
On the Scalability of Social Order

–

Modeling the Problem of Double and Multi

Contingency Inspired by Luhmann and Parsons

- APPENDIX -

Peter Dittrich(1), Thomas Kron(2), Wolfgang Banzhaf(3)

(1) Friedrich-Schiller-University of Jena, Institute of Computer Science, D-07743 Jena,
Germany; and Jena Centre for Bioinformatics (JCB)

(2) University of Hagen, Department of Sociology, D-58084 Hagen, Germany
(3) University of Dortmund, Department of Computer Science, D-44221 Dortmund,

Germany

Contents

9 APPENDIX 2
9.1 Interpretation of the Constant cf . 2
9.2 Influence of the Learning Rate . 3
9.3 Single Runs with Many Agents . 3
9.4 Memory Models . 3
9.5 Certainty Measures . 8
9.6 Using the Simulation Software . 10

Journal of Artificial Societies and Social Simulation (JASSS), 2003
http://jasss.soc.surrey.ac.uk/

1

9 APPENDIX

The Appendix contains further details about the model and about the simulation software
that was used for the experiments described in the paper.

9.1 Interpretation of the Constant cf

The constant cf specifies an additive component to the activity value (Eq. (2)). What
does that mean? And how should we set cf?

Assume that we choose proportional selection (γ = 1). In that case the probability that
activity i is selected is proportional to its corresponding activity value wi

AV . Further
assume that for cf = 0 exactly one activity value is 1 and all other activity values are 0.
Let us take an example for N = 4 possible activities:

cf = 0 : w1
AV = 1, w2

AV = 0, w3
AV = 0, w4

AV = 0. (1)

We can see that although we use proportional selection, activity number 1 is always
selected with probability one. Our selection method parameter γ has no influence in that
situation.

If there should be always a non-deterministic (random) influence on the activity selection
process, we have to choose a positive small value for cf . Let us see what happens when
cf is set to 1:

cf = 1 : w1
AV = 1 +

1

4
, w2

AV =
1

4
, w3

AV =
1

4
, w4

AV =
1

4
. (2)

In case of proportional selection the activity probabilities are calculated by normalizing
the activity values:

cf = 1 : w1
AP =

5

8
, w2

AP =
1

8
, w3

AP =
1

8
, w4

AP =
1

8
. (3)

In this case, activity 1 is selected with probability 5/8 = 62.5%, only, and there is a
chance of 3/8 = 37.5% that an “error” occurs.

In general the probability perr that an “error” occurs is

perr = 1−
1 + cf/N

1 + cf

=
c(N − 1)

(1 + c)N
. (4)

If we would like to set cf such that the probability that an error occurs is perr we just
have to rearrange the previous equation:

cf =
Nperr

1−N(1 + perr)
. (5)

The following table shows perr for different settings of N and cf (rounded to two significant
digits):

N = 2 N = 4 N = 10 N = 100 N = 1000
cf = 1 0.25 0.375 0.45 0.50 0.50

cf = 0.1 0.045 0.068 0.081 0.09 0.09
cf = 0.05 0.024 0.036 0.043 0.047 0.047
cf = 0.01 0.005 .0074 0.009 0.010 0.010

cf = 0.001 0.0005 0.00074 0.0009 0.0010 0.0010

2

We can see, when we fix cf and increase the number of possible activities N then also the
probability perr that an “error” occurs increases and converges to

lim
N→∞

perr = 1−
1

1 + cf

. (6)

For the experiments presented here we have chosen cf = 0.01. This means that in a
situation where an agent is as sure as possible what to do and proportional selection is
used, there is a chance of about 1% (0.5 % for N = 2) that a different activity is selected
then the most likely one.

9.2 Influence of the Learning Rate

In Fig. 1 we can see how the average number of different activities in an interval of 50
steps and the average certainty OAV depends on the learning rate rlearn. With increasing
learning rate, the number of different activities decreases, as expected. We can see that
the relative qualitative behavior of the model is independent of the choice of rlearn > 0.
This is especially true for rlearn > 0.2.

9.3 Single Runs with Many Agents

Figure 13 and Fig. 14 show single runs of the multi-agent scenario. They correspond to
the activity networks shown in Fig. 10 and Fig. 11, respectively.

9.4 Memory Models

This section describes additional memory models, which are implemented in our simula-
tion software.

