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Abstract

This paper contains a formal model that we have developed for the
Fifth Discipline theory [Sen90]. This model uses the SMART Multi-Agent
Systems framework [dL01] as a foundation for the formalization. The for-
malization of this theory allows us to study its models and underlying
assumptions concerning the organization, their members and the interac-
tions among them. The contributions of this article include not only a
formal model for Senge’s theory, but also analyses that indicate that sev-
eral individual features play an important role in Senge’s theory. Thus,
agents must be honest, cooperative, tenacious, and trust is fundamental
in the agents’ interactions.

1 Introduction

In this paper we present a formalization, from a Multi-Agent Systems (MAS)
perspective, for an important and modern Organizational Theory (OT). Based
on this model, our goal is to study relevant features of such OT: the models and
underlying assumptions about an organization that implements such OT; their
members and the interactions among members; and the interactions among the
organization as a whole and its members.

For this work, an OT was selected that has gained attention from industry
and academia, Senge’s Fifth Discipline [Sen90]. Correspondingly, a particular
MAS formal framework was also adopted - SMART [dL01]- to serve as the foun-
dation for the formalized OT theory. SMART uses the Z [Spi92] specification
language to formally define MAS related concepts and terms.

It is important to note that the formal model presented in this paper cor-
responds to our interpretation of Senge’s work and depicts some characteristics
of his theory, thus is not intended to be a full detailed translation of the Fifth
Discipline theory into a formal model.

We also note that we have made our best to keep this article self-contained.
Nevertheless, to keep it of reasonable size, the presentations of both the Fifth
Discipline and the Z formal specification language are extremely condensed and
brief. We suggest to the interested reader that some additional texts be con-
sulted for clarification of these topics, e.g. [Sen90, SKR+94] for the Fifth Disci-
pline and [Spi92, Jac97] for Z.
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The contributions of this article include not only a formal model for Senge’s
theory, but also analyses that indicate that several individual features play an
important role in Senge’s theory. Thus, agents must be honest, cooperative,
tenacious, and trust is fundamental in the agents’ interactions.

In addition, the applicability of our approach presents new perspectives and
reveals new, not yet explored, potentialities concerning the use of formal meth-
ods - developed for the area of Software Engineering (SE) - for modeling systems
in general. For example, consistency checking of an organization with regard to
a specific organizational theory can be investigated.

The structure of this paper is the following: in section 2, we present an
overview the Fifth Discipline theory. In section 3, we present some excerpts of
a formal model for this theory, including additionally, issues regarding knowl-
edge and interactions among agents in an organization that implements Senge’s
theory. In section 4, we discuss some properties of the Fifth Discipline theory
and properties of the formalized version of this theory. In section 5, we briefly
discuss work that relates to our research. Finally, in section 6, we present our
concluding remarks and discussion.

2 The Fifth Discipline

Organizational Theory deals with issues related to the structure, design, and
performance of organizations. This field describes how organizations are struc-
tured and suggests how to build new organizations, or how old ones can change.
The main goal of this field is to improve organizational effectiveness.

Different approaches, or schools, were developed and gained attention in the
last hundred years of research in OT, influenced by historical, social, cultural,
technological, and economic contexts. Starting from the work of Taylor[Tay11]
and Fayol[Fay49] where organizations, viewed as machines, were expected to
produce at their maximum performance with minimal resource consumption;
several schools have emerged: for example the Human Relationship School,
Theory of Behavior, Systems Theory and Contingency Theory. In this path,
it is noticeable a change from prescriptive to descriptive and explanatory para-
digms. Similarly, the concept of man and its individual behavior changes from
the simplistic homo economicus model of an isolated individual, motivated by
material and monetary incentives, to more complex models that also include
social motivations [Chi00, MSB99].

Accompanying this trend, and as a consequence of the advent of the knowl-
edge era, the school of Organizational Learning has been growing in the last
40 years, receiving increasing attention from both the academic and business
areas, and has become an important field of research.

This school focuses in the processes of learning; innovation; knowledge cre-
ation, storage, manipulation and transfer; in order to improve organizational
behavior to produce increased organizational performance and adaptability. Dif-
ferently from other schools, here, greater attention is paid to the management of
intangible assets which may award competitive advantage to the organizations
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that excel in such endeavor.
There are different views regarding learning organizations: [Arg77] defines

that ”organizational learning is a process of detecting and correcting error.”;
[FL85] states that ”organizational learning means the process of improving ac-
tions through better knowledge and understanding”; [Gar93] describes a learn-
ing organization as ”an organization skilled at creating, acquiring, and trans-
ferring knowledge, and at modifying its behavior to reflect new knowledge and
insights.”.

One of the first references to the term ”organizational learning” is presented
in [CD65], where organizational learning is viewed as the result of interactions
among adaptations in different levels: subgroup or individual, and organiza-
tional. Three types of stresses causes these adaptations: discomfort, perfor-
mance and disjunctive. Discomfort stress results from the complexity of the
environment and from the team’s effort to understand it. Performance stress is
associated to the organizational pressure to achieve successful individual actions.
Finally, disjunctive stress is a consequence of increasing degrees of disagreements
and conflicts resulting from different behaviors of teams and individuals. Dis-
comfort and performance stresses cause subgroup and individual adaptations.
Organizational learning is a consequence of influences coming from performance
and disjunctive stresses.

According to [Kim93] all organizations learn, regardless of specific learning
oriented plans. Organizational learning occurs by means of individual learning.
As a consequence, this author proposes a model that connects individual learn-
ing to organizational learning via mental models. Individual learning involves
two levels: operational and conceptual. The first refers to learning the steps
associated to the execution of a particular task and is expressed by sequences
of routine activities. Not only operational learning affects routines but also
routines influence learning. On the other hand, the conceptual level involves
reflection about how activities are performed and may cause their revision or
removal. Hence, the model of individual learning involves a cycle of conceptual
and operational learning that receives information from and provides informa-
tion to mental models. These cycles influence the organizational shared mental
models and, consequently, affect organizational learning.

In [CLW99] organizational learning involves a tension between assimilation
of a new learning and utilization of what has been learned, named ”tension of
strategic renewal”. The authors present a framework based on the assumption
that the renewal of the entire organization must be the underlying phenom-
enon to be investigated. This framework takes into account four social and
psychological processes: intuiting, interpreting, integrating, and institutional-
izing; named 4I’s. Moreover, there are three levels of organizational learning:
individual, group, and organization. In this framework the 4I’s are related in
feed-forward and feedback processes through these learning levels.

A learning organization is defined in [DTC97] as the one that develops com-
petences so as to, first maintain and improve current performance and, second,
adapt the organization to ensure future performance. Therefore, there is a re-
quirement to develop and maintain the entire capacity of management of an
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organization, including the development of corporate and personal competences
of managers. In fact, such development must become itself an organizational
competence, so that it is always applied and incorporated in the organizational
systems, structures, values and policies.

An influential work in this field is [Non91], which states that successful orga-
nizations consistently create new knowledge, widely disseminate it through the
entire organization, and quickly incorporate it in new technologies and prod-
ucts. The author defines two types of knowledge: explicit and tacit. The first
is formal and systematic; written in norms, specifications or formulas, it can be
communicated and shared. The second has two dimensions: one involves techni-
cal skills and professional experience; the other is cognitive and includes beliefs
and mental models that influence the way people perceive the environment.
These dimensions are hardly articulated, therefore it is difficult to communicate
and share this type of knowledge. The classification of knowledge into tacit
and explicit lead to the definition of four patterns to create knowledge: from
tacit to tacit, from tacit to explicit, from explicit to explicit, and from explicit
to tacit. The author defines a dynamic interaction among these patterns: a
spiral of knowledge that involves socialization, articulation, combination and
internalization. Each of these processes correspond, respectively, to one of the
patterns. The knowledge-creating organization keeps this spiral in continuous
activity. In addition, articulation and internalization are critical in this spiral
as they depend on individual commitment to enable their implementation.

One of the most recent and influential contributions to the school of Orga-
nizational Learning is presented by Senge in [Sen90], also referred in this work
as the LO theory. According to Senge, a learning organization is the one that
is ”continually expanding its capacity to create its future”.

Senge states that the life cycle of most organizations is relatively short. To
exemplify, he cites a research from Royal Dutch/Shell, completed in 1983, which
shows that one third of the enterprises mentioned in fortune ”500”, 1970 edition,
had stopped their activities by the time of publication of that research. Further,
the same research revealed that the average life time of the largest industrial
organizations was less than 40 years. Although in most of the enterprises that
fail there are several evidences of problems, they are not able to recognize the
imminent threats, perceive its implications, or recommend alternatives. Senge
states that these difficulties are related to several learning deficiencies:

• ”I am my position”.

Individuals that only concentrate in their positions, or roles, in an organi-
zation, lose the sense of responsibility relative to results that are obtained
via interactions involving several positions.

• ”The enemy is out there”.

In general, this affirmation corresponds to an incomplete view of a given
situation, as ”inside the organization” or ”outside” are just parts of the
same system.
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• ”The illusion of taking charge”.

Often, proactive attitudes just conceal disguised reactive attitudes, at-
tempts to face ”the enemy out there”. Genuinely proactive attitudes
are consequence of a clear perception of the individual’s contribution to
his/hers own problems.

• ”The fixation on events”.

It is a requirement to recognize long term patterns and all the cause-effect
connection chain, thus, avoiding concentration on events only.

• ”The parable of the boiled frog”.

Organizations, in general, are not prepared to face gradual threats to their
existence. It is important to observe both fast and gradual changes.

• ”The delusion of learning from experience”.

Direct experience is the most powerful source for learning. However, when
dealing with organizational problems, often, it is not possible to correlate
the consequences of important decisions with their real causes.

• ”The myth of the management team”.

The management team is composed of managers from different functions
and specialized areas in the organization. Supposedly, it should face all
the deficiencies mentioned above. However, internal political disputes in
these teams cause waste of energy and time, while trying to exhibit the
impression of coherent team.

2.1 Structure influences behavior

In the context of Senge’s theory, the term structure refers to systemic structure,
i.e., the relationships among key variables, like natural resources, population
and food production. Different people acting on the same systemic structure
tend to produce qualitatively similar results, as the observed behavior is a result
from the influence of this structure.

It is necessary that the individuals redefine the extent of their influence on
the whole system, observing how their decisions influence the others, and taking
into account the relationships among key variables. This is a requirement so
that the individual performance overcome (or efficiently manage) the constraints
and problems imposed by the systemic structure.

Usually, individual behavior result from an approach based on understanding
events. As a consequence, this attitude is reactive. In a systemic attitude there
are several levels of explanation. as shown in figure 1.

The comprehension of behavioral may supply the individual with suggestions
on how to respond in the long term to changes in trends.

The structural level, in its turn, is the most important and powerful. This
level focuses on the underlying causes for a given behavior and, as a consequence,
behavioral patterns may be changed.
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Figure 1: Levels of explanation - a systemic perspective.
Source: adapted from [Sen90, p. 52].

According to Senge, the above mentioned deficiencies permeate human his-
tory and culture. Therefore, he presents the Fifth Discipline theory, an antidote
against these deficiencies.

Senge’s theory comprises the following disciplines: systems thinking, per-
sonal mastery, mental models, shared vision and team learning.

The ”Learning Organization” follows the principles of the Fifth Discipline
and is continually expanding its capacity to create its future. In this type of
organization, adaptive learning must be complemented with generative learning,
i.e., learning that increments creative capacity.

2.2 Systems thinking

The main concept in this discipline is that an individual can only understand
patterns of events in complex systems via a global view. Businesses are also
systems in which interrelated actions take some time to totally develop their
effects.

An individual involved in such system has difficulties to clearly understand
the whole pattern of changes. Therefore, he/she often tends to concentrate on
isolated aspects of the problem, aiming at finding a solution that, in fact, should
have a global scope.

Systems thinking is a conceptual framework, including knowledge and tools
developed in the last 50 years. Its goal is to make complex patterns clearly
visible, thus helping an individual to effectively change situations with minimal
effort. In Senge’s terms, an individual must find the ”leverage points of the
system”.

The basic concepts for systems thinking are delays and two types of feedback
processes: reinforcement and balancing. Reinforcement processes operate like
an engine of growth (or decline), exhibiting a ”snow ball” effect. In the figure 2
we present a reinforcement process for a product: increase in sales causes more
positive word of mouth, which results in more sales, and so on.

On the other hand, a balancing process operates when behavior is driven
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Figure 2: Reinforcement process.
Source: adapted from [Sen90, p. 81].

by a (implicit or explicit) goal. In figure 3 the individual notices a difference
between desired and actual temperature of his/her body, adapts his/her clothing
trying to reduce the difference.

Figure 3: Balancing process.
Source: adapted from [Sen90, p. 84].

Furthermore, frequently feedback processes have delays embedded in their
operation. These delays are interruptions in the flow of influences, so that effects
related to some actions occur gradually. Figure 4 shows a balancing feedback
process with delay: in order to reduce the difference between perceived and
desired water temperatures the individual adjusts the volume of water. However,
changes in temperature only occur after a given time interval.

Archetypes are generic structures of recurrent patterns, which were devel-
oped to facilitate the study of systems dynamics, enabling the identification of
the different structures in action and potential leverage points. Archetypes are
built on top of reinforcing and balancing processes.

In figure 5 we present the ”limits to growth” archetype where a reinforcement
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feedback process starts in order to produce a result. A spiral of success is
created. However, as a side effect, a balancing process also develops, and this
will, eventually, decelerate the success.

Causal loops are flexible diagrams that exhibit the type of relationship be-
tween a pair of concepts. They show whether an increase in a variable causes a
corresponding increase or decrease in another related variable.

Figure 4: Balancing process with a delay.
Source: adapted from [Sen90, p. 90].

Figure 5: Limits to growth.
Source: adapted from [Sen90, p. 97].
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2.3 Personal mastery

Personal mastery consists in continually deepening and clarifying an individual’s
personal vision, focussing energy, and developing an objective view of reality.
This discipline provides the link between organizational and individual learning.
Hence, it is essential for organizational learning development.

Senge notes, however, that few organizations support this personal develop-
ment, resulting in waste of resources. On the other hand, he also observes that
few individuals really dedicate their best efforts to develop this mastery. In fact,
sustainable learning can only occur when its foundation lies in the individual’s
commitment with self-development.

The main practice of the personal mastery discipline consists in the develop-
ment of a capability of maintaining not only a clear view of the current reality,
but also a personal vision. This process produces an internal force, named ”cre-
ative tension”. Resolution of this tension involves actions aimed at making the
image of reality get closer to the personal vision (figure 6).

Figure 6: Creative tension.
Source: adapted from [Sen90, p. 151].

2.4 Mental models

Mental models are hypotheses and generalizations that influence both the in-
dividual’s comprehension of and interaction with the world. Senge states that,
often, individuals are not aware of their mental models and the influence they
have on their behavior.

Frequently, organizational changes fail to be implemented as a consequence
of conflicts they generate with powerful pre-existent mental models.

This discipline involves exposing these models such that they can be crit-
icized and reviewed, if required. In order to achieve this goal, conversations
(dialogs) that balance questioning and advocacy are used, so that the mem-
bers of the organization can both expose their thoughts and become open to
influences from others.
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Two skills are fundamental to this discipline: reflection and inquiry. The
first involves decreasing the speed of the member’s thinking processes, so that
he/she can recognize how his/her mental models are built. The second consists
in conversations among individuals where personal visions are openly shared,
and at the same time, they learn each others assumptions on several subjects.

2.5 Shared vision

The existence of goals, values and mission that are profoundly shared through
all organization is essential in order to build a successful organization. Such
a shared vision constitutes an image of the future that the organization wants
to build, and is fundamental so that the organization may unite its members
around a shared identity and a sense of destiny.

Once there is a true vision, organizational members want to learn and pro-
duce at their best performance. There is no need for a norm or rule that states
that members have to behave with such goal in mind.

This discipline aims at translating individual vision into a shared vision by
means of the definition of principles and directive lines.

The practice of this discipline involves exposing images of the future which
promote the alignment and commitment of the persons with this vision, instead
of submission to a vision imposed by the organization.

2.6 Team learning

According to this discipline it is possible to develop learning skills in a team.
Once this goal is achieved, this team develops uncommon capabilities for coor-
dinated action, thus producing extraordinary results. This is a state that also
permits faster development of the team members than it would be possible in
other circumstances.

This discipline involves the development of the dialog technique. This tech-
nique concerns the capability of the members to suppress their individual as-
sumptions and enter an authentic state of shared thought. The concept of dialog
in this theory involves the free flow of meaning among the members of a team,
so that the team can discover insights that could not be discovered individually.
Moreover, the practice of dialog also involves learning patterns of interaction
among members that hinder or reduce performance in team learning. Another
interesting aspect of the dialog technique is that it also includes the development
of skills to recognize interaction patterns in teams that hinder team learning,
e.g., defensive patterns. Senge also contrasts dialog and discussion: discussion
involves competitive exchange of ideas and opinions in order to determine a
”winner” idea.

Team learning is also a fundamental discipline for LO theory as teams are
the basic collective learning units in organizations and, thus, team learning is a
prerequisite for organizational learning.
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2.7 Computational models

Computational models provide a concrete vision of the effects resulting from
adopting a given set of hypotheses, contrasting with the archetypic world in
which systemic elements are vaguely defined and where resulting behavioral
patterns are speculative.

These models are utilized for[SKR+94]:

• Exhibiting how systemic structures directly produce behavioral patterns.

• Verifying whether a given structure presents the same performance ob-
served in the real world.

• Investigating what is the change in behavior when several aspects of the
structure are modified.

• Exhibiting leverage points that can only be uncovered using such tools.

• Involving teams in-depth systems learning by enabling the investigation
of the relationship involving thinking patterns and their consequences.

The main problem in computational modelling is associated to model design:
it is difficult to learn how to represent reliably the world. Notwithstanding, com-
putational modelling and simulation is essential for systems thinking, because
it is a tool for the development and learning of this discipline.

2.8 All disciplines matter

Senge states that, in the context of his theory, a discipline corresponds to a body
of theory and technique, that must be studied and mastered with the objective
of practical application. Moreover, practicing a discipline involves continuous
learning.

The author also affirms that the five disciplines must be developed in con-
sonance, in a coherent body of theory and practice, which is integrated by the
systems thinking discipline. For this reason, he defines systems thinking as
the fifth discipline. However, systems thinking also depends on the other four
disciplines in order to develop its full potential.

In summary, systems thinking enable understanding of a subtle aspect of
organizational learning: a new self-perception for each individual and a new
perception of the world. Hence, individuals must observe their connections
with the world, continuously creating and changing reality.

In summary, the LO theory places great emphasis in the individual behav-
ior, initiative, and learning capabilities, in order to obtain an emerging orga-
nizational behavior. Furthermore, this theory also concentrates on skills that
can only be developed collectively, e. g. shared vision and team learning. This
focus on both individual and collective aspects, structured into five disciplines;
combined with a set of important cases of implementation that include impor-
tant companies like: Shell, Harley-Davidson, Kyocera, Federal Express, and
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Hanover Insurance; makes the LO theory a modern, influential and successful
organizational theory and, therefore, a very interesting subject to our study.

3 Modeling the Fifth Discipline as MAS

The area of MAS has gained attention during the last decade. However, many
concepts involving agency and agent-based development still lack sound con-
ceptual foundation. In order to provide one such foundation, [dL01] built the
SMART conceptual framework.

