNG.uniform() < 0.15 THEN woman.state ← PREGNANT 

            ELSE woman.state ← NON_PREGNANT 

            buildSocialNetwork(woman , 5)  // 5 peers per woman (calibrated) 

            ADD woman TO women 

        END FOR 

    END FOR 

     

    manager ← new DistrictManager(facilities) 

END PROCEDURE 



 

``` 


Main Simulation Loop

``` 

PROCEDURE runSimulation() 

    WHILE tDay < SIM_DURATION_YEARS * 365 DO 

        // Daily agent updates 

        FOR woman IN women PARALLEL DO 

            advanceWomanState(woman) 

        END FOR 

         

        // Monthly events 

        IF (tDay + 1) MOD DAYS_PER_MONTH == 0 THEN 

            processMonthlyEvents() 

        END IF 

         

        tDay ← tDay + 1 

    END WHILE 

END PROCEDURE 

 

PROCEDURE advanceWomanState(woman) 

    SWITCH woman.state 

        CASE NON_PREGNANT: 

            IF RNG.bernoulli(P_PREGNANT_MONTHLY / DAYS_PER_MONTH) THEN 

                woman.state ← PREGNANT 

                woman.daysInState ← 0 



 

            END IF 

             

        CASE PREGNANT: 

            IF woman.daysInState >= DAYS_PER_PREGNANCY THEN 

                deliveryProbability ← computeDeliveryChoice(woman) 

                IF RNG.uniform() < deliveryProbability THEN 

                    processFacilityDelivery(woman) 

                ELSE 

                    processHomeDelivery(woman) 

                END IF 

            ELSE IF RNG.bernoulli(P_LOST_PREGNANCY/DAYS_PER_PREGNANCY) THEN 

                woman.state ← NON_PREGNANT  // Pregnancy loss 

            END IF 

             

        CASE POSTPARTUM , COMPLICATION_*: 

            IF woman.daysInState >= 42 THEN 

                woman.state ← NON_PREGNANT 

            END IF 

    END SWITCH 

    woman.daysInState ← woman.daysInState + 1 

END PROCEDURE 

``` 


Delivery Decision Model

``` 

FUNCTION computeDeliveryChoice(woman) RETURNS float 



 

    facility ← woman.assignedFacility 

     

    // Logistic regression (Binyaruka et al. model) 

    X ← [woman.education , woman.previousPregs , woman.ancVisits4Plus , 

         woman.travelTime , facility.drugAvailability , facility.kindness , 

         facility.interpersonalQuality , facility.outOfPocketCosts , 

         computeOccupancyFactor(facility)] 

     

    linearPredictor ← DOT_PRODUCT(X, LOGIT_COEFFICIENTS) 

    baseProbability ← EXP(linearPredictor) / (1 + EXP(linearPredictor)) 

     

    // Apply behavioral modifiers 

    socialInfluence ← computeSocialInfluence(woman.socialPeers) 

    modifierSum ← woman.facilityExp * M_FACILITY_EXP + 

                  woman.homeExp * M_HOME_EXP + 

                  socialInfluence * M_SOCIAL + 

                  facility.tbaIncentives * M_TBA 

     

    // Scaling transformation 

    IF modifierSum < 0 THEN 

        finalProbability ← baseProbability * (1 + modifierSum) 

    ELSE 

        finalProbability ← baseProbability * 

                          (1 + modifierSum * (1 - baseProbability)) 

    END IF 

     



 

    RETURN CLAMP(finalProbability , 0, 1) 

END FUNCTION 

 

PROCEDURE processFacilityDelivery(woman) 

    facility ← woman.assignedFacility 

     

    // Check capacity 

    IF facility.bedsOccupied >= facility.capacity THEN 

        processOutOfSystemDelivery(woman) 

        RETURN 

    END IF 

     

    // Process delivery 

    facility.bedsOccupied ← facility.bedsOccupied + 1 

    facility.birthsInFacilityMonth ← facility.birthsInFacilityMonth + 1 

    facility.birthsCatchmentMonth ← facility.birthsCatchmentMonth + 1 

     

    // Update woman experience based on service quality 

    experienceScore ← 0.4 * facility.drugAvailability + 

                     0.4 * facility.kindness + 0.2 * facility.gifts 

    woman.facilityExp ← IF RNG.uniform() < experienceScore THEN +1 

                           ELSE -1 

     

    // Handle complications 

    IF RNG.bernoulli(P_DELIVERY_COMPLICATION) THEN 

        woman.state ← COMPLICATION_FACILITY 



 

        facility.complicationReferrals ← 

                                   facility.complicationReferrals + 1 

    ELSE 

        woman.state ← POSTPARTUM 

    END IF 

    woman.daysInState ← 0 

END PROCEDURE 

``` 


Monthly Events and P4P Implementation

``` 

PROCEDURE processMonthlyEvents() 

    // Update facility metrics 

    FOR facility IN facilities DO 

        updateFacilityOccupancy(facility) 

        resetDailyCounters(facility) 

    END FOR 

     

    // P4P performance evaluation (every 6 months) 

    IF tMonth IN {6, 12, 18, 24, 30, 36} THEN 

        evaluatePerformance() 

    END IF 

     