Memory Model 01 - Matrix Memory with Global Forgetting

Representation: The memory is represented by a N × N dimensional matrix (ma,b)
called memory matrix.

Initialization: The matrix is initialized with ma,b = 1/N .

Memorize(a, b): First we reduce every entry in the memory matrix in order to model
forgetting:

∀i, j ∈ {1, . . . , N} : mi,j := γmemmi,j . (7)

Now we increase the entry in the memory matrix given by the index (a,b):

ma,b := ma,b +
N

∑

i,j=1

(1− γmem)mi,j . (8)

Lookup(a, b): Return the normalized entry of the memory matrix:

lookup(M,a, b) =
1

∑N

b=1 ma,b

ma,b. (9)

3

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

av
g.

 n
um

be
r

of
 d

iff
er

en
t a

ct
iv

iti
es

learning rate r_learn

alpha=0.5, N=40, c_f=0.01, r_forget=0.001, mem-model 05, runs=20

gamma=1.0
gamma=1.5
gamma=2.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

av
g.

 c
er

ta
in

ty
 O

_A
V

learning rate r_learn

alpha=0.5, N=40, c_f=0.01, r_forget=0.001, mem-model 05, runs=20

gamma=1.0
gamma=1.5
gamma=2.0

Figure 1: Average number of different messages (activities) in an interval of 50 time
steps for different learning rates rlearna. Measurement started at time step 500, such that
the transient phase at the beginning is not considered. Simulation time 1000 time steps
for each run. Parameter setting: normal learning rate rlearn = 0.2, low forgetting rate
rforget = 0.001, number of activities N = 40, α = 0.5.

4

0
2
4
6
8

10
12
14
16
18

0 500 1000 1500 2000 2500 3000 3500 4000

av
g.

 n
um

be
r

of
 d

iff
er

en
t a

ct
iv

iti
es

time (steps)

N=64 alpha=1.0 gamma=2.0 learnr=0.2 forgetr=0.001 cf=0.010000 egomem

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000

ce
rt

ai
nt

y
O

_A
V

time (steps)

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000sy
st

em
s

le
ve

l o
rd

er
 O

_P

time (steps)

0
10
20
30
40
50
60
70

0 500 1000 1500 2000 2500 3000 3500 4000

ac
tiv

ity

time (steps)

Figure 2: The run corresponding to Fig. 10 of the paper. The graph shown in Fig. 10
has been calculated at time step 4000. Parameters: M = 20 agents, N = 64 activities,
α = 1.0 (expectation-certainty only), γ = 2.0, rlearn = 0.2, rforget = 0.001, cf = 0.010000.
observers = 0.

5

0

2

4

6

8

10

0 500 1000 1500 2000 2500 3000 3500 4000

av
g.

 n
um

be
r

of
 d

iff
er

en
t a

ct
iv

iti
es

time (steps)

N=10 alpha=0.0 gamma=2.0 learnr=0.2 forgetr=0.001 cf=0.010000 altermem

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000

ce
rt

ai
nt

y
O

_A
V

time (steps)

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000sy
st

em
s

le
ve

l o
rd

er
 O

_P

time (steps)

0
1
2
3
4
5
6
7
8
9

10

0 500 1000 1500 2000 2500 3000 3500 4000

ac
tiv

ity

time (steps)

Figure 3: The run corresponding to Fig. 11 of the paper.The graph shown in Fig. 11has
been calculated at time step 4000. Parameters: M = 10 agents, N = 10 activities, α = 0.0
(expectation-expectation only), γ = 2.0 (quadratic selection), learning rate rlearn = 0.2,
forgetting rate rforget = 0.001, cf = 0.010000. Alter-memory used for EE calculation.
observers = 0.

6

Memory Model 02 - Matrix Memory with Local Forgetting

The same as Memory Model 01, but now events of the form (a′, b′) are forgotten only, if
an event (a′, b) is memorized.

Representation: The memory is represented by a N × N dimensional matrix (ma,b)
called memory matrix.

Initialization: The matrix is initialized with ma,b = 1/N .

Memorize(a, b): First we reduce the entries of the memory matrix in row a in order to
model forgetting:

∀j ∈ {1, . . . , N} : ma,j := γmemma,j. (10)

Now we increase the entry in the memory matrix given by the index (a,b):

ma,b := ma,b +
N

∑

j=1

(1− γmem)ma,j. (11)

Lookup(a, b): Return the normalized entry of the memory matrix:

lookup(M,a, b) =
1

∑N

b=1 ma,b

ma,b. (12)

Memory Model 03 - Non-Degenerating Memory

Representation: In the non-degenerating memory past events are stored in a table.
Agents using that memory are able to “remember” the past nmem events.