SMART was chosen in our research because it is a formal, unambiguous,
structured, and extensible framework created to serve as a foundation for
studying and building different agent oriented architectures. For example, in
[BCV98, LyLLd01, MLd03] different models based on SMART are presented.
According to [dL01], the Z specification language is used to specify SMART for
reasons that include: it enables to formally develop designs of systems; it has
close connections to software implementation; and it uses a simple notation,
which is expressive, structured, and has acceptance in the Artificial Intelligence
(AI) and Software Engineering (SE) communities. While other formalisms could
have been used, like VDM [Jon90], CSP [Hoa78], CCS [Mil89], or modal logics
[Che80]; none of them offer the same combination of features required by that
research work [dL01].

In appendix A we present introductory information concerning Z. However,
we note that this basic introduction may not provide sufficient information
for the reader with no previous experience with Z. In this case, we suggest
[Spi92, Spi89, Jac97] for an introduction to this notation.

3.1 The SMART framework

In SMART, the world is made of entities, which are specified as a collection
of attributes. Moreover, entities are classified according to additional features
they have: objects are entities with an associated collection of capabilities;
agents have a set of goals; and autonomous agents have motivations.

In order to characterize these elements more formally, some basic types must
be defined. The types Attribute, Action, Goal and Motivation are defined in
[dL01] as follows: ”attribute is a perceivable feature, action is a discrete event
that can change the state of the environment when performed, goal is a state
of affairs to be achieved in the environment, and a motivation is any desire or
preference that can lead to the generation and adoption of goals and that affects
the outcome of the reasoning or behavioral task intended to satisfy those goals”.
Action and Motivation are defined as given sets, while Goal , View and Actions
are introduced via abbreviation definition as non-empty sets of attributes and a
set of actions, respectively. The Attribute type corresponds to formulae in first
order predicate calculus1.

1Definition ommited here. Refer to [dL01] for this definition.
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[Motivation,Action] View == P1 Attribute

Goal == P1 Attribute Actions == P Action

The highest level of abstraction in SMART corresponds to the type Entity,
which is specified as a non-empty set of attributes, and sets of actions, goals
and motivations. In our formalization, however we include several new variables
that are important to specify other agent types later. Just as in the original
Entity type in SMART we only require that the set of attributes is non-empty.

Entity
attributes , store : P Attribute
capableof : PAction
goals , allgoals : P Goal
motivations : PMotivation
ownedresources : P Entity
instsreq : Plan �→ (seq(Action × PEntity))
resourcesofplan : Plan �→ PEntity
plans , allplans : PPlan
planforgoal : Goal �→ PPlan
orgs : P Organization
roles : P Role
ownguidingideas : GuidingIdea
personalMasteryCapabilities,mentalModelsCapabilities : PAction
systemsThinkingCapabilities , learningTeamCapabilities : PAction
buildingSharedVisionCapabilities : P Action

attributes �= ∅

Entities must be situated in an environment. The type Env defines the
environment as a set of attributes that depicts all currently true attributes
within that environment. The environment state includes all entities inside it.

Env == P1 Attribute

EnvironmentState
env : Env
entities : PEntity
⋃{e : Entity | e ∈ entities • e.attributes} ⊆ env

An object is an entity that is capable of some actions. The object actions
will be performed in an environment and will also depend on the state of such
environment.
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Object =̂ [Entity | capableof �= Ø]

ObjectAction
Object
objectact : Env → Actions

∀ env : Env • (objectact env) ⊂ capableof

ObjectState
EnvironmentState
ObjectAction
willdo : Actions

willdo = objectact env ∧ willdo ⊂ capableof

As for object operation, state related variables can change, while other vari-
ables are immutable (if they change, instantiation of a new object occurs [dL01]).
Therefore, attributes, capabilities, and action selection do not change.

∆ObjectState
ObjectState
ObjectState ′

ΞObjectAction

Interactions change the state of the environment by adding and removing
attributes. The ObjectInteracts schema shows individual objects interacting
with its environment.

effectinteraction : Env → PAction �→ Env

ObjectInteracts
∆ObjectState

env ′ = effectinteraction env willdo
willdo′ = objectact env ′

An agent is an object that has (adopted or generated) goals. The
AgentPerception schema defines the perception capabilities of an agent. The
canperceive function defines the attributes that can be perceived while the
agperceives function defines the attributes actually perceived by the agent. The
AgentAction schema defines that goals, perceptions and the environment influ-
ence the agent’s behavior.
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Agent =̂ [Object | goals �= Ø]

AgentPerception
Agent
peractions : Actions
canperceive : Env → Actions → Env
agperceives : P Goal → View → View

peractions ⊂ capableof
∀ env : Env ; as : Actions •

(as ∈ (dom(canperceive env)) ⇒
as = peractions)

dom agperceives = {goals}

AgentAction
Agent
ObjectAction
agentact : P Goal → View → Env → Actions

∀ g : P Goal ; v : View ; env : Env •
(agentact g v env) ⊂ capableof

dom agentact = {goals}

Applying the same reasoning presented above, more complex agent types
may be specified via schema inclusion. For example, agents that are au-
tonomous, have memory, are capable of planning, and perform roles in organi-
zations, are specified in a incremental manner, as successive layers of increasing
complexity2. Furthermore, interactions among agents can be described. Thus,
the formal specification of individual, collective, and organizational aspects can
be performed, as we show in the next section.

3.2 Learning Organization Agents

This section contains some excerpts of a formal model for the Fifth Discipline,
just to provide an overview of what has been produced. Due to space limitation,
some types and concepts are not presented in this work. This is the case for
the types: SAutoAgent , PlanningAgent , OrgAgent , Organization, and Role for
example. The Z specification was type checked using ZTC version 2.03 [ZTC03].

Our goal in this incremental definition via refinement of agent types, is to
define a more specialized type of agent which corresponds to a formal specifica-
tion of the requirements described in Senge’s theory. Thus, in this section we

2 In Appendix B, figure 7 presents a structure diagram that displays the structure of part
of our specification. This type of diagram was introduced by Luck and D’Inverno [dL01].
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introduce the Learning Organization Agent, which is an organizational agent,
develops personal mastery, has mental models and develops systems thinking
skills. Among the motivations of this agent we have: reducing creative ten-
sion and commitment to a clear perception of reality. In order to present this
formalization, we divide Senge’s disciplines in two groups: intra-personal and
inter-personal, according to the type of skills that such disciplines allow the
agent to develop. The first group mainly deals with the agent’s internal states
and representations, and the second deals with interactions among Learning
Organization Agents.

3.2.1 Disciplines: Actions, Principles

According to Senge, all disciplines have associated actions and principles, which
an agent that develops a given discipline is supposed to perform and know. Thus,
below we have PMActions and PMPrinciples corresponding to personal mas-
tery actions and principles respectively. Similarly, STActions and STPrinciples ;
MMActions and MMPrinciples; SVActions and SVPrinciples ; LTActions and
LTPrinciples ; correspond to systems thinking, mental models, shared vision,
and team learning, actions and principles respectively.

AllDisciplinesActions ,PMActions : PAction
STActions ,MMActions ,SVActions ,LTActions : P Action

PMActions �= ∅

STActions �= ∅

MMActions �= ∅

SVActions �= ∅

LTActions �= ∅

AllDisciplinesActions = PMActions ∪ STActions∪
MMActions ∪ SVActions ∪ LTActions

AllDisciplinesPrinciples ,PMPrinciples : PAttribute
STPrinciples ,MMPrinciples : P Attribute
SVPrinciples ,LTPrinciples : PAttribute

PMPrinciples �= ∅

STPrinciples �= ∅

MMPrinciples �= ∅

SVPrinciples �= ∅

LTPrinciples �= ∅

AllDisciplinesPrinciples = PMPrinciples ∪ STPrinciples
∪MMPrinciples ∪ SVPrinciples ∪ LTPrinciples

The set of actions and principles of the five disciplines is specified as follows.
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DisciplinesActionsAndPrinciples
actions : P Action
principles : PAttribute

actions ⊆ AllDisciplinesActions
principles ⊆ AllDisciplinesPrinciples
actions �= ∅

principles �= ∅

Below, we specify a function that formalizes that the development of the
disciplines by an agent involves the instantiation of a new entity, which is capable
of developing the five disciplines. The function takes an entity and the set of
actions and principles of the disciplines, and creates a new entity with the same
values for each variable defined in the former entity, but with new capabilities
and additional principles, related to the principles, in its store.

entityLearnDisciplinesActionsAndPrinciples : (Entity
×DisciplinesActionsAndPrinciples) → Entity

∀ old ,new : Entity; actionAndPrinciple :
DisciplinesActionsAndPrinciples •
(entityLearnDisciplinesActionsAndPrinciples(old ,
actionAndPrinciple) = new ⇔
(new .goals = old .goals ∧

new .attributes = old .attributes ∧
new .motivations = old .motivations ∧
new .ownedresources = old .ownedresources ∧
new .instsreq = old .instsreq ∧
new .resourcesofplan = old .resourcesofplan ∧
new .plans = old .plans ∧
new .planforgoal = old .planforgoal ∧
new .orgs = old .orgs ∧
new .roles = old .roles ∧
new .allplans = old .allplans ∧
new .allgoals = old .allgoals ∧
new .capableof = old .capableof ∪

actionAndPrinciple.actions ∧
new .store = old .store ∪
actionAndPrinciple.principles ∧
actionAndPrinciple.principles �= ∅ ∧
actionAndPrinciple.actions �= ∅))

3.2.2 Learning Organization Agent

Finally, we define the LearningOrgAgent type. The Learning Organization
Agent is capable of developing the disciplines defined by Senge.
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LearningOrgAgent
OrgAgent

personalMasteryCapabilities �= ∅

mentalModelsCapabilities �= ∅

systemsThinkingCapabilities �= ∅

learningTeamCapabilities �= ∅

buildingSharedVisionCapabilities �= ∅

personalMasteryCapabilities ⊂ capableof
mentalModelsCapabilities ⊂ capableof
systemsThinkingCapabilities ⊂ capableof
learningTeamCapabilities ⊂ capableof
buildingSharedVisionCapabilities ⊂ capableof

3.2.3 Mental Model

Mental models include reflection and inquiry skills, so as to, first, make the agent
aware of the hypotheses and generalizations that influence both the agent’s
comprehension of and interaction with the world; and, second, interact with
other agents to share personal visions and learn each others assumptions on
several subjects.

Initially, we introduce a formalization of beliefs that follows [dL01]:

AGLiteral ::= pos〈〈Atom3〉〉
| negate〈〈Atom〉〉

AGBelief ::= agliteral〈〈AGLiteral〉〉
| conjunct〈〈AGBelief × AGBelief 〉〉

AgentBelief ::= agbeliefs〈〈AGBelief 〉〉
ExposedBelief ::= expbeliefs〈〈AGBelief 〉〉

The reasoning process corresponds to the exhibition of the ”ladder of in-
ference - a common mental pathway of increasing abstraction, often leading to
misguided beliefs” 4, as mentioned by Senge.

In addition, in [dL01] the modeling capabilities of agents are represented in
a series of schemes that depict the fact that an agent is capable of modeling en-
tities, objects, agents, etc. In this work, we define that a Learning Organization
Agent is capable of modeling all these entities.

First, we follow [dL01] and define representations of models of entities, ob-
jects, agents, neutral objects, server agents, and store agents, and include models
for SAutoAgent , PlanningAgent , and OrgAgent .

3The type Atom contains predicates and terms of first order logic. Please, refer to [dL01]
for its definition.

4In [SKR+94, p. 243]
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ReasoningProcess == seq1 AGBelief

ReflectedBeliefReasoning == AGBelief × ReasoningProcess

ExposedBeliefReasoning == AGBelief × ReasoningProcess

BeliefAndReasoning == AGBelief × ReasoningProcess

EntityModel == Entity

ObjectModel == Object

NeutralObjectModel == NeutralObject

AgentModel == Agent

ServerAgentModel == ServerAgent

StoreAgentModel == StoreAgent

SAutoAgentModel == SAutoAgent

PlanningAgentModel == PlanningAgent

OrgAgentModel == OrgAgent

The mental models must also include the relationships among the various
components present in the environment.

Component ::= compEntity〈〈Entity〉〉
| compObject〈〈Object〉〉
| compNeutralObject〈〈NeutralObject〉〉
| compAgent〈〈Agent〉〉
| compServerAgent〈〈ServerAgent〉〉
| compStoreAgent〈〈StoreAgent〉〉
| compSAutoAgent〈〈SAutoAgent〉〉
| compPlanningAgent〈〈PlanningAgent〉〉
| compOrgAgent〈〈OrgAgent〉〉

ComponentRelationship ::= compRelationship〈〈Component × Component〉〉
ComponentRelationshipModel == ComponentRelationship

The BelModel schema presents the specification of components present in
the environment and also the relationships involving them.
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BelModel
models : PEntityModel
agentbeliefs : P AGBelief
modelentities : PEntityModel
modelobjects : P ObjectModel
modelneutralobjects : PNeutralObjectModel
modelagents : PAgentModel
modelserveragents : PServerAgentModel
modelstoreagents : P StoreAgentModel
modelsautoagents : P SAutoAgentModel
modelplanningagents : P PlanningAgentModel
modelorgagents : P OrgAgentModel
modelcomprelationship : PComponentRelationshipModel

models =
⋃{modelentities ,modelobjects ,

modelneutralobjects,modelagents,modelserveragents,
modelstoreagents ,modelsautoagents ,
modelplanningagents ,modelorgagents}

#models > 1 ⇒ modelcomprelationship �= Ø
modelsautoagents ⊆ modelstoreagents ⊆

modelagents ⊆ modelobjects ⊆ modelentities
modelobjects = modelagents ∪ modelneutralobjects
modelserveragents = modelagents \ modelsautoagents

Hence, the IntraPersonalMentalModel schema specifies the agent’s men-
tal models that do not depend on interactions among agents of type
LearningOrgAgent .

IntraPersonalMentalModel
agentmodels : BelModel
developReflectionSkillsActions : P Action
developAdvocacySkillsActions : PAction
intraPersonalMentalModelPrinciples : PAttribute
reflection : P Motivation × P Action×

BeliefAndReasoning �→ ReflectedBeliefReasoning
advocacy : P Motivation × P Action×

BeliefAndReasoning �→ ExposedBeliefReasoning

developReflectionSkillsActions ∪
developAdvocacySkillsActions = MMActions

The InterPersonalMentalModel schema specifies the agent’s men-
tal models that depend on interactions among agents of type
LearningOrgAgent .Theagentmustinquiryotheragentsinordertolearntheirmentalmodels .

InterPersonalMentalModel
inquiry : LearningOrgAgent �→ ExposedBelief
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In the same way that other models of components were specified, we define
that a model of a LearningOrgAgent corresponds to an abbreviation to the type
LearningOrgAgent . In addition, we extend both the representation of the com-
ponents in the environment to include the LearningOrgAgent and the possible
relationships among the various components present in the environment.

LearningOrgAgentModel == LearningOrgAgent

LearnComponent ::= compLearningOrgAgent〈〈LearningOrgAgent〉〉 |
compGeneral〈〈Component〉〉

LearnComponentRelationship ::= compLearnRelationship
〈〈LearnComponent × LearnComponent〉〉

LearnComponentRelationshipModel == LearnComponentRelationship

[LOrgAgentInteractions ,TrustLOrgAgentInter ,NonTrustLOrgAgentInter ]

LOrgAgentInteractionsModel == LOrgAgentInteractions

TrustLOrgAgentInterModel == TrustLOrgAgentInter

NonTrustLOrgAgentInterModel == NonTrustLOrgAgentInter

The LearnBelModel schema corresponds to the specification of components
present in the environment and also the relationships involving them. Moreover,
we have inserted in this schema the modelbelmodel function which is similar to
the modelsociologicalagents function presented in [dL01, p. 106]. This function
represents the agent’s capability to model the models of other agents.

LearnBelModel
BelModel
modellearningorgagents : P1 LearningOrgAgentModel
modelbelmodel : Agent �→ LearningOrgAgent
modellearncomprelationship : P LearnComponentRelationshipModel
modelLOrgAgInts : P LOrgAgentInteractionsModel
modelTrustLOrgAgInts : P TrustLOrgAgentInterModel
modelNonTrustLOrgAgInts : P NonTrustLOrgAgentInterModel

models = modelentities ∪ modelobjects∪
modelneutralobjects ∪ modelagents∪
modelserveragents ∪ modelstoreagents∪
modelsautoagents ∪modelplanningagents∪
modelorgagents ∪ modellearningorgagents

#models > 1 ⇒
modellearncomprelationship �= ∅

dommodelbelmodel ⊆ modelagents

Thus, in PeerLOAgMentalModel we have the specification of all models that
a LearningOrgAgent may have, including models of peer agents of the same
type.



3 Modeling the Fifth Discipline as MAS 22

PeerLOAgMentalModel
LearnBelModel
InterPersonalMentalModel

Finally, the mental model includes all types of mental models that the agent
may have.

MentalModel
IntraPersonalMentalModel
PeerLOAgMentalModel

3.2.4 Personal Mastery

Personal mastery is a process that is based on two factors: a continuous and clear
evaluation of reality, and a personal vision. The vision, on its turn, corresponds
to individual goals which represent an image of the future that the agent wants to
produce. This process generates an internal force in the agent, named creative
tension according to Senge. The resolution of this tension means: to make
the image of reality get closer to the personal vision [Sen90]. In addition, the
behavior of this agent is also guided by its values. Values are ”deeply held
views of what we find worthwhile”5. Some examples of personal values include
honesty, reputation, status, and loyalty6. Moreover, Senge states that a vision
can only be understood in association to a purpose. Purpose corresponds to a
”direction, a general heading”7.

In this formalization, we consider that both vision (Vision) and purpose
(Purpose) correspond to sets of goals, and that values (Value) corresponds to
a set of BehavioralConstraint , that we specify in this work as a set of beliefs.
Additionally, we also define the type RealityVision as an abbreviation for a set
of View .

RealityVision == PView

Consistency ::= yes | no

BehavioralConstraint == P AGBelief

Vision =̂ [visions : P Goal ]

Purpose =̂ [purposes : PGoal ]

Value =̂ [values : PBehavioralConstraint ]

According to Senge, guiding (or governing) ideas correspond to a set that
includes vision, purpose and values. In our model we define both individual
and collective guiding ideas. The elements of guiding ideas must be consis-
tent. Thus, in this work, we define the functions isVisionPurposeConsistent ,

5[SKR+94, p. 209].
6[SKR+94, p. 210].
7[Sen90, p. 148].
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isValueVisionConsistent , and isValuePurposeConsistent that map to a
Consistency value of yes , if, respectively, the formulae set corresponding to
vision and purpose are logically consistent; no formula in the vision formulae
set contradicts any formulae in the value set; and no formula in the purpose
formulae set contradicts any formulae in the value set.

isVisionPurposeConsistent : (P Vision × PPurpose) → Consistency
isValueVisionConsistent : (P Value × PVision) → Consistency
isValuePurposeConsistent : (P Value × PPurpose) → Consistency

The GuidingIdea schema includes consistent vision, purpose and values.

GuidingIdea
vision : P Vision
purpose : PPurpose
value : PValue

isVisionPurposeConsistent(vision, purpose) = yes ∧
isValueVisionConsistent(value, vision) = yes ∧
isValuePurposeConsistent(value, purpose) = yes

The agent’s personal vision corresponds to a set of goals that is influenced
by its motivations, goals related to its roles, mental models, and guiding ideas.

PersonalVision =̂ [personalvision : P Motivation �→ PGoal �→
P IntraPersonalMentalModel �→ P GuidingIdea �→ P Goal ]

In summary, the personal mastery discipline involves a set of actions
and principles that aim at developing personal visions (clarifypersonalvisions),
guiding ideas (developguidingideas), and a clear vision of the current reality
(enhancerealityvisions). In addition, the creative tension (creativetension) has
to produce goals (ResolutionGoal) with the objective of reducing such tension.