    // Bonus payments (3 months after evaluation) 

    IF tMonth IN {9, 15, 21, 27, 33, 39} THEN 

        processBonusPayments() 



 

    END IF 

     

    // District manager visits (every 3 months) 

    IF tMonth MOD 3 == 0 THEN 

        processManagerVisits() 

    END IF 

     

    tMonth ← tMonth + 1 

END PROCEDURE 

 

PROCEDURE evaluatePerformance() 

    FOR facility IN facilities DO 

        // Calculate 6-month facility-based delivery rate 

        currentFB ← SUM_LAST_6_MONTHS(facility.birthsInFacility) / 

                   SUM_LAST_6_MONTHS(facility.birthsCatchment) 

        previousFB ← facility.lastPeriodFB 

        indicator ← currentFB - previousFB 

         

        // Determine bonus target (Equation 2) 

        IF previousFB < 0.2 THEN target ← 0.15 

        ELSE IF previousFB < 0.4 THEN target ← 0.10 

        ELSE IF previousFB < 0.85 THEN target ← 0.05 

        ELSE target ← 0.0  // Maintain performance 

         

        // Award bonus 

        IF indicator >= target THEN 



 

            facility.bonusEarned ← 1.0 

        ELSE IF indicator >= 0.75 * target THEN 

            facility.bonusEarned ← 0.5 

        ELSE 

            facility.bonusEarned ← 0.0 

        END IF 

         

        facility.lastPeriodFB ← currentFB 

    END FOR 

END PROCEDURE 

 

PROCEDURE processBonusPayments() 

    FOR facility IN facilities DO 

        IF facility.bonusEarned > 0 AND NOT facility.bonusDelayed THEN 

            applyBonusEffects(facility , facility.bonusEarned) 

        ELSE IF facility.bonusDelayed THEN 

            applyDelayEffects(facility)  // Deterioration during delays 

        END IF 

    END FOR 

END PROCEDURE 

 

PROCEDURE applyBonusEffects(facility , bonusAmount) 

    SWITCH bonusAmount 

        CASE 1.0:  // Full bonus 

            facility.drugAvailability ← 1.0 

            facility.kindness ← MAX(facility.kindness , 0.9) 



 

            facility.interpersonalQuality ← 1.0 

            facility.outOfPocketCosts ← facility.outOfPocketCosts * 0.8 

            facility.tbaIncentives ← 1 

            facility.outreachActive ← 1 

            facility.gifts ← 1 

             

        CASE 0.5:  // Half bonus 

            facility.drugAvailability ← 

                                MAX(facility.drugAvailability , 0.8) 

            facility.kindness ← MAX(facility.kindness , 0.8) 

            facility.interpersonalQuality ← 

                    MAX(facility.interpersonalQuality , 0.8) 

            facility.outOfPocketCosts ← facility.outOfPocketCosts * 0.9 

            facility.tbaIncentives ← 1 

            facility.outreachActive ← RNG.bernoulli(0.5) 

    END SWITCH 

END PROCEDURE 

``` 


District Manager Activities

``` 

PROCEDURE processManagerVisits() 

    FOR facility IN facilities DO 

        // Motivational boost (50% chance) 

        IF RNG.bernoulli (0.5) THEN 

            facility.kindness ← MIN(facility.kindness + 0.10, 1.0) 



 

            facility.interpersonalQuality ← MIN(facility.IPQ + 0.10, 1.0) 

            scheduleReversion(facility , tDay + 45)  // Temporary effect 

        END IF 

         

        // Mitigate payment delays 

        IF facility.bonusDelayed THEN 

            restorePreDelayLevels(facility) 

        END IF 

         

        // Drug sharing between facilities 

        IF facility.drugAvailability < 0.5 THEN 

            donor ← findDonorFacility(facilities , 0.6)  // Above 60% 

            IF donor != NULL THEN 

                transferAmount ← 0.10 

                donor.drugAvailability ← 

                            donor.drugAvailability - transferAmount 

                facility.drugAvailability ← 

                            facility.drugAvailability + transferAmount 

            END IF 

        END IF 

         

        // Share best practices (if facility earned bonus) 

        IF facility.bonusEarned > 0 THEN 

            adoptBestPractices(facility , facilities) 

        END IF 

    END FOR 



 

END PROCEDURE 

``` 


Model Execution and Output

``` 

// Main execution loop for multiple replications 

FOR replication ← 1 TO 500 DO 

    seed ← MASTER_SEED + replication 

    initializeSimulation(seed) 

    runSimulation() 

    collectOutputs(replication) 

    cleanupMemory() 

END FOR 

 

// Key outputs collected monthly for each facility: 

// - Facility-based delivery rate 

// - Drug availability , kindness , interpersonal quality 

// - Out-of-pocket costs , occupancy rate 

// - Bonus payments and delays 

// - Manager interventions (drug sharing , strategy sharing) 

 

// Scenario analysis 

scenarios ← ["No_P4P", "P4P_with_delays", "P4P_without_delays", 

             "P4P_no_manager_visits"] 

FOR scenario IN scenarios DO 

    configureScenario(scenario) 



 

    runMultipleReplications(500) 

    calculateScenarioStatistics() 

END FOR 

``` 