Initialization: There are two initialization methods: (1) The memory table is filled with
random events (parameter initRandomly =1). (2) The memory table is empty at the
beginning (parameter initRandomly =0).

Memorize(a,b): The operation memorize(M,a, b) just stores the pair (a, b) in the table.

Lookup(a, b): For calculating the result lookup(M,a, b) we do the following steps:

• Calculate the memory matrix (ma,b):

ma,b =
cM

N
+

t
∑

i=t−nmem

{

1 if A[i] = a and B[i] = b,

0 otherwise.
(13)

where t is the current time step. A and B represent the columns of the table where
the events are stored by memorize. (A[i], B[i]) is the entry which has been stored
in the table of the memory at time step i.

• Return the normalized entry of the memory matrix:

lookup(M,a, b) =
1

∑N

b=1 ma,b

ma,b. (14)

7

Memory Model 04 - Linearly Degenerating Memory

Like Memory Model 03, but past events are less important.

In the linearly degenerating memory past events are stored in a table. Agents using that
memory are able to “remember” the past nmem events. The operation memorize(M,a, b)
just stores the pair (a, b) in the table.

The operation lookup is more complicated. For calculating the result lookup(M,a, b) we
do the following steps:

• Calculate the memory matrix (ma,b):

ma,b =
cM

N
+

t
∑

i=t−nmem

nmem − i+ t

nmem

{

1 if A[i] = a and B[i] = b,

0 otherwise.
(15)

where t is the current time step. A and B represent the columns of the table where
the events are stored by memorize. (A[i], B[i]) is the entry which has been stored
in the table of the memory at time step i.

• Return the normalized entry of the memory matrix:

lookup(M,a, b) =
1

∑N

b=1 ma,b

ma,b. (16)

Memory Model 05 - Simple Neuronal Matrix Memory

The simple neuronal matrix memory is used for the experiments the paper and is described
in Sec. 2.2.1 in detail.

9.5 Certainty Measures

Given a vector (p1, p2, . . . , pN) the following functions for calculating the certainty are
implemented:

Shannon Entropy

(Shannon and Weaver 1949)

fcertainty(p1, p2, . . . , pN) = 1 +
N

∑

i=1

pi logN pi. (17)

(This measure is used for the experiments described in this paper.)

Modified Standard Deviation

fcertainty(p1, p2, . . . , pN) =

√

√

√

√

n

n− 1

N
∑

i=1

(
1

N
− pi)2. (18)

8

Maximum

fcertainty(p1, p2, . . . , pN) returns the largest pi.

Variance

fcertainty is equal to the variance.

fcertainty(p1, p2, . . . , pN) = V ar(p1, . . . , pN). (19)

9

9.6 Using the Simulation Software

The simulator is written in C++ and compiles with gcc (in our case version 2.95.2). There
is no graphical user interface yet. (A Java version with GUI is currently under develop-
ment and will be available from our website.) Parameters are specified in a parameter
file or as command line arguments. The result is written to various data files named
<runName>.<suffix> where <runName> is name of the simulation experiment, which can
be set by the user (default: run).

Usage

Call the simulation program using:

luhmann3 -pf <parameter-file-name>

You can also set parameters using command line arguments. Command line arguments
given after the argument -pf <parameter-file-name> overwrite settings in the param-
eter file <parameter-file-name>. Running the simulation creates a bunch of data files
named <runName>.<suffix>. The runName can be set as a parameter.

Example

Here is an example of a simulation experiment with M = 20 agents, which are allowed to
use N = 10 activities. The system is simulated for 1000 single interactions (steps).

luhmann3 -experiment multiWorld -steps 1000 -M 20 -N 10

Output Files

The following log-files are the result of a simulation experiment:

10

file name description
run.adoc Automatic documentation file. Contains the seed of the random

number generator, parameter settings, how the program has been
called, and important messages such as the termination criterion.

run.bm Average behavior matrix at the end of the simulation.
run.bm05 Binary average behavior matrix obtained with cutoff τ = 5% =

0.05.
run.bm10 Binary average behavior matrix obtained with cutoff τ = 10% =

0.10.
run.bm15 Binary average behavior matrix obtained with cutoff τ = 15% =

0.15.
run.bmg The average behavior matrix as a list of nodes and weighted edges,

which can be used for visualization of the communication system.
run.fi Activity values. Every step is represented by one row, which con-

tains the decision values used by the agent acting at that time step.
run.msg Activities which are performed by the agents.
run.op Systems level order measure OAP .
run.status Very detailed status log of the whole memory matrix of each agent.