ResolutionGoal == P Goal
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PersonalMastery
developguidingideasactions : P Action
enhancerealityvisionsactions : PAction
clarifypersonalvisionsactions : PAction
personalMasteryPrinciples : PAttribute
developguidingideas : PMotivation × PAction �→ GuidingIdea
enhancerealityvisions : P Motivation × P Action �→ P RealityVision
clarifypersonalvisions : PMotivation × P Action �→ PPersonalVision
creativetension : PView × P PersonalVision �→ P ResolutionGoal
personalvisions : PPersonalVision
guidingidea : GuidingIdea

developguidingideasactions ∪ enhancerealityvisionsactions ∪
clarifypersonalvisionsactions = PMActions

3.2.5 Team Learning

The goal of this discipline is to develop learning skills in a team, so that the
team develops uncommon capabilities for the coordinated action, producing
extraordinary results and faster development of its members than it would be
possible in other circumstances.

This discipline involves the development of the dialog and discussion tech-
niques. Dialog concerns the capability of the members of a team to suppress
their individual assumptions and enter an authentic state of shared thought. On
the other hand, discussion involves the presentation of the members’ particular
viewpoints (in a given context) with the goal of producing a resulting goal or
decision [Sen90].

In this work, we specify that dialog, discussion, inquiry, and advocacy corre-
spond to protocols that we introduce as a given set, as the detailed definition of
each one of these is out of the scope of this work. We also define that there are
actions associated with each protocol that an agent must be capable of perform-
ing and that the development of dialog and inquiry actions by a given agent is
also a function of its motivations.

[Protocol ]
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TeamLearning
dialogdiscussactions, inquiryadvocacyactions : P Action
teamLearningPrinciples : PAttribute
dialogprotocols , discussionprotocols : P Protocol
inquiryprotocols, advocacyprotocols : P Protocol
actionsofdialogprotocols : Protocol �→ PAction
actionsofdiscussionprotocols : Protocol �→ PAction
actionsofinquiryprotocols : Protocol �→ P Action
actionsofadvocacyprotocols : Protocol �→ PAction
developdialogdiscussactions : PMotivation × PAction �→ PAction
developinquiryadvocacyactions : P Motivation × P Action �→ P Action

dialogdiscussactions ∪ inquiryadvocacyactions = LTActions

3.2.6 Systems Thinking

Systems thinking reveals a variety of potential actions that produce the desired
results and also, unintended consequences. It involves the recognition of four
levels operating simultaneously: events, patterns of behavior, systemic struc-
tures and mental models [SKR+94].

In order to build a model for this discipline we first introduce a few types
as given sets, related to a time instant, a position in space, links, events and
computational models.

[Time,Space,Links ,Event ,CompModel ]

In this work, Context refers to information related to time, location and a
set of entities involved in some modification occurred in the environment.

Context == Time × Space × PEntity

Behavioral patterns (BehavioralPattern) and scenarios (Scenario) are both
defined as sequences of events (Event). Finally, we also define a generic structure
library (GenericStructure) that includes: causal loops and archetypes. The
loops and archetypes declared below correspond to the several types presented
by Senge in [Sen90].

BehavioralPattern == seq1 Event
Scenario == seq1 Event
Loops ::= ReinforcingLoops | BalancingLoops | DelayedReinforcingLoops |

DelayedBalancingLoops
SystemsArchetypes ::= Fixes that backfire | Limits to growth

| Shifting the burden | Tragedy of the commons |
Accidental adversaries

GenericStructure ::= links〈〈Links〉〉 | loops〈〈Loops〉〉 |
systemsarchetypes〈〈SystemsArchetypes〉〉
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This discipline also involves simulations based on computational models.
We assume in this model that there is a library of computational models
(CompModelLib) that the agents can query and update. In this library are
stored records that relate a particular computational model, behavioral pat-
terns and events. Hence, based on behavioral patterns, an agent might try to
select a suitable model to perform simulations. As a result of such simulations
some potential states (PotentialState) in the environment can be investigated.
In addtion, we also define in our model a plan library (PlanLib) that agents can
read and update. These plans are associated with the production of a number
of the potential states.

PotentialState == P1 Attribute

PlanLib == P Plan

CompModelLib == P(P CompModel × P BehavioralPattern × PEvent)

The SystemsThinking schema includes a library of generic structures and a
set of inference engines, possibly specialized, which allow the agent to reason
about these structures. In the schema, planlib corresponds to a library of plans
available to the agent. In addition, we include a library of computational models
that is accessible to all agents, a set of events, and several functions.

The contextassessment function maps the agent’s perceptions to contexts.
These contexts define for a given event: time, space, and the associated entities
related to this percept. The eventanalyer function maps contexts to events. The
behavioralpatternanalyser function maps a set of events to a behavioral pattern.
The compmodelsdesign function represents the agent’s capability to design a
computational model that corresponds to its interpretation of the relationship
involving a set of patterns of behavior and a set of events, using a library
of generic structures and a library of computational models to help it in this
process. The computational model produced is then used in simulations in
different scenarios, resulting in a set of potential states, as specified in the
simulation function. Finally, considering the agent’s goals, the potential state
that is most likely to reduce the agent’s creative tension is then selected, and a
set of plans designed to achieve the desired potential state is produced, based
on information contained in the plan library. The restrictions associated to all
these variables are introduced in the ∆LearningOrgAgentState schema so that
they are defined in the scope of the type LearningOrgAgent .
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SystemsThinking
events : P Event
behavioralpatterns : PBehavioralPattern
compmodels : P CompModel
simulatedpotentialstates : PPotentialState
selectedpotentialstates : PPotentialState
scenarios : PScenario
planlib : PlanLib
compmodellib : CompModelLib
genericstructures : PGenericStructure
contextassessment : View �→ P Context
eventanalyser : PContext �→ PEvent
behavioralpatternanalyser : P Event �→ PBehavioralPattern
compmodelsdesign : PBehavioralPattern × PEvent×

PGenericStructure × CompModelLib �→ PCompModel
behavioralpatternfromcompmodel : PCompModel �→

PBehavioralPattern
simulation : PCompModel × P Scenario �→ PPotentialState
potentialstatesanalyser : P PersonalVision×

PPotentialState �→ P PotentialState
planfrompotentialstate : PPotentialState × P Plan �→ P Plan
modelscenariofrompotstate : PPotentialState �→

PCompModel × P Scenario × P PotentialState
resultingplans : PPlan

The ∆SystemsThinking schema presents an operation on the
SystemsThinking schema and shows that the introduction of new perceptions
(systemsactualpercepts?) produces a new set of resulting plans (resultingplans!).
Moreover, the library of computational models is updated accordingly. We
assume, also, that there may be different scenarios to be considered.
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∆SystemsThinking
∆LearningOrgAgentState
SystemsThinking
SystemsThinking ′

resultingplans! : P Plan
systemsactualpercepts? : View
modelscenariostate : PCompModel×

PScenario × PPotentialState
compmodeltoadd : P CompModel
behavioralpatterntoadd : PBehavioralPattern

genericstructures ′ = genericstructures
planlib′ = planlib
events ′ = eventanalyser(contextassessment

(systemsactualpercepts?))
behavioralpatterns ′ = behavioralpatternanalyser(events ′)
compmodels ′ = compmodelsdesign(behavioralpatterns ′ ,

events ′, genericstructures, compmodellib)
simulatedpotentialstates ′ = simulation(compmodels ′,

scenarios ′)
selectedpotentialstates ′ = potentialstatesanalyser

(personalmastery.personalvisions ,
simulatedpotentialstates ′)

modelscenariostate = modelscenariofrompotstate
selectedpotentialstates ′

compmodeltoadd = trifirst modelscenariostate
behavioralpatterntoadd = behavioralpatternfromcompmodel

compmodeltoadd
compmodellib′ = compmodellib ∪ {(compmodeltoadd ,

behavioralpatterntoadd , events ′)}
resultingplans! = planfrompotentialstate

(selectedpotentialstates ′, planlib)

We abstract the disciplines presented so far, which mainly re-
late to the agent’s internal states and representations, in the schema
IntraPersonalDisciplines. Later, we group the remaining disciplines, shared
vision and team learning, in the InterPersonalDisciplines schema.

IntraPersonalDisciplines
PersonalMastery
SystemsThinking
IntraPersonalMentalModel
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3.2.7 Learning Team Development

In this section, we specify the process of the development of a team into
a learning team. The process is based on the type TLearningTeam, which
is a team where common plans and goals are developed by agents of type
LearningOrgAgent .

TLearningTeam
Team

dom developcommonplans = {learningmembers}

The TLearningTeamIni schema represents the initial state of the
TLearningTeam, with empty common plans and team guiding ideas.

TLearningTeamIni
∆TLearningTeam

developcommonplans ′ = ∅

teamguidingideas ′.visions = ∅

teamguidingideas ′.purposes = ∅

teamguidingideas ′.values = ∅

learningmembers ′ = ∅

commonplans ′ = ∅

In fact, we assume in this model that the team development process in-
volves the individual development of each team member into an agent of type
LearningOrgAgent . This assumption is based on the fact that, in our model,
only this type of agent is required to develop the actions and know the princi-
ples related to the team learning discipline. Therefore, when all agent members
become LearningOrgAgent agents the team is fully developed as specified in the
TLearningTeamDeveloped schema.

TLearningTeamDeveloped
TLearningTeam

membersgroup = learningmembers

In the TLearningTeamMembersChange schema we specify that a set of
agents of type PlanningAgent (pas?), which is a subset of the members of
the team as defined for a TLearningTeam, develop new capabilities and learn
the principles related to Senge’s disciplines. This process, defined by the
entityLearnDisciplinesActionsAndPrinciples function, causes the instantiation
of a new LearningOrgAgent for each corresponding PlanningAgent . Each
new LearningOrgAgent becomes a member of the learningmembers set of the
TLearningTeam.
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TLearningTeamMembersChange
∆TLearningTeam
pas? : P PlanningAgent
actionsAndPrinciples? : P DisciplinesActionsAndPrinciples

resources ′ = resources
commongoals ′ = commongoals
developcommonplans ′ = developcommonplans
teamguidingideas ′ = teamguidingideas
commonplans ′ = commonplans
actionsAndPrinciples? �= ∅

#actionsAndPrinciples? = #pas?
pas? �= ∅

pas? ⊆ membersgroup
∀ pa : LearningOrgAgent | pa ∈ pas? •

(∃1 actsAndPrinciples : DisciplinesActionsAndPrinciples |
actsAndPrinciples ∈ actionsAndPrinciples? •

learningmembers ′ = learningmembers ∪
{entityLearnDisciplinesActionsAndPrinciples(pa,

actsAndPrinciples)})
membersgroup′ = membersgroup

The relation specified below associates two TLearningTeam states, before
and after the operation TLearningTeamMembersChange.

RelationTLearningTeam == P{TLearningTeamMembersChange •
(θTLearningTeam, θTLearningTeam ′)}

Based on the RelationTLearningTeam relation we can define a history of
state changes in a team. This history shows that, at each state, a certain
number of agents of type LearningOrgAgent are members of the team. At
the beginning of this history, the state of the TLearningTeam corresponds to
the TLearningTeamIni state. This constraint is imposed by the first predi-
cate in histTLearningTeamDevelopment , which defines that the first element
in the history sequence must be the one represented by the TLearningTeam
initial state. At the end of the history the state of the TLearningTeam
corresponds to the TLearningTeamDeveloped state. The third predicate in
histTLearningTeamDevelopment defines that in this history two contiguous
states are related by the RelationTLearningTeam. We assume, as a simplifi-
cation hypothesis, that the length of the history is equal to the number of team
members, so that the end of the history occurs when all agents are of type
LearningOrgAgent .
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opTLearningTeam
TLearningTeam
nextChangeLTeamState : RelationTLearningTeam

TLearningTeam ∈ {domnextChangeLTeamState}

histTLearningTeamDevelopment
hist : seq opTLearningTeam

∃ teamIni : TLearningTeam • (∃ opLTeam :
opTLearningTeam | opLTeam = head({1} � hist) •
(teamIni = (λ opTLearningTeam •
θTLearningTeam) opLTeam ∧
teamIni ∈ {TLearningTeamIni}))

∃ teamFin : TLearningTeam • (∃ opLTeam : opTLearningTeam |
opLTeam = head({#hist} � hist) •
(teamFin = (λ opTLearningTeam •
θTLearningTeam) opLTeam ∧
teamFin ∈ {TLearningTeamDeveloped}))

∀ i : N1 | i ∈ dom hist \ {1} •
(∃ lteamStateBefore, lteamStateAfter : TLearningTeam;
lTeamRelation : RelationTLearningTeam •
(∃ opLTeamBefore, opLTeamAfter : opTLearningTeam |
opLTeamBefore = head({i − 1} � hist) ∧
opLTeamAfter = head({i} � hist) ∧
lTeamRelation = opLTeamBefore.nextChangeLTeamState •
(lteamStateBefore = (λ opTLearningTeam •
θTLearningTeam) opLTeamBefore ∧
lteamStateAfter = (λ opTLearningTeam •

θTLearningTeam) opLTeamAfter ∧
lteamStateBefore lTeamRelation lteamStateAfter)))

The process evolves: at each new TLearningTeam state there are more agent
members of type LearningOrgAgent . This is true for all states except for the
final state when all members are learning members.

histTLearningTeamDevelopmentProgress
histTLearningTeamDevelopment
lTeamRelation : RelationTLearningTeam

∀ i , j : N1 | i ∈ dom hist ∧ j ∈ dom hist ∧ j = i + 1 •
(∃ lteamStateBefore, lteamStateAfter : TLearningTeam |
lteamStateBefore lTeamRelation lteamStateAfter •
(#(lteamStateBefore.learningmembers) <
#(lteamStateAfter .learningmembers) ∧
#hist ≤ #lteamStateAfter .membersgroup))
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We consider in this model that the learning team must develop its guiding
ideas. A LearningOrgAgent adapts his guiding ideas to the ones that emerge
from the process of dialog and discussion. These ideas must be consistent with
the values, purposes and vision maintained by the agent before the process of
adaptation. The resulting guiding ideas become the agent’s guiding ideas.

agentAdaptGuidingIdeas : (LearningOrgAgent×
GuidingIdea) → GuidingIdea

∀ la : LearningOrgAgent ; gi : GuidingIdea • (∃1 lagBefore,
lagAfter : GuidingIdea | lagBefore = la.ownguidingideas •
(agentAdaptGuidingIdeas(la, gi) = lagAfter ⇔
(isVisionPurposeConsistent(lagBefore.visions , gi .purposes) = yes

∧ isValueVisionConsistent(lagBefore.values, gi .visions) = yes
∧ isValuePurposeConsistent(lagBefore.values , gi .purposes) =

yes ∧ isVisionPurposeConsistent(lagBefore.visions ,
lagAfter .purposes) = yes ∧

isValueVisionConsistent(lagBefore.values,
lagAfter .visions) = yes ∧

isValuePurposeConsistent(lagBefore.values ,
lagAfter .purposes) = yes ∧

isVisionPurposeConsistent(lagAfter .visions ,
gi .purposes) = yes ∧

isValueVisionConsistent(lagAfter .values, gi .visions) = yes ∧
isValuePurposeConsistent(lagAfter .values , gi .purposes)

= yes ∧ la.ownguidingideas = lagAfter)))

Here, we consider that a group’s guiding ideas have been produced if all
agents members have adapted their own guiding ideas during the process, and
if at the end of this process, the shared guiding ideas become a subset of the
adapted guiding ideas of each participant agent. Thus, the shared guiding ideas
are consistent with the guiding ideas of each agent member.

dialogdiscuss : P LearningOrgAgent → GuidingIdea

∀ las : P LearningOrgAgent ; gi : GuidingIdea •
(∀ la : LearningOrgAgent | la ∈ las •
(∃1 lag : GuidingIdea • (dialogdiscuss (las) = gi ⇔
(agentAdaptGuidingIdeas(la, gi) = lag ∧

la.ownguidingideas = lag ∧ gi .visions ⊆ lag.visions ∧
gi .purposes ⊆ lag.purposes ∧ gi .values ⊆ lag.values))))

Finally, in a LearningTeam, all members are of type LearningOrgAgent . The
team guiding ideas (teamguidingideas) result from a process involving dialog and
discussion (dialogdiscuss). We also define that there are resources and goals that
are shared among the team members (learningmembers).
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LearningTeam
TLearningTeamDeveloped

teamguidingideas = dialogdiscuss (learningmembers)
∃ r : Resource | r ∈ resources • (∀ a : LearningOrgAgent |

a ∈ learningmembers • (∃ p : Plan |
p ∈ a.plans • r ∈ {a.resourcesofplan p}))

∀ g : Goal | g ∈ commongoals • (∀ a : LearningOrgAgent |
a ∈ learningmembers • g ∈ a.goals)

3.2.8 Shared Vision

As mentioned above, team guiding ideas result from dialogdiscuss processes.
Similarly, the shared vision of a set of teams results from dialogdiscuss processes
involving all these teams. The basic assumption here is that for every team in
the organization, at least one of its members is also a member of another team8.
Therefore, dialogdiscuss processes should allow the development of shared guid-
ing ideas that reflect the influence of all teams in a particular organization. It
is also important to note that guiding ideas are composed of visions, values
and purposes. Hence, in the SharedVision schema the set of shared visions
(sharedvisions) is obtained from the visionsFromGuidingIdea function. This
function, in its turn, extracts shared visions from the guiding ideas associated
with interTeamsGuidingIdeas.

SharedVision
learningteams : P1 LearningTeam
interTeamsGuidingIdeas : PLearningTeam → GuidingIdea
sharedvisions : PVision
visionsFromGuidingIdea : P GuidingIdea → P Vision

sharedvisions = visionsFromGuidingIdea(ran interTeamsGuidingIdeas)
∀ gt : P learningteams ; gi : GuidingIdea • (∀ t1, t2 : LearningTeam |

t1 ∈ gt ∧ t2 ∈ gt • (∀ la1, la2 : LearningOrgAgent |
la1 ∈ t1.learningmembers ∧ la2 ∈ t2.learningmembers ∧
(la1 ∈ t1.learningmembers ∩ t2.learningmembers ∨

la2 ∈ t1.learningmembers ∩ t2.learningmembers) •
(interTeamsGuidingIdeas gt = gi ⇔ dialogdiscuss{la1 , la2} =
t1.teamguidingideas = t2.teamguidingideas)))

Senge recognizes basically three types of agent’s behaviors towards shared
vision:

• Enrollment: process of becoming part of something by choice.
8For example, suppose that in a particular organization there is a software development

team with two developers and one supervisor, and that there is also a team of supervisors. In
this case, the software development supervisor is a member of both teams.
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• Commitment: involves enrollment and, in addition, a feeling of responsi-
bility towards the realization of the vision.

• Compliance: the agent cooperates with the vision, supporting it and doing
what is expected of him. They are not enrolled or committed, though.
Among the different levels of compliance, Senge presents: genuine, formal,
grudging, noncompliance and apathy.

Senge also recognizes that, based only on the agent’s behavior, it is hard to
distinguish between genuinely compliant, committed or enrolled agents. Com-
mitment, however, brings energy, passion and excitement, according to Senge.
[Sen90, p. 218]

In an ideal Learning Organization the agents develop commitment to shared
vision. The agents not only play by the rules of the game, but also feel re-
sponsible by the game and change rules as required in order to accomplish the
vision.

Thus, in a Learning Organization the collaboration among agents occur at
the level of commitment to joint goals. However, such commitment results from
the fact that the reasons underlying the joint action are rooted in the motivations
of the agent. Agents collaborate because their motivations drive their actions.

In this sense, the organization affects the minds of the agents, not only their
behavior. This presents a close relationship to a basic problem of sociology and
Distributed Artificial Intelligence: the micro-macro link [CC96]. This problem
deals with the interaction involving individual behavior and structural rules in
sets of agents. In our case, it is individual behavior, driven by motivations and
personal mastery, that leads to the emergence of a shared vision. However,
Systems Thinking, Mental Models, and Team Learning are also important in
this process. The first provides the skills that enable each individual agent to
perceive reality using a systemic perspective, in which a given agent is affected by
and affects the environment state. The second enables each agent to recognize
its underlying assumptions while interacting with the environment. Finally,
the third allows an agent to develop the perception of the existence of different
individual perspectives, regarding a given context, thus enabling the production
of a collective perspective.

At this point it is also convenient to group the learning team and shared
vision. Therefore, the InterPersonalDisciplines schema includes disciplines that
require interaction among agents of type LearningOrgAgent .

InterPersonalDisciplines
InterPersonalMentalModel
TeamLearning
sharedvision : SharedVision

3.2.9 Learning Organization Agent and Disciplines

Complementing what has been modelled so far, we define that a
LearningOrgAgent develops all of Senge’s disciplines. Based on its motivations,
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on the principles and actions related to each discipline, a given agent develops
new capabilities to act. Moreover, the agent’s guiding ideas are consistent with
all of its goals.

LearningOrgAgentAndDisciplines
LearningOrgAgent
improveIntraPersonal : P Motivation × PAction×

IntraPersonalDisciplines → P Action
improveInterPersonal : P Motivation × PAction×

InterPersonalDisciplines → P Action
personalmastery : PersonalMastery
mentalmodels : MentalModel
systemsthinkingskill : SystemsThinking

∃1 gi : GuidingIdea | gi = ownguidingideas •
(isVisionGoalConsistent(gi .visions , allgoals) = yes ∧
isPurposeGoalConsistent(gi .purposes , allgoals) = yes ∧
isValueGoalConsistent(gi .values, allgoals) = yes)

(mapset trifirst)(dom improveIntraPersonal) = {motivations}
(mapset trisecond)(dom improveIntraPersonal) = {capableof }
(mapset trifirst)(dom improveInterPersonal) = {motivations}
(mapset trisecond)(dom improveInterPersonal) = {capableof }
ran improveIntraPersonal �= ∅ ∧ ran improveInterPersonal �= ∅

3.2.10 Perception, Action and State

The Learning Organization Agent’s perception depends on its motivations, men-
tal models, guiding ideas and goals. The agent’s goals and guiding ideas are
influenced by the development of the personal mastery discipline. Moreover,
the goals that result from the creative tension are contingent on the agent’s
personal visions.

LearningOrgAgentPerception
LearningOrgAgentAndDisciplines
OrgAgentPerception
learnorgperceives : P Motivation → MentalModel →

GuidingIdea → P Role → P Goal → Environment → View

dom learnorgperceives = {motivations}
dom(learnorgperceives motivations) = {mentalmodels}
dom(learnorgperceives motivations mentalmodels) =

{personalmastery.guidingidea}
dom(learnorgperceives motivations mentalmodels

personalmastery.guidingidea) = {roles}

The action of this agent is influenced by its motivations, mental models,
guiding ideas, goals and plans. Also, as in the LearningOrgAgentPerception
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schema, the agent’s goals and guiding ideas are influenced by the development
of the personal mastery discipline as the goals taken into account are restricted
to the ResolutionGoal set obtained from the creativetension function which is
defined in the PersonalMastery schema; and its plans are influenced by the
development of the systems thinking skill.

LearningOrgAgentAction
LearningOrgAgentAndDisciplines
OrgAgentAction
learnorgact : PMotivation → MentalModel → GuidingIdea →

PResolutionGoal → PPlan → View → Environment → Actions

dom learnorgact = {motivations}
dom(learnorgact motivations) = {mentalmodels}
dom(learnorgact motivations mentalmodels) =

{personalmastery.guidingidea}

The state of this agent depends on its perception, action and derives from
the organizational agent state as defined in the LOAgStateIncludes schema.
Moreover, some constraints related to the agent’s perception and action are
introduced in the LOAgStatePerceptionActionConstraints schema. Hence, the
goals that result from the creative tension depend on the agent’s personal vision
and influence the learnorgperceives and learnorgact functions. Furthermore, in
the learnorgact function, plans are influenced by the development of capabilities
related to systems thinking.

LOAgStateIncludes
LearningOrgAgentPerception
LearningOrgAgentAction
OrgAgentState
SystemsThinking



3 Modeling the Fifth Discipline as MAS 37

LOAgStatePerceptionActionConstraints
LOAgStateIncludes

dom(learnorgperceives motivations mentalmodels
personalmastery.guidingidea roles) =
personalmastery.creativetension({actualpercepts},
personalmastery.personalvisions)

dom(learnorgact motivations mentalmodels
personalmastery.guidingidea) =
{personalmastery.creativetension({actualpercepts},
personalmastery.personalvisions)}

dom((learnorgact motivations mentalmodels
personalmastery.guidingidea)
(personalmastery.creativetension({actualpercepts},
personalmastery.personalvisions))) =
{systemsthinkingskill .resultingplans}

Similarly, the LOAgStateSystemsThinkingConstraints schema present sev-
eral constraints related to the functions defined in the SystemsThinking schema.
For example, the function contextassessment is applied on actualpercepts , so
that the construction of contexts depends on the perception of the environ-
ment; the events produced by eventanalyser are obtained from these contexts;
behavioralpatterns result from analysis of the events; the construction or reuse of
computational models depends not only on these patterns and events, but also
on previously available generic structures and computational models. Simula-
tions performed on a set of scenarios using the selected computational models
produce simulatedpotentialstates . Then, based on the agent’s vision, a set of
states is selected, and resultingplans corresponds to the set of plans selected to
be performed so that the agent achieves the selectedpotentialstates .
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LOAgStateSystemsThinkingConstraints
LOAgStateIncludes

allplans ⊆ planlib
dom contextassessment = {actualpercepts}
dom eventanalyser = ran contextassessment
events = eventanalyser (contextassessment (actualpercepts))
dom behavioralpatternanalyser = ran eventanalyser
(mapset tetrafirst)(dom compmodelsdesign) =

ran behavioralpatternanalyser
behavioralpatterns = behavioralpatternanalyser (events)
compmodels = compmodelsdesign(behavioralpatterns, events ,

genericstructures, compmodellib)
simulatedpotentialstates = simulation(compmodels , scenarios)
selectedpotentialstates = potentialstatesanalyser(

personalmastery.personalvisions ,
simulatedpotentialstates)

(mapset tetrasecond)(dom compmodelsdesign) = ran eventanalyser
(mapset first)(dom simulation) ⊆ ran compmodelsdesign
(mapset second)(dom potentialstatesanalyser) ⊆ ran simulation
(mapset second)(dom planfrompotentialstate) ⊆ {planlib}
resultingplans = planfrompotentialstate(selectedpotentialstates , planlib)

Finally, the LearningOrgAgentState schema includes the agent’s perception,
action and also the constraints presented above. Moreover, the willdo function
depends on plans (resultingplans) as produced by the agent’s systems think-
ing (systemsthinkingskill). The agent’s actual perception are influenced by its
motivations, guiding ideas, mental models, goals and roles performed by the
agent.

LearningOrgAgentState
LOAgStateIncludes

LOAgStateSystemsThinkingConstraints
LOAgStatePerceptionActionConstraints
actualpercepts = learnorgperceives motivations mentalmodels

personalmastery.guidingidea roles allgoals posspercepts
willdo = learnorgact motivations mentalmodels

personalmastery.guidingidea(
⋃

(ran
personalmastery.creativetension))
systemsthinkingskill .resultingplans actualpercepts env

3.2.11 Operations

Considering operations related to learning organization agents, we have the
∆LearningOrgAgentState and LearningOrgAgentInteracts schemes.
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∆LearningOrgAgentState
LearningOrgAgentState
LearningOrgAgentState ′

∆OrgAgentState
learnorgperceives ′ = learnorgperceives
learnorgact ′ = learnorgact

The LearningOrgAgentInteracts schema specifies that agent interaction with
the environment (including interaction with other agents) is influenced by its
perceptions. These perceptions serve as input to the systems thinking skill and
are influenced by the mental models and guiding ideas developed by the agent.
Finally, the actions that will be performed by the agent, depend on its new
motivations, mental models, guiding ideas, goals and new plans produced by
the agent’s systems thinking capabilities.

LearningOrgAgentInteracts
∆LearningOrgAgentState
DeltaSystemsThinking
OrgAgentInteracts

actualpercepts ′ = learnorgperceives motivations ′

mentalmodels ′personalmastery ′.guidingidea roles ′

allgoals ′ posspercepts ′

systemsactualpercepts? = actualpercepts ′

resultingplans ′ = resultingplans!
willdo′ = learnorgact motivations ′ mentalmodels ′

personalmastery ′.guidingidea {allgoals ′}
resultingplans ′ actualpercepts ′ env ′

3.3 The Learning Organization Model

Initially, we discuss how some basic types used in the definition of a Learning
Organization, e.g.: groups, teams organizations and formal organizations, are
defined in our model9. A group is a set of individuals that share a set of re-
sources. Thus, in such a group there is no need for a joint commitment towards
a joint goal. A team is a group where there is a set of goals that is shared
among its members. In a learning team all members are agents of the type
LearningOrgAgent and it is possible to develop team’s guiding ideas that are
shared among its members. An organization comprises an organizational struc-
ture, sets of teams, roles, norms, and organizational goals. The structure of an
organization is specified as a connected graph in which the node set corresponds
to teams and the edge set corresponds to relationships among the teams. Roles
are specified as sets of actions that must be performed, sets of goals, sets of
resources that an agent, while performing this role, has permission to manage,

9These types are omitted in this paper. The interested reader should refer to [Sil04]
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and a level of organizational autonomy. This level defines whether the agent
performing such role has some freedom to define new tasks in order to achieve
the goals associated with the role (as stipulated in norms), or even to change
part of the goals, or no freedom at all. We also define that an organization
is formal if there are defined organizational positions and norms defined in its
context, and each member in the organization performs at least one role.

We specify a Learning Organization as a type of formal organization in which
all teams are learning teams. In summary, the LearningOrg schema specifies,
via schema inclusion, that a Learning Organization is such that it has structure,
roles, norms that permit that all teams develop the team learning discipline.
Moreover, every agent in the organization develops its personal mastery, reflects
on their mental models, have systems thinking skills, collectively develop shared
visions, and perform roles in the organization.

The reference to sharedvision.sharedvisions gives access to the organizational
shared vision. We require that this set is non-empty, ie, a Learning Organiza-
tion must develop shared visions. In addition, sharedvision.learningteams is
restricted so that the teams that produce such visions are exactly the teams
that constitute the organization.

LearningOrg
FormalOrg
learningteams : P LearningTeam
sharedvision : SharedVision

sharedvision.learningteams = learningteams
sharedvision.sharedvisions �= ∅

∀ lt : LearningTeam | lt ∈ learningteams •
(∃1 te : Team | te ∈ teams • (#(te.membersgroup) = 0 ∧
te.resources = lt .resources ∧
te.commongoals = lt .commongoals ∧
te.teamguidingideas = lt .teamguidingideas ∧
te.commonplans = lt .commonplans ∧
te = (λ LearningTeam • θTeam) lt))

∀ lt : LearningTeam | lt ∈ learningteams •
(∀ la : LearningOrgAgent | la ∈ lt .learningmembers •
(∃ r : Role | r ∈ roles • perform(la, r , regset) = pos))

#teams = #learningteams

3.4 Goal Generation, Assessment, Adoption and Removal

In this section we consider situations involving the generation, assessment, adop-
tion and removal of goals by agents of type LearningOrgAgent . The process that
we describe here is inspired by the one presented in [dL01]. In that work, the
AssessGoals schema presents an autonomous agent’s goal assessment process,
where the goallibrary variable represents a repository of goals known by the
agent. The motiveEffectGenerate and motiveEffectDestroy functions return an
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integer that represents, respectively, the effect of adopting or removing a set of
goals on the agent’s motivations. Those functions are influenced by the agent’s
motivations, goals and current perceptions. Hence, based on AssessGoals , we
specify that in the goal assessment process it is relevant the role of the agent’s
guiding ideas: the agent has to consider the relevancy of the goals in relation to
the agent’s personal vision, purpose, and their consistency against the agent’s
values.

LearningOrgAgentAssessGoals
LearningOrgAgentState
AssessGoals
lorgAgMotiveEffectGenerate : PMotivation → GuidingIdea →

PRole → PGoal → View → PGoal → Z

lorgAgMotiveEffectDestroy : PMotivation → GuidingIdea →
PRole → PGoal → View → PGoal → Z

goals ⊆ goallibrary
∀ gs : P goallibrary • (satisfyGenerate gs =

lorgAgMotiveEffectGenerate motivations
personalmastery.guidingidea roles goals actualpercepts gs ∧
satisfyDestroy gs = lorgAgMotiveEffectGenerate

motivations personalmastery.guidingidea roles goals
actualpercepts gs)

In addtion, [dL01] define operations related to goal generation and de-
struction by an autonomous agent. Therefore, in the GenerateGoals schema
an agent generates a set of goals in goallibrary if this set presents the
greatest motivational effect, assessed by the satisfyGenerate function. Sim-
ilarly, in DestroyGoals an agent destroys a subset of its goals if the de-
struction of this set presents the greatest motivational effect, assessed by
the satisfyDestroy function. In the LearningOrgAgentGenerateGoals and
LearningOrgAgentDestroyGoals schemes, respectively, we present the goal gen-
eration and destruction for the LearningOrgAgent . Here, the definitions of the
satisfyGenerate and satisfyDestroy functions were adapted so that the agent’s
guiding ideas are also taken into account, as a consequence of the inclusion of
the LearningOrgAgentAssessGoals schema.

LearningOrgAgentGenerateGoals
∆LearningOrgAgentState
LearningOrgAgentAssessGoals

∃ gs : PGoal | gs ⊆ goallibrary • (∀ os : P Goal | os ∈ (P goallibrary) •
((satisfyGenerate gs ≥ satisfyGenerate os) ∧ goals ′ = goals ∪ gs))
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LearningOrgAgentDestroyGoals
∆LearningOrgAgentState
LearningOrgAgentAssessGoals

∃ gs : PGoal | gs ⊆ goallibrary • (∀ os : P Goal | os ∈ (P goallibrary) •
((satisfyDestroy gs ≥ satisfyDestroy os) ∧ goals ′ = goals \ gs))

Moreover, [dL01] define the EntityAdoptGoals and EntityRemoveGoals func-
tions. The first takes an entity and a set of goals and instantiates a new entity
that inherits the original entity’s features with the addition of the new goals.
Similarly, the second function instantiates a new entity that is identical to the
original one, except for the removed goals. In our work, those functions were
extended to include the new variables that we have added to the specification
of an entity in our model.

EntityAdoptGoals : (Entity × P Goal) → Entity

∀ gs : PGoal ; old ,new : Entity •
(EntityAdoptGoals(old , gs) = new ⇔
(new .goals = old .goals ∪ gs ∧

new .allgoals = old .allgoals ∪ gs ∧
new .capableof = old .capableof ∧
new .attributes = old .attributes ∧
new .store = old .store ∧
new .motivations = old .motivations ∧
new .ownedresources = old .ownedresources ∧
new .instsreq = old .instsreq ∧
new .resourcesofplan = old .resourcesofplan ∧
new .plans = old .plans ∧
new .planforgoal = old .planforgoal ∧
new .orgs = old .orgs ∧
new .roles = old .roles ∧
new .allplans = old .allplans))
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EntityRemoveGoals : (Entity × PGoal) → Entity

∀ gs : PGoal ; old ,new : Entity •
(EntityRemoveGoals(old , gs) = new ⇔
(new .goals = old .goals \ gs ∧

new .allgoals = old .allgoals \ gs ∧
new .capableof = old .capableof ∧
new .attributes = old .attributes ∧
new .store = old .store ∧
new .motivations = old .motivations ∧
new .ownedresources = old .ownedresources ∧
new .instsreq = old .instsreq ∧
new .resourcesofplan = old .resourcesofplan ∧
new .plans = old .plans ∧
new .planforgoal = old .planforgoal ∧
new .orgs = old .orgs ∧
new .roles = old .roles ∧
new .allplans = old .allplans))

At this point we consider goal adoption and removal by a LearningOrgAgent :
the agent has to consider its motivations and guiding ideas to assess its interest in
adopting (or removing) a given set of goals. The getLOrgAgFromGenerateGoals
auxiliary function is used to extract the definitions concerning a
LearningOrgAgent based on the type LearningOrgAgentGenerateGoals .

getLOrgAgFromGenerateGoals == (λ
LearningOrgAgentGenerateGoals • LearningOrgAgent)

The specification of the lOrgAgentAdoptGoals and lOrgAgentRemoveGoals
functions is based, respectively, on the EntityAdoptGoals and
EntityRemoveGoals , defined above.

lOrgAgentAdoptGoals : (LearningOrgAgent × P

Goal) → LearningOrgAgent

∀ gs : PGoal ; oldAg,newAg : LearningOrgAgent •
(∃1 lag : GuidingIdea | lag = oldAg.ownguidingideas •
(∃1 oldAgGGoals : LearningOrgAgentGenerateGoals |
oldAg ∈ getLOrgAgFromGenerateGoals (oldAgGGoals) •
(lOrgAgentAdoptGoals(oldAg, gs) = newAg ⇔
(isVisionGoalConsistent(lag.visions , gs) = yes ∧

isPurposeGoalConsistent(lag.purposes , gs) = yes ∧
isValueGoalConsistent(lag.values , gs) = yes ∧
gs ⊆ oldAgGGoals .goallibrary ∧
(∀ os : P Goal | os ∈ (P oldAgGGoals .goallibrary) •

oldAgGGoals .satisfyGenerate gs ≥
oldAgGGoals .satisfyGenerate os) ∧

EntityAdoptGoals(oldAg, gs) = newAg))))
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lOrgAgentRemoveGoals : (LearningOrgAgent × P

Goal) → LearningOrgAgent

∀ gs : PGoal ; oldAg,newAg : LearningOrgAgent
• (∃1 lag : GuidingIdea | lag =
oldAg.ownguidingideas • (∃1 oldAgGGoals :
LearningOrgAgentGenerateGoals | oldAg ∈
getLOrgAgFromGenerateGoals (oldAgGGoals) • (∃1

newGoalSet : P Goal | newGoalSet = oldAg.goals \ gs •
(lOrgAgentRemoveGoals(oldAg, gs) = newAg ⇔
(isVisionGoalConsistent(lag.visions ,newGoalSet) = yes ∧

isPurposeGoalConsistent(lag.purposes ,newGoalSet) = yes ∧
isValueGoalConsistent(lag.values ,newGoalSet) = yes ∧
gs ⊆ oldAgGGoals .goallibrary ∧
(∀ os : P Goal | os ∈ (P oldAgGGoals .goallibrary) •

oldAgGGoals .satisfyGenerate gs ≥
oldAgGGoals .satisfyGenerate os) ∧

EntityRemoveGoals(oldAg, gs) = newAg)))))

In the LearningOrgAgentAdoptGoals and LearningOrgAgentRemoveGoals
schemes we define the goal adoption and removal by a LearningOrgAgent . This
specification is based on the lOrgAgentAdoptGoals and lOrgAgentRemoveGoals
functions, respectively, and therefore goal adoption and removal depend on
the motivational effect associated to this process and to the consistency
of these goals with the agent’s guiding ideas. Furthermore, we use the
LearningOrgAgentGenerateGoals schema to define that an agent adopts a goal
just as if it had generated such goal 10. Hence, considering a set of available
goals (goallibrary) the LearningOrgAgent adopts those goals that present the
greatest return for the satisfyGenerate function

LearningOrgAgentAdoptGoals
∆LearningTeam
aa? : LearningOrgAgent
gs? : P Goal

aa? ∈ learningmembers
learningmembers ′ = (learningmembers \ {aa?})∪

{lOrgAgentAdoptGoals(aa?, gs?)}
membersgroup′ = membersgroup
resources ′ = resources
teamguidingideas ′ = teamguidingideas
commonplans ′ = commonplans
developcommonplans ′ = developcommonplans
commongoals ′ = if (∀ a : LearningOrgAgent | a ∈ learningmembers ′ •

gs? ⊆ a.goals) then commongoals ∪ (gs? \ (gs? ∩ commongoals))
else commongoals

10This strategy is inspired by the one adopted in [dL01].
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LearningOrgAgentRemoveGoals
∆LearningTeam
aa? : LearningOrgAgent
gs? : P Goal

aa? ∈ learningmembers
gs? ⊆ aa?.goals
learningmembers ′ = (learningmembers \ {aa?})∪

{lOrgAgentRemoveGoals(aa?, gs?)}
membersgroup′ = membersgroup
resources ′ = resources
teamguidingideas ′ = teamguidingideas
commonplans ′ = commonplans
developcommonplans ′ = developcommonplans
commongoals ′ = if ((gs? ∩ commongoals) ⊂ commongoals)

then commongoals \ (gs? ∩ commongoals)
else developCommonGoals (learningmembers ′)

3.5 Interactions, Knowledge and Mental Models

In this section we present a formalization for some of the processes involving
interactions among agents of type LearningOrgAgent and how these interactions
affect their knowledge and mental models. This section is divided in four sub-
sections. The first deals with aspects related to communication among agents.
In the second we present a model for the agent’s knowledge and mental models.
The third presents a model for interactions and conversations among agents.
In the last subsection two specific conversation types are presented: dialog and
discussion, based on the team learning discipline. We note that in this section
the term ”agent” refers to a LearningOrgAgent . Moreover, in this work the
distinction between ”beliefs” and ”knowledge” is not relevant, hence, they are
considered to be equivalent.

3.5.1 Communication

Initially, we define that a Message corresponds to a set of Attribute.
Although there are more detailed definitions for message and agent
communication[FFMM94, fIPA00], this level of abstraction is adequate for our
work. Hence, messages may carry information about some specific entity or
about the environment in general.

Message == P Attribute

We assume, also, that all communication occur under a given conversational
context that we formalize as a subject context. These subject contexts may
involve agents’ beliefs or goals.
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SubjectContext ::= bels〈〈AGBelief 〉〉
| subjgoals〈〈P Goal〉〉

The agent’s perceptions include several types of information obtained from
the environment. This is also the case for messages destined to a particu-
lar agent. In the MessageExtraction schema we define that the extraction of
a message from percepts involves specific actions (messageExtractionActions).
Clearly, the agent must be capable of performing such actions. The getMessage
function takes sets of actions and percepts and returns a message. Moreover,
message extraction only occurs if the agent selects (learnorgact) the actions
required to perform this activity.

MessageExtraction
LearningOrgAgentState
messageExtractionActions : P Action
getMessage : (P Action × View) → Message

messageExtractionActions ⊂ internalperactions
(mapset first)(dom getMessage) = {messageExtractionActions}
∀ v : View ; acts : P Action; m : Message •

(getMessage(acts , v) = m ⇔
(acts = messageExtractionActions ∧

messageExtractionActions �= ∅ ∧
messageExtractionActions = learnorgact motivations

mentalmodels personalmastery.guidingidea {allgoals}
resultingplans actualpercepts env ∧

v = learnorgperceives motivations mentalmodels
personalmastery.guidingidea roles allgoals posspercepts))

In the ExtractMessage schema we present an abstraction for the extraction
process. This involves the reception of new percepts (newPercepts?) and the
extraction of a given message (extractedMessage!).

ExtractMessage
LearningOrgAgentInteracts
MessageExtraction
newPercepts? : View
extractedMessage! : Message

willdo′ = messageExtractionActions
extractedMessage! = getMessage(messageExtractionActions ,

newPercepts?)

The agent interprets messages. In the MessageInterpretation
schema we define that the interpretation process involves actions
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(messageInterpretationActions) that the agent must be capable of per-
forming. The function interpretMessage takes a set of actions and a message
and returns an interpretation (View). In addition, interpretation only oc-
curs if the required actions are selected by the agent in its action selection
(learnorgact) function.

MessageInterpretation
LearningOrgAgentState
messageInterpretationActions : P Action
interpretMessage : (P Action × Message) �→ View

messageInterpretationActions ⊂ capableof
(mapset first)(dom interpretMessage) =

{messageInterpretationActions}
∀ v : View ; acts : P Action; m : Message •

(interpretMessage(acts ,m) = v ⇔
(acts = messageInterpretationActions ∧

messageInterpretationActions �= ∅ ∧
messageInterpretationActions = learnorgact motivations

mentalmodels personalmastery.guidingidea {allgoals}
resultingplans actualpercepts env))

Thus, given an extracted message, the InterpretMessage operation produces
an interpreted message. The interpretation is influenced by the agent’s mental
models.

InterpretMessage
LearningOrgAgentInteracts
MessageInterpretation
extractedMessage? : Message
interpretedMessage! : Message

willdo′ = messageInterpretationActions
interpretedMessage! = interpretMessage

(messageInterpretationActions , extractedMessage?)
store ′ = store ∪ interpretedMessage!

Internal views, such as the ones produced by the interpretation process, can
be recalled from the agent’s store.
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ViewRecalling
LearningOrgAgentState
recallActions : P Action
recallView : (P Action × View) �→ View

recallActions ⊂ internalperactions
(mapset first)(dom recallView) = {recallActions}
∀ v1, v2 : View ; acts : PAction • (recallView

(acts , v1) = v2 ⇔
(acts = recallActions ∧

recallActions �= ∅ ∧
v1 ⊂ store ∧
recallActions = learnorgact motivations mentalmodels

personalmastery.guidingidea {allgoals}
resultingplans actualpercepts env))

Recalling of an internal concept involves the reception of a given inter-
nal image and, if that image is stored in the agent’s memory, returning it
(recalledView !).

RecallView
LearningOrgAgentInteracts
ViewRecalling
whatView? : View
recalledView ! : View

willdo′ = recallActions
recalledView ! = recallView(recallActions ,whatView?)

Alternatively, the agent may be able to infer views that were not previously
stored in its store.

ViewInfer
LearningOrgAgentState
inferActions : P Action
inferView : (P Action × View) �→ View

inferActions ⊂ capableof
(mapset first)(dom inferView) = {inferActions}
∀ v1, v2 : View ; acts : PAction •

(inferView (acts , v1) = v2 ⇔
(acts = inferActions ∧

inferActions �= ∅ ∧
v1 ∩ store = ∅ ∧
inferActions = learnorgact motivations mentalmodels

personalmastery.guidingidea {allgoals}
resultingplans actualpercepts env))



3 Modeling the Fifth Discipline as MAS 49

InferView
LearningOrgAgentInteracts
ViewInfer
whatView? : View
inferredView ! : View

willdo′ = inferActions
inferredView ! = inferView(inferActions ,whatView?)
store ′ = store ∪ inferredView !

The agent is also capable of producing messages for future transmission.
These messages are also influenced by the agent’s motivations and mental mod-
els.

MessageProduction
LearningOrgAgentState
messageProductionActions : PAction
produceMessage : PAction �→ Message

messageProductionActions ⊂ capableof
dom produceMessage = {messageProductionActions}
∀m : Message; acts : PAction •

(produceMessage acts = m ⇔
(acts = messageProductionActions ∧

messageProductionActions �= ∅ ∧
messageProductionActions = learnorgact motivations

mentalmodels personalmastery.guidingidea {allgoals}
resultingplans actualpercepts env))

ProduceMessage
LearningOrgAgentInteracts
MessageProduction
newEnv? : P Attribute
producedMessage! : Message

env ′ = newEnv?
willdo′ = messageProductionActions
producedMessage! = produceMessage messageProductionActions

An agent transmits messages using actions that are a subset of the agent’s
capabilities. As we are interested in specifying sequences of interactions, in the
function expose we also use an index in its domain.
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MessageExposition
LearningOrgAgentState
exposeActions : PAction
expose : (PAction × Message × N1) �→ Message

exposeActions ⊂ learningTeamCapabilities
(mapset trifirst)(dom expose) = {exposeActions}
∀mint ,mexp : Message; acts : P Action; ind : N1 •

(expose(acts ,mint , ind) = mexp ⇔
(acts = exposeActions ∧

exposeActions �= ∅ ∧
exposeActions = learnorgact motivations mentalmodels

personalmastery.guidingidea {allgoals}
resultingplans actualpercepts env))

A message internally produced using the ProduceMessage operation may be
transmitted by the agent.

ExposeMessage
LearningOrgAgentInteracts
MessageExposition
ind? : N1

producedMessage? : Message
exposedMessage! : Message

env ′ = env
willdo′ = exposeActions
exposedMessage! = expose(exposeActions , producedMessage?, ind?)

3.5.2 Interpretation, Knowledge and Mental Models

In this section we introduce models for the knowledge and mental models of
a given agent. We assume here that the agent’s mental model includes its
knowledge and beliefs.

An agent knows a view if it can be recalled from its store or if it can infer it
from the views contained in its store.
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LOrgAgentKnowledgeIncludes
ViewInfer
ViewRecalling
knowingActions : P Action
knowsAView : (P Action × View) → Consistency
knowsAViewState : (P Action × View) → P Attribute
knows , doesNotKnow : Attribute

knowingActions ⊂ capableof
(mapset first)(dom knowsAView) = {knowingActions}
(mapset first)(dom knowsAViewState) = {knowingActions}
ran knowsAViewState = {{knows}, {doesNotKnow}}

The knowsAView function returns yes when the received concept is already
stored in the agent’s store, or if its possible to infer this concept from the
knowledge present in this store. Otherwise, this function returns no. The
LOrgAgentKnowledgeKnows and LOrgAgentKnowledgeDoesNotKnow schemes
describe, respectively, the first and second cases.

LOrgAgentKnowledgeKnows
LOrgAgentKnowledgeIncludes

∀ v : View ; acts : P Action • (∃ v1 :
View | v1 ⊂ store • (knowsAView(acts , v) = yes ⇔
(acts = knowingActions ∧

knowingActions �= ∅ ∧
knowingActions = learnorgact motivations mentalmodels

personalmastery.guidingidea{allgoals}
resultingplans actualpercepts env ∧

(recallView(acts , v1) = v ∨
inferView(acts , v1) = v))))

LOrgAgentKnowledgeDoesNotKnow
LOrgAgentKnowledgeIncludes

∀ v : View ; acts : P Action • (∀ v1 :
View | v1 ⊂ store • (knowsAView(acts , v) �= yes ⇔
(acts = knowingActions ∧

knowingActions �= ∅ ∧
knowingActions = learnorgact motivations mentalmodels

personalmastery.guidingidea{allgoals}
resultingplans actualpercepts env ∧

(recallView(acts , v1) �= v ∧
inferView(acts , v1) �= v))))

Similarly, in the LOrgAgentKnowledgeState schema the knowsAViewState
function returns the knows attribute when the received concept is already stored
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in the agent’s store or if it can be infered from this store contents. Otherwise,
it returns doesNotKnow .

LOrgAgentKnowledgeState
LOrgAgentKnowledgeIncludes

∀ v : View ; acts : P Action; c : Consistency •
(knowsAViewState(acts , v) = {knows} ⇔
(knowsAView(acts , v) = yes ∧ c = yes))

∀ v : View ; acts : P Action; c : Consistency •
(knowsAViewState(acts , v) = {doesNotKnow} ⇔
(knowsAView(acts , v) �= yes ∧ c �= yes))

Finally, the LearningOrgAgentKnowledge schema describes that there are
known and unknown concepts for a given agent.

LearningOrgAgentKnowledge =̂ LOrgAgentKnowledgeKnows ∧
LOrgAgentKnowledgeDoesNotKnow ∧
LOrgAgentKnowledgeState

The operation described in the LearningOrgAgentKnowsView schema re-
ceives a specific concept as input (whatView?) and returns an answer (answer !).
This answer may be yes if the agent knows this concept, otherwise this answer
will be no.

LearningOrgAgentKnowsView
LearningOrgAgentInteracts
LearningOrgAgentKnowledge
whatView? : View
answer ! : Consistency

willdo′ = knowingActions
answer ! = knowsAView(knowingActions ,whatView?)

An agent capable of interacting has knowledge, extracts, interprets, pro-
duces, and exposes messages.

LOrgAgentInts =̂ LearningOrgAgentKnowsView ∧ ExtractMessage ∧
InterpretMessage ∧ RecallView ∧ ProduceMessage ∧ ExposeMessage
∧ InferView

Now, we specify that an agent performing interactions may have models of
these interactions, and also, may change these models.
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LOrgAgentIntsModels
LOrgAgentInts
modelOfAgentInteractions : LOrgAgentInteracting →

LOrgAgentInteractingModel
changeModelOfAgentInteractions : (LOrgAgentInteracting

×LOrgAgentInteractingModel) → LOrgAgentInteractingModel

ranmodelOfAgentInteractions = mentalmodels .modelLOrgAgInts
ran changeModelOfAgentInteractions =

mentalmodels .modelLOrgAgInts

LOrgAgentInteracting =̂ [LOrgAgentIntsModels ]

What is the agent capable of knowing ? The schema WhatKnow shows a few
examples of what is possible to represent concerning a given agent’s knowledge.
The agent ai knows its own vision v1. It also knows its interpretation of view
v1. The agent ai also knows its interpretation for the message sent by aj .

WhatKnow
interactionPool : P LOrgAgentInteracting

∀ ai , aj : LOrgAgentInteracting | ai ∈ interactionPool ∧
aj ∈ interactionPool ∧ ai �= aj • (∃ v1, v2 : View ; mj :
Message; indj : N1 • (ai .knowsAView
(ai .knowingActions , v1) = yes ∧
ai .knowsAView(ai .knowingActions ,

ai .interpretMessage
(ai .messageInterpretationActions , v1)) = yes ∧

ai .knowsAView(ai .knowingActions ,
ai .interpretMessage
(ai .messageInterpretationActions , aj .expose
(aj .exposeActions ,mj , indj ))) = yes))

3.5.3 Agent Interactions

The SendMessage schema formalizes the process of a specific agent sending a
message to a group of agents. Here, we suppose that the sender agent broadcasts
its messageSent message.

SendMessage
sender : LOrgAgentInteracting
receivers : P LOrgAgentInteracting
messageSent : Message

sender /∈ receivers
receivers �= ∅



3 Modeling the Fifth Discipline as MAS 54

Every agent in the receivers group receives its respective message (in
messagesReceived).

ReceiveMessage
sender : LOrgAgentInteracting
receivers : P LOrgAgentInteracting
messagesReceived : PMessage

sender /∈ receivers
receivers �= ∅

#messagesReceived = #receivers

A complete interaction involves sending and receiving a message. The
presence of noise in communication defines to what degree the sent and re-
ceived messages are similar. Each receiver agent has its own interpreta-
tion (interpretedMessage) of its respective received message (a member of
messagesReceived). However, every receiver agent knows that the received mes-
sage is influenced by the exposition performed by the sender agent, and this
exposition is influenced by the sender’s mental models. Each agent in the group
knows that the other agents have their own interpretation (interpretedMessage)
of their respective member of messagesReceived .

Interaction
SendMessage
ReceiveMessage
agents : PLOrgAgentInteracting
interactionIndex : N1

agents = {sender} ∪ receivers
∃1 internalMessage : Message • messageSent =

sender .expose(sender .exposeActions , internalMessage,
interactionIndex )

∀ ag : LOrgAgentInteracting | ag ∈ receivers •
(∃messRec : Message | messRec ∈
messagesReceived • (messRec = ag.interpretMessage
(ag.messageInterpretationActions ,messageSent) ∧
ag.knowsAView(ag.knowingActions ,messRec) = yes))

∀ a k , a j : LOrgAgentInteracting | a k ∈
receivers ∧
a j ∈ receivers • a k .knowsAView
(a k .knowingActions , a j .interpretMessage
(a j .messageInterpretationActions ,messageSent)) = yes

In the initial state of an interaction the messageSent was sent but has not
been received by the receivers.
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InteractionIni
Interaction

interactionIndex = 1
messagesReceived = ∅

After receiving a message, each receiver has its own copy of the received
message which is a member of messagesReceived . The presence of noise in com-
munication defines to what degree the sent and received messages are similar.
Each receiver agent has its own interpretation (interpretedMessage) of its respec-
tive received message (contained in messageReceived). However, every receiver
agent knows that the received message is influenced by the exposition performed
by the sender agent, and this exposition is influenced by the sender’s mental
models. Each agent in the group knows that the other agents have their own
interpretation interpretedMessage of their respective received message (member
of messagesReceived).

RecMsgIncreaseIndex
∆Interaction

interactionIndex ′ = interactionIndex + 1
sender ′ = sender
receivers ′ = receivers
agents ′ = agents
#messagesReceived ′ = #receivers ′

Each agent that receives a message, knows that it is subject to the influence
of the sender’s mental models.

RecMsgSenderInternalView
∆Interaction

∃ senderInternalViewOfMessage : Message • messageSent ′ =
sender .expose(sender .exposeActions ,

senderInternalViewOfMessage, interactionIndex ′)

Each receiver agent has knowledge of his own interpretation of the received
message.

RecMsgInterpret
∆Interaction

∀ ag : LOrgAgentInteracting | ag ∈ receivers ′ •
(∃messRec : Message | messRec ∈ messagesReceived ′ •

(messRec = ag.interpretMessage(
ag.messageInterpretationActions ,messageSent ′) ∧

ag.knowsAView(ag.knowingActions ,messRec) = yes))
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In addition, each agent in the group knows that the others have their own
interpretation of their messages.

RecMsgAllInterpret
∆Interaction

∀ a k , a j : LOrgAgentInteracting | a k ∈ receivers ∧ a j ∈ receivers •
a k .knowsAView(a k .knowingActions , a j .interpretMessage

(a j .messageInterpretationActions ,messageSent ′)) = yes

Furthermore, after receiving their messages, each receiver agent can change
its models regarding the sender agent. This model can be of a honest of dishonest
agent.

RecMsgUpdateModels
∆Interaction

∀ ag : LOrgAgentInteracting | ag ∈ receivers ′ •
(∃ senderOldModel ,

senderNewModel : LOrgAgentInteractingModel |
senderOldModel ∈ ag.mentalmodels .modelLOrgAgInts ∧
senderOldModel = sender .modelOfAgentInteractions (ag) •

(ag.changeModelOfAgentInteractions(
sender , senderOldModel) = senderNewModel ∧

ag.mentalmodels .modelLOrgAgInts = {senderNewModel}∪
ag.mentalmodels .modelLOrgAgInts \ {senderOldModel}))

Finally, message reception (ReceivingMessage) involves all the aspects de-
scribed above.

ReceivingMessage =̂ RecMsgIncreaseIndex ∧ RecMsgSenderInternalView
∧ RecMsgInterpret ∧ RecMsgAllInterpret
∧ RecMsgUpdateModels

In some interactions the same sender agent may send more than one message.

SameSenderNewMessage
∆Interaction

interactionIndex ′ = interactionIndex + 1
sender ′ = sender
receivers ′ = receivers
agents ′ = agents
messagesReceived ′ = ∅

∃ senderInternalViewOfMessage : Message •
messageSent ′ = sender .expose(sender .exposeActions ,
senderInternalViewOfMessage, interactionIndex ′)



3 Modeling the Fifth Discipline as MAS 57

Alternatively, a different agent may act as a sender. In this case, we assume,
as a simplification hypothesis, that the set of agents interacting does not change.
However, one agent among the members of the previous receivers set becomes
the sender agent. Simultaneously, the previous sender agent join the receivers
group. The new message is stored in messageSent ′ and the messagesReceived ′

set becomes empty.

ChangeSender
∆Interaction
newSender? : LOrgAgentInteracting

interactionIndex ′ = interactionIndex + 1
agents ′ = agents
messagesReceived ′ = ∅

newSender? ∈ receivers
receivers ′ = {sender} ∪ (receivers \ {

newSender?})
sender ′ = newSender?
∃ senderInternalViewOfMessage : Message •

messageSent ′ = sender ′.expose (sender ′.exposeActions ,
senderInternalViewOfMessage, interactionIndex ′)

Finally, when the interaction ends there are no more messages nor agents
involved in interactions.

InteractionEnd
Interaction

interactionIndex > 0
agents = ∅

Now we define a relation InteractRel that maps from one Interaction state to
the next one, based in [DS89]. InteractRel corresponds to the set that contains
all relations of this type.

RelationRecMsg == P{ReceivingMessage • (θInteraction, θInteraction ′)}
RelationNewMsg == P{SameSenderNewMessage • (θInteraction,

θInteraction ′)}
RelationChgSnd == P{ChangeSender • (θInteraction, θInteraction ′)}
InteractRel == RelationRecMsg ∪ RelationNewMsg ∪ RelationChgSnd

Operations on a given state opInteraction define a relation between states
before and after. For example, let rel : InteractRel e s1, s2 : opInteraction, then
s1 rel s2 if s1 ∈ dom rel , and after applying op on s1 the system will be in state
s2 [DS89].
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opInteraction
Interaction
nextInt : InteractRel

Interaction ∈ {domnextInt}

Next, we define that a history is a sequence of interactions where the first
element of the sequence corresponds to the InteractionIni state, and that every
state in the sequence is related to the next one via a nextInt operation.

History
hist : seq opInteraction

∃ interactIni : Interaction • (∃ opint : opInteraction |
opint = head({1} � hist) •
(interactIni = (λ opInteraction • θInteraction) opint ∧
interactIni ∈ {InteractionIni}))

∀ i : N1 | i ∈ dom hist \ {1} •
(∃ interactILess1, interactI : Interaction; nextIntILess1 :
InteractRel • (∃ opintILess1, opintI : opInteraction |
opintILess1 = head({i − 1} � hist) ∧
opintI = head({i} � hist) ∧
nextIntILess1 = opintILess1.nextInt •
(interactILess1 = (λ opInteraction • θInteraction) opintILess1 ∧
interactI = (λ opInteraction • θInteraction) opintI ∧
interactILess1 nextIntILess1 interactI )))

Our goal is to specify sequences where agents continuously exchange mes-
sages. Consequently, we specify a particular sequence of operations. In the
sketch presented below the numbers correspond to indexes for the interactions
and ini corresponds to InteractionIni state, changesender corresponds to
ChangeSender state, receivingmsg corresponds to ReceivingMessage state,
samesender corresponds to SameSenderNewMessage state, and end corre-
sponds to InteractionEnd state.

ini(1) - changesender(1) - Interaction(2) - receivingmsg(2) -
Interaction(3)

or changesender(3) - Interaction(4) - receivingmsg(4) -
Interaction(5)

or samesender(3) - Interaction(4) - receivingmsg(4) -
Interaction(5)

or end
Therefore, the first operation in such sequence must be a change of sender

agent. In fact, in this type of sequences, operations with an even index must be
message receiving operations. Analagously, operations with an odd index must
be either a change in sender role, or another send operation executed by the
same agent already performing the sender role. Hence, we specify the Progress
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schema, that presents a sequence of operations that follows the rules regarding
interaction indexes discussed above. Initially, we present a simple specification
for odd numbers.

Odd == {int : Z • 2 ∗ int + 1}

Progress
History
rrmsg : RelationRecMsg
rnmsg : RelationNewMsg
rchgs : RelationChgSnd

∀ i : N1 | i ∈ dom hist ∧ i = 1 •
(∃ interactI : Interaction; nextIntI : InteractRel •
(∃ opintI : opInteraction | opintI = head({i} � hist) ∧
nextIntI = opintI .nextInt • nextIntI = rchgs))

∀ i : N1 | i ∈ dom hist ∧ i /∈ Odd •
(∃ interactI : Interaction; nextIntI : InteractRel •
(∃ opintI : opInteraction | opintI = head({i} � hist) ∧
nextIntI = opintI .nextInt • nextIntI = rrmsg))

∀ i : N1 | i ∈ dom hist ∧ i > 2 ∧ i ∈ Odd •
(∃ interactI : Interaction; nextIntI : InteractRel •
(∃ opintI : opInteraction | opintI = head({i} � hist) ∧
nextIntI = opintI .nextInt • ((nextIntI = rchgs) ∨
(nextIntI = rnmsg))))

3.5.4 Conversations: Dialog and Discussion

At this point, we specify that a conversation session involves sequences of inter-
actions among agents.

Conversation
session : Progress

The start of a conversation coincides with the start of the history of inter-
actions.

ConversationInit
Conversation

#session.hist = 1

In a conversation, when the sender changes, the history cumulatively reflects
the operation. Moreover, the operation of the last state in the history is set to
change sender (RelationChgSnd), and the operation of the new state is set to
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receiving message (RelationRecMsg). In order to present the change in conver-
sation roles, the new sender agent is removed from the receiving agents set while
the former sender is added to this set.

ConversationChangeSender
∆Conversation
sender? : LOrgAgentInteracting
receivers ! : P LOrgAgentInteracting
rchgs : RelationChgSnd
rrmsg : RelationRecMsg

sender? ∈ (lastsession.hist).agents
∃newState : opInteraction;

senderInternalViewOfMessage : Message |
newState.interactionIndex =
(last session.hist).interactionIndex + 1 ∧
newState.agents = (lastsession.hist).agents ∧
newState.sender = sender? ∧
newState.sender �= (lastsession.hist).sender ∧
receivers ! = {(lastsession.hist).sender}∪

(lastsession.hist).receivers \ {sender?} ∧
newState.receivers = receivers ! ∧
newState.messageSent = sender?.expose

(sender?.exposeActions , senderInternalViewOfMessage,
newState.interactionIndex ) ∧

newState.messagesReceived = ∅ ∧
newState.nextInt = rrmsg •

session ′.hist = session.hist ⊕ {(#session.hist + 1,newState)}
(lastsession.hist).nextInt = rchgs

In a conversation the same sender can send several messages. More-
over, the operation of the last state in the history is set to ”new message”
(RelationNewMsg), and the operation of the new state is set to ”receiving mes-
sage” (RelationRecMsg).



3 Modeling the Fifth Discipline as MAS 61

ConversationNewMessage
∆Conversation
messageSent ! : Message
rnmsg : RelationNewMsg
rrmsg : RelationRecMsg

∃newState : opInteraction;
senderInternalViewOfMessage : Message |
newState.interactionIndex =
(last session.hist).interactionIndex + 1 ∧
newState.agents = (lastsession.hist).agents ∧
newState.sender = (lastsession.hist).sender ∧
newState.receivers = (lastsession.hist).receivers ∧
newState.messageSent = newState.sender .expose

(newState.sender .exposeActions ,
senderInternalViewOfMessage,newState.interactionIndex )

∧
messageSent ! = newState.messageSent ∧
newState.messagesReceived = ∅ ∧
newState.nextInt = rrmsg •

session ′.hist = session.hist ⊕ {(#session.hist + 1,newState)}
(lastsession.hist).nextInt = rnmsg

The ConversationReceivingMessage schema presents the process of receiving
messages in a conversation. Similarly to the case presented above, there are no
changes in sender and receiver roles. The operation associated to the new state
is set to ”new message” (RelationNewMsg).

ConversationReceivingMessage
∆Conversation
messageSent? : Message
rnmsg : RelationNewMsg
rrmsg : RelationRecMsg

∃newState : opInteraction |
newState.interactionIndex =
(last session.hist).interactionIndex + 1 ∧
newState.agents = (lastsession.hist).agents ∧
newState.sender = (lastsession.hist).sender ∧
newState.receivers = (lastsession.hist).receivers ∧
newState.messageSent = messageSent? ∧
newState.messagesReceived = {a : LOrgAgentInteracting |

a ∈ newState.receivers •
a.interpretMessage(a.messageInterpretationActions ,
messageSent?)} ∧ newState.nextInt = rnmsg •

session ′.hist = session.hist ⊕ {(#session.hist + 1,newState)}
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In this section we are interested in two specific types of conversation: dialog
and discussion. In [SKR+94], a few characteristics of these conversation types
are presented. Here, we define that these characteristics correspond to protocols.
These protocols have several associated restrictions (ProtocolConstraint).

ProtocolConstraint == P1 Attribute

ProtocolMode ::= DialogProtocol | DiscussProtocol

Protocol
constraints : P ProtocolConstraint
protocolmode : ProtocolMode

DialogDiscussProtocol
dialogProt : Protocol
discussProt : Protocol

dialogProt .protocolmode = DialogProtocol
discussProt .protocolmode = DiscussProtocol

In addition, SwitchProtocol defines whether there is a change (Switch yes)
in protocol types or not (Switch no) in a conversation.

SwitchProtocol ::= Switch yes | Switch no

Senge also states that in order to manage conversation sessions that follow
these protocols and balance dialogs and discussions, a particular type of agent
is required: the facilitator (FacilitatorLOrgAg). Initially, the variables needed
to define this type are declared in the FacLOrgAgIncludes schema.

FacLOrgAgIncludes
LearningOrgAgent
enforceCoherencyWithSubjectContext : Conversation×

SubjectContext → Actions
enforceCoherencyWithProtocol : Conversation×

DialogDiscussProtocol → Actions
enforceCoherencyOfMessage : Message×

SubjectContext → Consistency
enforceAdherenceOfMessage : Message×

PProtocolConstraint → Consistency
currentSubjectContext : SubjectContext
currentProtocolMode : ProtocolMode
switchProtocolDecision : SwitchProtocol
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Here this agent type is modelled as a LearningOrgAgent , with addi-
tional capabilities (FacLOrgAgCapabilities) so that the agent is capable of
enforcing that all exchanged messages are coherent with the conversation
context (FacLOrgAgEnforceCoherency), and also that all rules associated
to the particular protocol type in use in a given instant are observed
(FacLOrgAgEnforceAdherence). The underlying assumption here is that all
agents involved in these sessions know these protocols. Furthermore, a session
may be changed from dialog to discussion mode, and vice-versa.

FacLOrgAgCapabilities
FacLOrgAgIncludes

∃ r : Role | r ∈ roles • r .ident = facilitator
ran enforceCoherencyWithSubjectContext ⊂ {capableof }
ran enforceCoherencyWithProtocol ⊂ {capableof }
(mapset first)(dom enforceCoherencyWithSubjectContext) =

(mapset first)(dom enforceCoherencyWithProtocol)
currentProtocolMode = DialogProtocol ∨

currentProtocolMode = DiscussProtocol
(mapset second)(dom enforceCoherencyWithSubjectContext) =

{currentSubjectContext}

FacLOrgAgEnforceCoherency
FacLOrgAgIncludes

∀ conv : Conversation | conv ∈ (mapset first)
(dom enforceCoherencyWithSubjectContext) •

(∀ subj : SubjectContext | subj ∈ (mapset second)(dom
enforceCoherencyWithSubjectContext) •

(∀ int : Interaction | 〈int〉 in conv .session.hist •
(∃msg : Message; ac : PAction | msg =
int .messageSent • (
((enforceCoherencyOfMessage(msg,

subj ) = yes) ⇒ (ac = ∅)) ∧
((enforceCoherencyOfMessage(msg,

subj ) = no)) ⇒ (ac �= ∅))))))
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FacLOrgAgEnforceAdherence
FacLOrgAgIncludes

∀ conv : Conversation | conv ∈ (mapset first)(
dom enforceCoherencyWithProtocol) •
(∀ dgp : DialogDiscussProtocol | dgp ∈ (mapset second)

(dom enforceCoherencyWithProtocol) •
(∀ int : Interaction | 〈int〉 in conv .session.hist •

(∃msg : Message; ac : PAction | msg =
int .messageSent • (

((enforceAdherenceOfMessage(msg,
dgp.dialogProt .constraints) = yes ⇒
(ac = ∅)) ∧

((enforceAdherenceOfMessage(msg,
dgp.dialogProt .constraints) = no) ⇒
(ac �= ∅)) ∧

((enforceAdherenceOfMessage(msg,
dgp.discussProt .constraints) = yes) ⇒
(ac = ∅)) ∧

((enforceAdherenceOfMessage(msg,
dgp.discussProt .constraints) = no) ⇒
(ac �= ∅))))))

Based on the schemes presented above, we now specify the facilitator agent.
We note that coherency and adherence violations require the facilitator agent
to take some corrective actions, which we do not present in detail in this work.

FacilitatorLOrgAg =̂ FacLOrgAgCapabilities ∧
FacLOrgAgEnforceCoherency ∧ FacLOrgAgEnforceAdherence

Now that we have defined the facilitator agent, we can specify dialogs and
discussions. A dialog is a type of conversation, with a specific subject and par-
ticipation of a facilitator agent. Similarly, a discussion is a type of conversation,
with a specific subject and a facilitator agent.

Dialog
Conversation
subjectContext : SubjectContext
facilitatorAgent : FacilitatorLOrgAg

facilitatorAgent .currentSubjectContext = subjectContext
facilitatorAgent .currentProtocolMode = DialogProtocol
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Discussion
Conversation
subjectContext : SubjectContext
facilitatorAgent : FacilitatorLOrgAg

facilitatorAgent .currentSubjectContext = subjectContext
facilitatorAgent .currentProtocolMode = DiscussProtocol

A meeting may involve dialog or discussion, or both. Furthermore, there
is an upper bound on the number of times that an agent may act as sender
(individualSenderLimit).

DialogDiscussionSession
Dialog
Discussion
currentProtocolMode : ProtocolMode
switchProtocol : SwitchProtocol
durationLimit : N1

individualSenderLimit : N1

currentProtocolMode = facilitatorAgent .currentProtocolMode
switchProtocol = Switch yes ⇒

currentProtocolMode = if currentProtocolMode = DialogProtocol
then DiscussProtocol
else DialogProtocol

At any stage, after the start of interactions, the group may define the dura-
tion of the session. Here, we assume that the duration corresponds to an upper
bound on the number of interactions and that this bound must be set to a value
greater than the number of participants.

groupDefineDurationLimit : (PLOrgAgentInteracting)
�→ N1

∀ g : P LOrgAgentInteracting •
groupDefineDurationLimit (g) ≥ #g
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DialogDiscussionSessionDefineDurationLimit
∆DialogDiscussionSession

session ′ = session
subjectContext ′ = subjectContext
facilitatorAgent ′ = facilitatorAgent
currentProtocolMode′ = currentProtocolMode
switchProtocol ′ = switchProtocol
#session.hist ≥ 1
let ags == (head session.hist).agents • (#ags �= 0 ∧

durationLimit ′ = groupDefineDurationLimit (ags) ∧
individualSenderLimit ′ = durationLimit ′ div #ags)

In a complete session involving dialog and discussion, the number of inter-
actions must be greater than or equal to the number of participants in order to
allow each agent to perform the sender role. In addition, all participants agree
in finishing the session. We assume also, as a simplification hypothesis, that the
group remains the same during all the session.

DialogDiscussionComplete
∆DialogDiscussionSession
∆FacilitatorLOrgAg

facilitatorAgent ′ = facilitatorAgent
subjectContext ′ = subjectContext
currentProtocolMode′ = facilitatorAgent ′.currentProtocolMode
#session.hist > 1
let ags == (head session.hist).agents • #session.hist ≥ #ags
let ags == (head session.hist).agents • (∀ a1 : LOrgAgentInteracting |

a1 ∈ ags • (∃ i : N | i ∈ dom session.hist •
(∃ int : opInteraction | int = head({i} � session.hist) •

int .sender = a1)))

At any stage after the start of interactions the group may define that the
session is finished.

DDSessionUnfolding ::= DDSessionEnd | DDSessionAdvance

groupDefineSessionEnd : (P LOrgAgentInteracting) �→
DDSessionUnfolding
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DialogDiscussionSessionTermination
∆DialogDiscussionSession

session ′ = session
subjectContext ′ = subjectContext
facilitatorAgent ′ = facilitatorAgent
currentProtocolMode′ = currentProtocolMode
switchProtocol ′ = switchProtocol
#session.hist ≥ 1
let ags == (headsession.hist).agents • groupDefineSessionEnd (ags) =

DDSessionEnd

After the process of protocol change, the facilitator informs the new protocol.

facilitatorChgProt : FacilitatorLOrgAg �→ ProtocolMode

∀ af : FacilitatorLOrgAg | af ∈ (dom facilitatorChgProt) ∧
af .switchProtocolDecision = Switch yes •

((af .currentProtocolMode = if af .currentProtocolMode =
DialogProtocol
then DiscussProtocol
else DialogProtocol) ∧
ran facilitatorChgProt = {af .currentProtocolMode})

A change in the protocol mode requires the participation of the facilitator
agent.

DialogDiscussionProtocolChange
∆DialogDiscussionSession

session ′ = session
subjectContext ′ = subjectContext
facilitatorAgent ′ = facilitatorAgent
switchProtocol ′ = switchProtocol
#session.hist ≥ 1
currentProtocolMode′ = facilitatorChgProt facilitatorAgent

As the dialog advances, the facilitator tries to ensure that no agent performs
the sender role all the time. In order to do this, we consider here that the
quotient between duration and the number of agents in the group is an upper
bound to the number of times a given agent may perform the sender role. If a
given agent tries to exceed this limit, the group may decide to change sender or
to allow the same agent to send its message. In this case the group may increase
the duration of the session, otherwise some agent may not be able to send its
messages before the end of the session.
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groupDefineSender : (P LOrgAgentInteracting) �→ LOrgAgentInteracting

∀ g : P LOrgAgentInteracting • (∃ ag : LOrgAgentInteracting | ag ∈ g •
groupDefineSender(g) = ag)

Finally, the development of a conversation session involving dialog and dis-
cussion, includes changes in agents performing the sender role, and also some
of the sender agents sending several messages.

DialogDiscussionDevelopment
∆DialogDiscussionSession
ConversationChangeSender
ConversationReceivingMessage
ConversationNewMessage

facilitatorAgent ′ = facilitatorAgent
subjectContext ′ = subjectContext
session ′ = session
subjectContext ′ = subjectContext
currentProtocolMode′ = currentProtocolMode
switchProtocol ′ = switchProtocol
#session.hist ≥ 1
let ags == (lastsession.hist).agents • (#ags �= 0 ∧ sender? =

groupDefineSender (ags) ∧
(((last session.hist).sender �= sender? ∧

ConversationChangeSender) ∨
ConversationNewMessage) ∧

durationLimit ′ = groupDefineDurationLimit (ags) ∧
individualSenderLimit ′ = durationLimit ′ div #ags)

4 Properties of the Formal Model

In this section we investigate the characteristics of the model presented in the
previous sections.

4.1 Definitions

Initially we introduce several definitions that allow us to investigate what are
the features of the model.

Let aj and ai be agents that interact with each other.

ai , aj : LOrgAgentInteractions

Let mi and mj be messages that contain information regarding some context
(current state of affairs) or proposals to change this state (goals).

mi ,mj : Message
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Let vi and vj be of type View . These views result from interpretations
performed by agents ai and aj for each message mi and mj , respectively.

vi , vj : View

Let smi and smj be sequences of messages.

smi , smj : seqMessage

Let indi and indj be indexes of interactions.

indi , indj : N1

Let goals be a set of goals.

goals : PGoal

1. A message mi is consistent with the mental models of an agent ai if it does
not contain predicates that are logically inconsistent with the predicates
contained in the mental models of ai .

consistentMessage : LOrgAgentInteractions × Message →
Consistency

∀ ag : LOrgAgentInteractions ; mi : Message •
(∃ internalViewOfMessage : Message •
(consistentMessage(ag,mi ) = yes ⇔
(internalViewOfMessage = (ag.produceMessage

ag.messageProductionActions) ∧
ag.knowsAView(ag.knowingActions ,

internalViewOfMessage) = yes ∧
mi = ag.expose(ag.exposeActions ,

internalViewOfMessage, indi ) ∧
ag.knowsAView(ag.knowingActions ,mi ) = yes)))

2. An agent ai is trustAgent if it exposes only messages that are consistent
with its mental models, ie, ai exposes only information that it believes or
knows. Otherwise, the agent ai is nonTrustAgent .

trustAgent : LOrgAgentInteractions → Consistency
nonTrustAgent : LOrgAgentInteractions → Consistency

∀ ag : LOrgAgentInteractions ; mi : Message •
(trustAgent ag = yes ⇔ consistentMessage(ag,mi ) = yes)

∀ ag : LOrgAgentInteractions • (∃mi : Message •
(nonTrustAgent ag = yes ⇔
(¬ (consistentMessage(ag,mi ) = yes))))
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3. An interaction among agents ai and aj is TRUST if during this interaction
ai has in its mental models a trustAgent model of aj and, reciprocally, if
aj has in its mental models a trustAgent model of ai . Conversely, an
interaction is NOTTRUST if one of either ai or aj , or both do not have
in its mental models a trustAgent model of its respective partner.

TrustInteraction
Interaction

#agents = 2
#receivers = 1
∃model1,model2 : LOrgAgentInteractionsModel ;

trustModel1, trustModel2 : TrustLOrgAgentInterModel •
(∃1 ag : LOrgAgentInteractions •
(ag.modelOfAgentInteractions (sender) = model1 ∧
sender .modelOfAgentInteractions (ag) = model2 ∧
model1 = trustModel1 ∧
model2 = trustModel2 ∧
trustModel2 ∈
sender .mentalmodels .modelTrustLOrgAgInts ∧
trustModel1 ∈ ag.mentalmodels .modelTrustLOrgAgInts))

NonTrustInteraction
Interaction

#agents = 2
#receivers = 1
∃model1,model2 : LOrgAgentInteractionsModel ;

trustModel1, trustModel2 : NonTrustLOrgAgentInterModel
• (∃1 ag : LOrgAgentInteractions •
(ag.modelOfAgentInteractions (sender) = model1 ∧
sender .modelOfAgentInteractions (ag) = model2 ∧
((model1 = trustModel1 ∧

trustModel1 ∈
ag.mentalmodels .modelNonTrustLOrgAgInts) ∨
(model2 = trustModel2 ∧

trustModel2 ∈
sender .mentalmodels .modelNonTrustLOrgAgInts))))

4. An agent ai is believer if, in the absence of previous interactions with a
particular aj , ai assumes by default a trustAgent model of aj .
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BelieverLOrgAgentInter
LOrgAgentInteractions

∀ ag : LOrgAgentInteractions | ag /∈ dom
modelOfAgentInteractions • (∃1 trustModel :
TrustLOrgAgentInterModel • (modelOfAgentInteractions =
modelOfAgentInteractions ∪ {(ag �→ trustModel)} ∧
trustModel ∈ ag.mentalmodels .modelTrustLOrgAgInts))

5. An agent ai is skeptical if,in the absence of previous interactions with a
particular aj , ai assumes by default a nonTrustAgent model of aj .

SkepticalLOrgAgentInter
LOrgAgentInteractions

∀ ag : LOrgAgentInteractions | ag /∈ dom
modelOfAgentInteractions • (∃1 trustModel :
NonTrustLOrgAgentInterModel • (modelOfAgentInteractions
= modelOfAgentInteractions ∪ {(ag �→ trustModel)} ∧
trustModel ∈ ag.mentalmodels .modelNonTrustLOrgAgInts))

6. An agent ai revises its trustAgent model of aj to a nonTrustAgent model of
aj if ai is able to perceive that there is no consistency between aj exposed
mental models, proposals (messages), agreements, and aj actions.

7. An agent ai revises its nonTrustAgent model of aj to a trustAgent model
of aj , if aj is able to justify to ai any perceived inconsistency between its
exposed mental models, proposals (messages), agreements, and aj actions.

8. A dialog/discussion session involving agents ai and aj successfully pro-
duces a set goals of shared goals if at the end of the session all these
holds:

(a) ai believes in goals and

(b) aj believes in goals and

(c) ai believes that aj believes in aj ’s interpretation of goals and

(d) aj believes that ai believes in ai ’s interpretation of goals

4.2 Properties

4.2.1 TRUST Is Necessary for the Formalized Fifth Discipline

We argue that it is not possible to build a shared set of goals (similarly for
visions, values, purposes) if the agents involved in the process do not trust each
other.
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The context of analysis involves two agents ai and aj and an initial sequence
of sending and receiving messages performed by both agents in order to formu-
late a set of goals which both agree upon. Our initial hypotheses include:

(h0). We suppose that there are no records of previous interactions among
ai and aj .

(h1). We suppose that both ai and aj are believer agents.
Let us consider the following process:
Agent ai sends message mi . We follow the ReceivingMessage schema to

investigate what agent aj knows after receiving mi .
First, ai has exposed message mi .

∃ senderInternalViewOfMessage : Message •
mi = ai .expose(ai .exposeActions ,
senderInternalViewOfMessage, indi )

Then, the message received is interpreted by aj .

∃messRec : Message •
(messRec = aj .interpretMessage
(aj .messageInterpretationActions ,mi) ∧
aj .knowsAView(aj .knowingActions ,messRec) = yes

According to (h1), aj is a believer agent, therefore it believes that ai believes
in mi .

aj .knowsAView(aj .knowingActions ,
ai .knowsAViewState(ai .knowingActions ,mi)) = yes

Thus, aj believes that ai believes in mi , ie, that ai believes that the state of
affairs in the environment corresponds to the information contained in mi and
aj may proceed and drive its reasoning based on this belief. After this step,
aj may send message mj regarding this dialog/discussion session. Hence, in a
similar way, ai receives mj and knows:

∃messRec : Message •
(messRec = ai .interpretMessage
(ai .messageInterpretationActions ,mj ) ∧
ai .knowsAView(ai .knowingActions ,messRec) = yes ∧
ai .knowsAView(ai .knowingActions ,

aj .knowsAViewState(aj .knowingActions ,mj )) = yes

Again, ai believes that aj believes in what is stated in mj . We may as-
sume that this process proceed through several interactions involving negotia-
tion/argumentation, so that when the session is considered finished by both ai

and aj , each agent will have a richer model about the beliefs of the corresponding
partner.

Regarding the set of shared goals, there are two possibilities at the end of
the session: a set was built, or there was no agreement about shared goals.
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If we suppose that there was an agreement about a set goals of goals, then:

ai .knowsAView(ai .knowingActions , (
⋃

(goals ))) = yes
aj .knowsAView(aj .knowingActions , (

⋃
(goals ))) = yes

Let indif and indjf be, respectively the indexes of the final interaction among
agents ai and aj ; msgoali and msgoalj messages that confirm that ai and aj agree
with goals ; and vsgoali and vsgoalj interpretations that ai and aj perform on
the respective messages.

msgoali ,msgoalj : Message

vsgoali , vsgoalj : View

indif , indjf : N1

∃ senderInternalViewOfMessage : Message •
msgoali = ai .expose(ai .exposeActions ,
senderInternalViewOfMessage, indif ) ∧
(vsgoalj = aj .interpretMessage
(aj .messageInterpretationActions ,msgoali ) ∧
aj .knowsAView(aj .knowingActions , vsgoalj ) = yes ∧
aj .knowsAView(aj .knowingActions ,

ai .knowsAViewState(ai .knowingActions ,msgoali )) = yes
∃ senderInternalViewOfMessage : Message •

msgoalj = aj .expose(aj .exposeActions ,
senderInternalViewOfMessage, indjf ) ∧
(vsgoali = ai .interpretMessage
(ai .messageInterpretationActions ,msgoalj ) ∧
ai .knowsAView(ai .knowingActions , vsgoali ) = yes ∧
ai .knowsAView(ai .knowingActions ,

aj .knowsAViewState(aj .knowingActions ,msgoalj )) = yes

Then, what is known to each agent at this stage corresponds to:

(k1) aj .knowsAView(aj .knowingActions ,
ai .knowsAViewState(ai .knowingActions ,

ai .expose(ai .exposeActions , senderInternalViewOfMessagei ,
indif ))) = yes

(k2) ai .knowsAView(ai .knowingActions ,
aj .knowsAViewState(aj .knowingActions ,

aj .expose(aj .exposeActions , senderInternalViewOfMessagej ,
indjf ))) = yes

If ai and aj at the end of the session still model the corresponding partner
as trustAgent , then we can affirm that ai believes that aj believes in its inter-
pretation vsgoalj of the goal goals . If, however, at the end of the session, at least
one of ai or aj model the respective partner as nonTrustAgent , then one of (k1)
or (k2) will not hold, and therefore it will not be possible to build a goals set.



4 Properties of the Formal Model 74

4.2.2 Agents Must Be trustAgent

Initially, we have to refer back to the type ExposedBelief , which is a type of the
agent’s beliefs. These beliefs are stored in the agent’s store. Thus, following the
function advocacy, defined in the IntraPersonalMentalModel schema, the agent
has motivations and performs actions so as to expose its beliefs and reasoning.
Therefore, the agent in our model is a trustAgent , ie, it exposes only information
that it believes or knows.

4.2.3 Agents’ Motivations and Disciplines Must Be Consistent

Here we show that the agents’ development of the disciplines depends on their
motivations.

First, in our formalization of mental models, the reflection and advocacy
functions depend on the agent’s motivations. In the case of the per-
sonal mastery discipline, the agent’s personalvision, developguidingideas ,
enhancerealityvisions , clarifypersonalvisions , and creativetension functions are
all dependent on the agent’s motivations.

The formalization of the team learning discipline introduces a set of actions
and protocols, among them inquiry and advocacy which, as showed above in the
study of mental models, are influenced by the agent’s motivations. However,
there is also the function developdialogdiscussactions , which also depends on the
motivations of the agent.

As for the systems thinking discipline, we have the potentialstatesanalyser
function which depends on PersonalVision which, in its turn, depends on the
agent’s motivations.

Finally, the shared vision discipline is developed by teams of agents that
construct agreements via dialogdiscuss function, which uses dialogdiscussactions
actions. The development of these actions depend on the agents’ motivations.
Thus, in summary, an agent that develops the five disciplines must have moti-
vations that are consistent with the actions and protocols defined in each of the
mentioned disciplines.

4.2.4 Agents Must Be tenacious

Following the specification of the LearningOrgAgent schema, such type of agent
develops the five disciplines independently of any temporal considerations, ie,
the disciplines determines the way the agent thinks, acts and interacts. This
is a consequence of the fact that for every interaction (with the environment
or with another agent) the learningorgperceives function is used to produce the
agent’s percepts. This function is affected by the agent’s mental models and
guiding ideas. Guiding ideas result from the agent’s personal mastery and in-
clude vision, purpose and values. Accordingly, the agent’s action selection func-
tion, learnorgact , is affected by mental models, personal mastery, and systems
thinking. In addition, the learning organization model, presented in LearnOrg,
requires that every team in the organization is a learning team and the organi-
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zation must develop a set of shared visions. Therefore, all disciplines must be
continuously developed.

4.2.5 Agents Must Be cooperative

According to [Wei01], a cooperation is a type of coordination among non antag-
onistic agents in which the participants succeed or fail together. In contrast, in
a competition the success of one participant implies the failure of others.

In our formalization of the Mental Models discipline we require that the
agent exposes its beliefs so that in a team of agents, each agent learn the others’
mental models. This is also true for building shared vision.

If we consider that an ”index” of success of a learning organization is to what
degree it is able to develop shared visions, and that this is a collective achieve-
ment, then we conclude, that in fact, the learning organization is a cooperative
scenario.

In a competitive scenario an agent exposes its mental models only if it be-
lieves that by doing so it will have some type of benefit.

4.2.6 Organizational Change Emerges from Individual’s Motivations

According to our specification, all agents in the organization develop the five
disciplines and the disciplines determine how the agents think, act and interact.
We also know that the development of the disciplines by a given agent is influ-
enced by its motivations. Moreover, we have shown that shared goals, values,
and visions, may emerge from interactions among agents and also depend on
the agents development of the disciplines. If we consider that one of the indi-
cators of a given organizational state is its current set of shared goals, values,
and visions; and that the outcomes produced by the organization result from
agent’s actions, we conclude that organizational change emerge from individual
motivations.

4.2.7 Low Turn-Over Is Required in the Organization

The interaction process described in the previous section presents a situation
where there are no changes in the agents that are members of the team during
all the process. However, if we take changes in team membership into account,
it is possible to observe that the interaction process underlying the construction
of shared vision and shared mental models is affected as follows.

Let us consider a team with n members.
We have shown that at least n rounds of interactions are required so that

each agent has the opportunity to play the role of sender.
Suppose that in round k , with k < n, k agents have already played the sender

role when a new agent enters the group. Now the group has n + 1 members
and at least n + 1 rounds would be required to allow the new member to play
the sender role. However, in this case the new member also needs to play the
receiver role for all the k presentations that occurred before he was a member
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of the team. Thus, at least k + n + 1 rounds are required for each new agent
that becomes a member of the team in a given round k .

Now, considering the case where the new agent substitutes a former member
of the team, we notice that k + n rounds are required for each new agent that
substitutes a member of the team in a given round k .

Hence, the more frequent inclusions or substitutions of members of a team,
the less efficient is the process of producing common knowledge via interactions.

In fact, for each agent in the team a certain amount of time is spent in
modeling the others mental models and visions. If there is a high frequency of
turn-over in the teams, all this effort may be wasted.

4.2.8 Bounded Number of Members in Learning Teams

In order to improve the efficiency of the interaction process, the number of
members in a given team must be bounded. Otherwise, teams with a large
number of members will have to spend too much time deliberating, even if the
agent population is constant11. Thus, in order to cope with this complexity, the
learning organization must be subdivided in a number of teams and must also
define an upper limit for the size of its teams.

5 Related Work

Formalizations for the organizational theory Organization in Action (OA)
[Tho67] are presented in [KP99] and [MH96]. Similarly to the work reported
in this paper, parts of a discursive theory are revised using formal methods. In
[KP99], first order predicate logic is used to study the underlying argumentation
structure for the propositions of the OA theory. On the other hand, a multi-
agent modal logic developed by the authors in [MH96], is used to achieve goals
that are similar to the ones mentioned above, and, additionally, to investigate
the expressive power and applicability of this logic for the formalization of a dis-
cursive theory. The formal model presented in this paper uses the Z notation to
build a structured framework that can be used to study Senge’s theory and also
to investigate hybrid organizations, involving both human and computational
agents.

In addition, in [PCG98] and [CP94], several works related to organizational
computational simulation are reported. All these works involve the construction
of computational models related to organizations or organizational theories.
Below, some of these works are mentioned.

The focus of the work presented in [KWW98] is the decision process in a
team. A team corresponds to a group that have a goal or purpose in com-
mon. The team is made of different and inter-dependent members with shared
leadership. Also, members have individual and collective responsibilities and
assignment of activities. In the team decision process the different capabilities

11 The population is constant if turn-over is equal to zero and new members are not admit-
ted.
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of its members are used, often involving the division of the problem into smaller
subproblems which later will be integrated to construct the team’s solution.
In comparison, in the Fifth Discipline Model, we define three types of collec-
tions of agents: group, team and learning team. In a group resources are shared
among its members. In a team, which corresponds to a refinement for the group
type, resources and goals are shared. In a learning team, these features are also
present, and there are also guiding ideas and plans that are shared. Shared guid-
ing ideas include shared vision, shared purpose, and shared values. In Senge’s
theory [Sen90] collective decision processes are not presented. Therefore, the
formal model introduced in our work does not specify decision processes. In
the model, what is specified for each agent is the action selection function.
Each member of a learning team is an agent of type LearningOrgAgent and
the function learnorgact defines the next action selected by this type of agent.
This function is influenced by the agent’s goals. However, the goal adoption
process defined in the formal model (LearningOrgAgentAdoptGoals) shows that
the agent only adopt the goals that satisfy the agent’s motivations and that
are consistent with its vision, purpose and values. Moreover, the shared guiding
ideas developed in a learning team corresponds to a set involving vision, purpose
and values that is consistent with each member’s vision, purpose and values. As
a consequence, agents in a learning team adopt goals that are consistent with
the shared vision and select their next actions based on such goals.

In [Lin98] the investigation and design of organizations that require a high
level of reliability is presented. In that work, simulation models are tools to
examine different possibilities in the process of structuring organizations. The
effect of external conditions in the decision process performance is studied. The
approach presented in that work is a generalization of the Contingency Theory
[LL67] of administration: the effect of the environment on the organizational
performance and the corresponding implications on its structure. A computa-
tional model is used to analyze several factors that affect organizational perfor-
mance in dynamic environments. The investigation of organizational structures
is beyond the scope of this work, as Senge does not specify them in detail in his
theory. In the model presented here, we decided to specify the organizational
structure as a graph in which each team is represented by a node, and relation-
ships among teams are represented by edges. However, in this model different
organizational structures could have been specified instead.

The social dilemma involving voluntary cooperation among individuals con-
fronted with conflicting time and effort options is the focus of the work reported
in [HG98]. The individual can contribute to build a common good or, alterna-
tively, it may decide to take advantage of the efforts of the other individuals.
This is a fundamental question for the study of cooperative behavior in organiza-
tions. In the model presented in this paper, the shared vision discipline involves
a process in which shared high level goals have to emerge. In this process the
motivation of each agent underlies its decision to adopt a set of shared goals.
The existence of conflicting time and effort options for a given agent could im-
ply the absence of a motivation for this agent to adopt a shared goal or shared
vision. However, in our formal model a learning organization has to develop a
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shared vision, in a process that involves all agents in the organization. There-
fore, confronted with such dilemmas, in our model for the Fifth Discipline the
agents choose to cooperate.

In [CP98] a type of agent, called WebBot is investigated. This agent per-
forms tasks autonomously, acting as an assistant for humans or other WebBots).
That work studies the effect of the honesty of the WebBot concerning the indi-
vidual and collective organizational behavior. The tests reported in that paper
present two types of organizations. In the first type all WebBots are honest.
Conversely, in the second all WebBots are dishonest. The results of these tests
show that, after some time, honest WebBots ask more questions and learn more
than dishonest WebBots. Similarly, in our model one of the features that plays
an important role is the honesty of the agent in its interactions in a learning or-
ganization. In fact, we show that in this model trust interactions among agents
are necessary to build a learning organization.

The last paper in [PCG98] that we mention here is the work of [SD98].
Organizational design and re-design in organizations that include human and
computational agents is the main subject of that work. Two perspectives in-
spired by organizational theories are used to define a framework that describes
the problem involving the structuring of organizations: Contingency Theory
[LL67] and Socio-Technical Theory [Tri81]. Analogously, in our model both
human and computational agents can be represented. However, dynamic orga-
nizational restructuring is beyond the scope of our work.

The goal of the work presented in [YS99] is to study a role based agent-
oriented conceptual framework in order to model workflow. In that case, busi-
ness processes are viewed as a collection of problem solvers autonomous agents
that interact when faced with interdependencies. Furthermore, a workflow is
modeled as a set of related roles. Role definition is based on several attributes,
like: goals, skills, obligations, permissions, and protocols. Protocols define the
interactions among roles. Roles are assigned to agents based on an assessment
of the agent’s qualifications and skills. The agent’s behavior is a consequence
of its mental states, like intentions, beliefs, goals, skills, etc. Roles are defined
as collections of duties, modeled as obligations, and rights, modeled as permis-
sions. When a given role is assigned to a specific agent, that agent inherits the
particular obligations and permissions related to that role. Workflow coordi-
nation is achieved via agent communication. In that work, the organizational
model results from the definition of organizational roles and description of the
coordination and agent performance while performing a given role. Therefore,
that model focuses in organizational processes, while our model is based on a
specific organizational theory.

In [K. 99] multi-agent learning is investigated. That work is based on an Or-
ganizational Learning approach based on [Arg77] in which four types of learning
are considered. The first is called individual single loop learning and enhances
performance in the scope of an individual norm. The second, individual double
loop learning, enhances performance via changes in an individual norm. The
third, known as organizational single loop learning improves performance in the
scope of an organizational norm. Finally, the fourth is named organizational
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double loop learning and improves performance via changes in an organizational
norm. In that computational model, individual norms are implemented as indi-
vidual knowledge and, correspondingly, organizational norms are implemented
as organizational knowledge. A set of rules describes the individual knowledge
and a set of individual knowledge corresponds to the organizational knowledge.
Agents are implemented as Learning Classifier Systems (LCS) [Gol89] and learn-
ing in the MAS is supported by an extension to LCS: Organizational-learning
oriented Classifier System - OCS, that is based on an architecture for Machine
Learning - Genetics-Based Machine Learning (GBML) - and is made of several
LCS systems. Similarly to the work presented in this paper, [K. 99] also presents
a computational model that is inspired by an organizational theory associated to
the Organizational Learning approach. In that case, however, Machine Learning
and genetic algorithms techniques are used instead, to investigate the compu-
tational performance in processes involving multi-agent learning via implemen-
tation of concepts defined in an organizational theory. Nonetheless, we note
that some of the concepts of [Arg77] may be mapped to concepts in Senge’s
theory. For example, individual and organizational double loop learning may
be compared to personal mastery and shared vision, respectively, in the Fifth
Discipline.

In [HSB02] a model for the specification of multi-agent organizations is pre-
sented. This model focuses on functional, structural and deontic aspects. The
structure is related to the concepts of role, relationships among roles and groups.
The functional aspect includes the concepts of global plans and missions that
are structured in a type of goal decomposition tree. Functional and structural
aspects are independent so that changes in the functional dimension do not re-
quire changes in the organizational structure. The only dimension that has to
be adapted is the deontic, in order to reflect the modifications on the other two
dimensions. Considering the work reported in this paper we note that the con-
cepts of global missions and goals are similar to the concept of shared guiding
ideas in our formal model. However, [HSB02] specifies a structure that asso-
ciates global missions and plans to lower level goals. Instead, in our model, the
development of shared guiding ideas is dynamic and results from interactions
among agents.

In summary, some of the papers mentioned above deal with computational
tools in general, and MAS technology in particular to model or simulate orga-
nizations, or use formal methods to investigate characteristics of a particular
organizational theory. Other papers use organizational theories concepts to de-
sign models that can be used to implement computational systems or build MAS
frameworks. Therefore, there are similarities between our work and the above
mentioned research. However, the novelty of our work is the use of a Software
Engineering method to build a formal model based on an organizational the-
ory. Moreover, our model is founded on a MAS formal framework, so that our
model represents a perspective on the implementation of the Fifth Discipline
in the context of a MAS framework. This model presents a formalization for
the main concepts of Senge’s theory and, as a consequence, it is not restricted
to particular organizational aspects like: coordination, team work, cooperation.
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We also note that in our formal model there are no constraints concerning the
representation of different types of agents, so that organizations composed of
human agents, computational agents, or both, can be modeled.

6 Discussion

In this work, we presented an overview of the Fifth Discipline theory and intro-
duced a formalization of this theory in the context of SMART, which is a MAS
formal framework.

In this section we discuss some issues regarding the formalization process of
Senge’s theory and issues concerning the properties of the formal model pre-
sented here.

Initially, we point out that during the formalization process we observed
some situations where the main reference for the LO theory [Sen90] presented
some concepts in an ambiguous way. For example, Senge states in [Sen90, p.
147] that goals and objectives are distinct from visions. However, in another
part of the book [Sen90, p. 149] he affirms that a vision corresponds to a specific
destination, a concrete image of the desired future. In our work clear definitions
are required for every concept, thus we consider that visions, either personal or
shared, correspond to goals. Additionally, some concepts (or types) used in this
formalization are not explicitly specified in Senge’s theory, for example there are
no details in [Sen90] or [SKR+94] concerning an agent’s plans or its capabilities.
Therefore, the formalization of these concepts follows an interpretation of the
LO theory and its (plausible) mapping to current research in MAS.

Other issues arose involving the concepts of autonomy, creative tension, and
motivation.

It is important to note the different issues involving the concept of autonomy
as used in SMART and in our formalization. In the former case, autonomy de-
pends on the fact that an agent is capable of (or has) motivations or not, so that
the agent is able to generate its own goals. In our case, the LearningOrgAgent
is autonomous but is also embedded in an organizational environment. There-
fore, it has to adopt the goals associated with a given role in order to perform
this role. Otherwise, as it is autonomous, it can refuse to adopt that goals, but
it will also refuse to perform that given role in the organization. In addition,
roles have an associated autonomy level (in an organizational sense), so that the
agent is able to generate its own goals in the context of the role.

Additionally, the concept of creative tension in LO seems to be closely related
to the concept of motivation in SMART. In fact, as creative tension may be
viewed as a measure of the distance between the current state of affairs in the
environment the reduction of creative tension can be considered as a motivation
itself: in the PersonalMastery schema, the creativetension function produces
goals.

Concerning the properties derived from the formal model and presented in
section 4, it is interesting to note the importance that some individual charac-
teristics play in an organization that plans to successfully implement the LO
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theory. Hence, we observe that the agents must be honest, cooperative, tena-
cious and the interactions among agents must also be honest. Thus, there are
several constraints on individual features of the formal models of the agents that
are members of such type of formal organization.

It is important to note that the formal model presented in this paper corre-
sponds to our interpretation of Senge’s work and depicts some characteristics of
his theory, thus is not intended to be a full detailed translation of the LO theory
into a formal model. For example, most of the skills/activities related to sys-
tems thinking are encapsulated in functions. However, the level of abstraction
presented in this model is appropriate to allow us to study important properties
of the LO theory and discuss individual and organizational features that should
be taken into account in an implementation of the LO theory, either in artificial
or in natural organizations.

Additionally, we note that our use of formal methods for modeling systems
in general presents new perspectives and reveals new, not yet explored, poten-
tialities concerning the use of these methods. For example, consistency checking
of an organization with regard to a specific organizational theory can be inves-
tigated.

All these issues should certainly pose a number of interesting problems and
questions regarding the construction of formal models for the Fifth Discipline
in particular, and for OT theories in general, and also for the study of different
implementation processes of such theories in organizations. A further advance-
ment in this direction is the development of a test case which is presented in
[Sil04]. It uses parts of the model introduced in this article and was developed
in the form of an animation of the specification using ZeTa [GB03].

Our future interest lies in the refinement of our model in order to com-
putationally implement it using MAS development tools like actSMART
[AL01, dL04] or the SACI [HS00] environment. We are also interested in in-
vestigating some aspects not covered in detail by Senge’s theory, for example:
planning, skills, the process of emergence of the shared vision. In this case, re-
sults from other works that present more detailed views of these aspects will be
useful. For example, the process of emergence of organizational mental models
based on individual mental models, as presented in [Kim93].
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A Z Notation Overview

We present below some introductory concepts that should help the reader to
understand the Z notation. We admit, however, that this basic introduction may
not provide sufficient information for the reader with no previous experience
with Z. In this case, we suggest [Spi92, Spi89, Jac97] for an introduction to this
notation. The information present in this appendix come from these references.

Z is a state-based formal language that uses predicate logic, set theory and
ordinary discrete mathematics in its notation. Mathematical data types are
used to model data in a system. The behavior of the specified system can
be understood via mathematical laws which constrain these types. In Z, a
collection of state variables can be used to model the state of a system. In
addition, operations, which represent changes in states, can be specified. Z
specifications usually start with atomic objects, for which the internal structure
is not relevant. These objects are the members of the given sets, or basic types,
of the specification. Based on these types, more complex types can be built:
set, Cartesian product, and schema types. Furthermore, abbreviation definitions
may be used to introduce global constants.

Z specifications are composed of formal and textual paragraphs. The first
include, for example, declarations of formal types and axioms. The second
is used to provide support for and to enhance the readability of the formal
paragraphs.

A.1 Sets

The concept of set is fundamental in Z. A set comprises a collection of similar
objects. Each set is treated as a unique object in a given specification and its
members are named elements.

In Z only sets composed of elements of the same type can be defined. The
object’s type corresponds to the maximal set that has such object as an element.

We present below the representation in Z for set relations and operations. We
assume that the reader has previous knowledge of these relations and operations
and omit further details regarding this subject in this work.

x ∈ A x is element of A
∅ empty set
A ⊆ B A is a subset of B
A ⊂ B A is a proper subset of B
A × B Cartesian product
A ∪ B union of sets A and B
A ∩ B intersection of sets A and B
A \ B difference set beteween A and B⋃

A generalized union of elements taken from A
#A length of a finite set
P A power set of A
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A.2 Definitions

In Z there are several ways to define an object: declaration, abbreviation and
axiomatic definitions.

A.2.1 Declarations

The basic way to define an object is via declaration, where the name of the type
is written enclosed in square brackets. Types that are declared in such way are
named given types. Thus, the declaration below introduces a new given type,
named T1.

[T1]

In one declaration it is possible to introduce more than one given type, as
follows:

[T1,T2, ...,Tn ]

A.2.2 Abbreviations

Using abbreviations it is possible to associate new names to mathematical ob-
jects previously defined in the specification. In the example presented below, id
is a new name, declared as a global constant in the specification, that has the
same type and value associated to the expression Expression.

id == Expression

A.2.3 Axiomatic definitions

Objects can also be defined with associated constraints that must be respected
whenever the defining symbol is used in the specification. Below, predicate
specify the constraints that apply to objects introduced in declaration.

declaration

predicate

A.2.4 Generic definitions

It is also possible to introduce axiomatic definitions in a generic way. Thus, a
family of global constants is defined, parameterized by some type X .

[X ]
a : X

pred

In this definition, the constant a (of type X ) must satisfy the predicates de-
clared in pred . Furthermore, X is a set that corresponds to a formal parameter.
Its scope is the body of the definition.
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A.2.5 Sets and Predicates

All objects defined in Z correspond to sets. Hence, a predicate in terms of the
collection of objects that satisfy its constraints.

Thus, given a predicate pred with a free variable a of type T , the set C of
values of a that satisfy pred is defined as follows.

C = {a : T | pred}
Suppose that we define the symbol Honest .

Honest : P T

......

Then, in order to specify that ”a is honest” we can use the representation:

a ∈ Honest

A.3 Schemes

Schemes are used in Z to structure a formal specification in parts that can be
more easily understood and that can later be combined and reused, facilitating
the specification process and reading.

A schema corresponds to a piece of formal text that has an associated name,
and that describes some variables whose values are constrained in some way.

There are two parts in a schema: declarative where variables are introduced,
and predicative that presents the relations and restrictions involving some (or
all) of the variables declared in the first part. The predicative part may be
empty.

Schemes can be written in two forms: horizontally or vertically.

S1 =̂ [D1; ...; Dn | P1; ...; Pm ]

S2

D1;
D2;
...;
Dn ;

P1;
...;
Pm ;

S3

D1;
...;
Dn ;
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In the schemes presented above S1, S2 and S3 correspond to the names
of the schemes; D1; ...; Dn correspond to declarations of the variables; and
P1; ...; Pm correspond to the predicative part. Schema S3 does not have a
predicative part. Schemes S2 e S3 are presented vertically, while schema S1 is
presented horizontally.

Schemes can also be seen as types in Z. A schema enables the introduction
of composite types, that include a variety of components. For example, the
Sinteger schema corresponds to a type composed of two components: a set of
integers sint and an integer int . The introduction of a variable of this type is
done via a declaration like: var1 : Sinteger .

Sinteger
int : Z

sint : P Z

The description of an object of type schema includes a list of the components’
names followed by their bindings. For example, a specific binding for the schema
presented above can be described as follows.

Sinteger〈|int == 1, sint == {1, 3, 5, 7}|〉
The schema type Sinteger is the set of all bindings where sint and int are

associated to a set of integers and to an integer, respectively.
The order in which components are declared is not significant. It is also pos-

sible to reference a specific component in a schema using the selection operator
”.”. For example, considering the declaration var1 : Sinteger , to reference the
integer component of Sinteger , one would write: var1.int .

One of the most frequent operations involving schemes is inclusion. The
declarative part of a schema may contain declarations of variables of several
types. Moreover, it may also contain references to other previously defined
schemes’ names. These references are named schema inclusion as they imply
in the inclusion of all declarations and predicates of the ”referenced” schema in
the ”referencing” schema.

For instance, in the Sa schema below, we have the inclusion of Sinteger .

Sa

Sinteiro
int2 : Z

int2 < int
int2 ∈ sint

Schemes are used in Z specifications to describe states of a system and also
operations on these states. There are some conventions to describe that the
state defined by a particular schema is influenced by some action and that this
state can be changed or stay unaltered.

Initially, there are conventions regarding the decoration in variable decla-
rations using special characters. Hence, it is possible to identify input, output
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and state variables via concatenation of the variable names to characters ”?”,
”!” e ” ′ ”, respectively.

Now we can define a state description schema as a schema in which there are
no decorated variables. In addition, appending the special character ” ′ ” to the
name of a schema S indicates a new schema that includes the same variables
and predicates contained in S , with character ” ′ ” appended to all variables in
the declarative part and to every occurrence of free variables in the predicative
part.

On the other hand, in operation schemes input and output variables are
used. Furthermore, new values can be assigned to the variables declared in the
schema.

In order to simplify the definition of an operation schema over a state schema
the ∆ variant is used. Assuming that S is a state schema, ∆S defines a new
schema defined as follows.

∆S
S
S ′

Each variable name decorated with ” ′ ” indicates a state variable that
contains the new value that will be assigned to the corresponding undecorated
variable when the operation is completed.

For instance, an operation on the Sinteger schema can be defined as follows.

ChangeSinteger
∆Sinteger
int? : Z

int ′ = int?
sint ′ = sint

There is also a simplified way to indicate that in a given operation the state
variables stay unchanged, using the Ξ variant. Assuming that S is a state
schema, ΞS defines a new schema defined as follows.

ΞS
∆S

v ′
1 = v1

v ′
2 = v2

.

.

.
v ′
n = vn

In this example, v ′
1, ..., v

′
n correspond to the state variables present in S ′.
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In another example, it is possible to define an operation on the Sa schema
defined above, that only changes the state of the variable declared in it and
keeps unchanged the state described by Sinteger .

ChangeSa

∆Sa

ΞSinteger
intNew? : Z

int2′ = int2 + intNew?

A.4 Lambda and theta notation

There is a particular way to define functions in Z, named lambda expression.
This expression presents a structure that includes declaration, predicate and
expression.

(λ declaration | predicate • expression)

Actually, considering functions as sets of pairs, the first element of each pari
is defined by declaration and predicate and the second is described by expression.
In the example below, the function double relates to each integer its double.

double == (λ integer : Z • integer ∗ 2)

Lambda expressions can be used in any part of a formal specification. The
expression above defined was used to introduce a function that can be used
several times in the context of a specification, as presented below.

double 8

We have already seen that a schema reference is, in fact, a reference to a
set of bindings. However, there may be situations where we want to have ac-
cess to the bindings associated to a particular schema. In Z the θ operator
has this function. Hence, assuming that NE is a schema, the expression θNE
refers to the specific binding of NE that has a valid scope in the part of the
specification where this expression is declared. Moreover, this operator enables
the definition of a relation associated to an operation schema. Assuming that
OperationOnSchema1 is an operation defined over Schema1 schema, the dec-
laration presented below defines a relation between before and after Schema1
states.

OperationOnSchema1
∆Schema1

...



A Z Notation Overview 93

relationBetweenStates == {OperationOnSchema1 •
(θSchema1, θSchema1′)}

Another interesting use of θ and λ notations involves schema inclusion op-
erations. Considering the schemas presented below:

Sinteger
int : Z

sint : P Z

Sa

Sinteger
int2 : Z

int2 < int
int2 ∈ sint

In some situations it is necessary to refer to the Sinteger schema. However,
we only have a reference to Sa in scope. This can be done using the following
function:

(λ Sa • θSinteger)

A.5 Notation summary

p ∧ q log. conjunction
p ⇒ q log. implication
∀X .q univ. quantification
x ∈ A set membership
∅ empty set
A ⊆ B set inclusion
A × B Cartesian product
A ∪ B set union
A ∩ B set intersection⋃

A generalized union
#A size of finite set
A �→ B partial function

A → B total function
domR domain of relation
ranR range of relation
seqA finite sequences
� sub sequence of a sequence
head s first element of a sequence
last s last element of a sequence
〈i , j , ..〉 sequence
P A power set
P1 A non empty power set

T ::= c1 | ... | cm | d1〈〈E1[T ]〉〉 | ... | dn〈〈En [T ]〉〉 free type

Conventions and definitions:

a,b identifiers
p, q predicates
A,B sets
S schema before operation

S ′ schema after operation
∆S change of state
ΞS no change of state
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B Schema Structure Diagram

The diagram below represents the basic schema structure of our formal model
for the Fifth Discipline.

Learning
Organization
features
layers

Operation Schema Operation Schema

LearningOrgAgentState
LearningOrgAgentPerception

LearningOrgAgentAction
LearningOrgAgent

OrgAgent

PlanningAgent

SautoAgent

StoreAgent

Agent

Object

Entity

AutonomousAgent

OrgAgentAction

PlanningAgentAction

SautoAgentAction

StoreAgentAction

AutonomousAgentAction

AgentAction

AgentPerception

StoreAgentPerception

SautoAgentPerception

PlanningAgentPerception

OrgAgentPerception

AutonomousAgentPerception

ObjectAction

State Schema

State SchemaState1 State2 State1 State2

OrgAgentState

PlanningAgentState

SautoAgentState

StoreAgentState

AgentState

ObjectState

EnvironmentState

AutonomousAgentState

Autonomy,
Planning and
organizational
roles layers

SMART layers

Key:

Schema inclusion Variable inclusion Operation on state

LearningOrgAgentInteracts

StoreAgentInteracts

AutonomousAgentInteracts

AgentInteracts

ObjectInteracts

OrgAgentInteracts

PlanningAgentInteracts

SautoAgentInteracts

Figure 7: Formal model’s basic schema structure.
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ProduceMessage, 49
Progress , 59
Protocol , 24, 62
ProtocolMode, 62

Purpose, 22

RealityVision, 22
ReasoningProcess , 19
RecallView , 48
ReceiveMessage, 54
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