Switched off by default. Use -writeStatus 1 to switch on.
run.log Main log file for certainty and selected activity (see below).
run.msgstat Message statistics, message diversity (see below).
run.pf A list of parameters, which can be used as a parameter file.

runName.log The most important log-file. Here every step is represented by one row.

column symbol description
2 MAX(wi

AV) the largest activity value of Agent A)
3 fcertainty(wAV) certainty of the activity values of Agent A
4 fcertainty(wAP) certainty of the activity probabilities of Agent A
5 activity selected by Agent A (starting with 0)
6 activity selected by Agent A (starting with 1)
8 max(wi

AV) the largest activity value of Agent B)
9 fcertainty(wAV) certainty of the activity values of Agent B
10 fcertainty(wAP) certainty of the activity probabilities of Agent B
11 activity selected by Agent B (starting with 0)
12 activity selected by Agent B (starting with 1)

runName.msgstat Message statistics. Here the number of different messages which
appear during a time interval is stored. At the end of the file the average is written in
the format: # average 27.2137

So you can get the average number of different messages, e.g., by grep average runName.msgstat.
There are two parameters for the message statistics:

intervalSize 50

startAverage 500

They can be set, as usual, in the parameter file or by command line attributes.

11

Parameter File

The parameter file may look like this:

experiment multiWorld

steps 1000

M 20

N 10

runName run

seed 0

vicinity 0

useAlterMemoryForEE 1

rngNo 0

observers 0

trace 0

depth1 0

depth2 0

alpha 1.000000

cf 0.020000

cM 2.000000

selectionMethod 0

writeLog 1

writeStatus 0

writeOP 1

certainty entropy

memory 05

forgetrate 0.010000

learnrate 0.100000

intervalSize 50

startAverage 500

The parameters have the following meaning:

12

par. name symbol meaningful description
in program in paper values
experiment dyadicWorld

multiWorld

Select the experiment type. In the “dyadic
world” only two agents are present acting al-
ternately. In the “multi world” two or more
agents can be present interacting randomly
(see above).

steps 50 - 10000 Number of simulation steps. One step consists
of one activity selection step.

runName The run name. All output is stored in data
files named <runName>.<suffix>.

N N 2 - 100 Number of activities (messages, symbols).
M M 2 - 100 Number of agents present in the “multi

world”.
observers n 0 - 5 Number of observers.
alpha α 0.0 - 1.0 Fraction of expectation certainty. α = 0.0:

only expectation-expectation (EE) is used
for activity selection. alpha = 1.0: only
expectation-certainty is used for activity se-
lection.

certainty entropy

modifiedStddev

selectMaximum

variance

Method for measuring the certainty.

selectionMethod 0,1,2,3,4 Selection method. 0: Select maximum. 1:
Select proportional (equal to γ = 1). 2: se-
lect squared proportional (equal to γ = 2). 3:
equal to gamma = 4. 4: selection method
using gamma as an exponent.

gamma γ 0.0 - 40.0 Exponent for selection method 4.
memory 01, 02, 03, 04 The memory model.
memSize 10 - 200 The memory size. Only valid for memory

model 03 and 04.
memGamma γmem 0.98 Recall rate. Only valid for memory model 01

and 02. Low value is equivalent to high for-
getting rate.

cM cM 2.0 Special constant. See Eq. (15).
cf cf 0.02 Special constant. See Eq. (2).
vicinity 0 The size of the vicinity in a ring topology.

vicinity=0: No topology. vicinity=1:
Only direct neighbors on the ring can inter-
act. (Not used here).

seed 0, any number The seed for the pseudo random number gen-
erator. 0: create seed automatically using
time(0).

rngNo 0, 1 The type of the random number generator. 0:
drand48, a linear congruence generator. 1:
rand2 from “Numerical Recipes in C”, a non-
linear matrix generator.

References

Shannon, C. E. and W. Weaver (1949). The Mathematical Theory of Communication
(fourth printing, 1969 ed.). Urbana: University of Illinois Press.

13

