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Abstract

This paper outlines the design and implementation of an agent-based epidemiological simulation system.
The system was implemented in the MASON toolkit, a set of Java-based agent-simulation libraries. This
epidemiological simulation system is robust and extensible for multiple applications, including classroom
demonstrations of many types of epidemics and detailed numerical experimentation on a particular disease.
The application has been made available as an applet on the MASON web site, and as source code on the
author's web site.
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 Introduction

Objective

1.1
There are many simulation toolkits available, requiring various levels of programming experience. One of
these, the MASON toolkit, is a set of Java libraries for agent-based modeling (ABM). MASON is quite user-
friendly, and many programmers already have experience with Java, but can all the required elements of a
realistic epidemiology model be implemented in MASON?

1.2
This paper outlines the design and implementation of an agent-based, spatially explicit simulation for the
study of infectious disease in a human population. The simulation is readily extensible for multiple
applications within this area, and thus can be a good starting point for other researchers. It also
demonstrates that the MASON libraries are sufficient to create a realistic, extensible system that is also easy
to use for demonstration purposes. The system has enough flexibility to model epidemics with many different
parameters in a demonstration setting. However, the parameters offer enough detail to be useful for focused
numerical experimentation. It is the author's hope that interested researchers will take this code, extend and
modify it, and use it for their own research.

Background

1.3
Epidemics have been modeled mathematically for over a century. From Louis Pasteur's work on cholera
epidemics, a system of partial differential equations was developed which modeled the change in percentage
of a population over time (Wasserman and Faust 1994). From this early model, we get the standard categories
used to describe an epidemic. The SIS (Susceptible-Infected- Susceptible) model represents diseases for
which there is no acquired immunity; once a person has been infected and recovers, he or she is susceptible
to the disease once again. In the SIR (Susceptible-Infected-Removed) model, an individual passes from
susceptible to infected to removed (the euphemistic "removed" includes both those with immunity and those
that are dead). A more realistic SEIR or SLIR (Susceptible-Exposed/Latent-Infected-Removed) model adds an
intermediate step which represents the latent period between exposure and external symptoms and thus can



take into account differing degrees of infectiousness which occur during these two stages (Deiekmann and
Heesterbeek 2000). Figure 1 shows a visual representation of the various stages used.

Figure 1. A flowchart of possible states in an epidemic model

1.4
More recently, other types of epidemic models have been explored: subpopulation models, spatial models
and social network models. Subpopulation models attempt to address the implicit assumption of full,
homogenous mixing that is part of the differential equations model. Spatial models address the non-spatial
character of the old models. Social network models differentiate between individuals, especially in the case of
sexually transmitted diseases (Bian 2004).

Other Work

1.5
The use of network-based models in epidemiology has become an active topic in the scientific literature.
Current simulation work has incorporated a variety of techniques, including agent-based modeling and
cellular automata, into network simulations. Groups such as the Center for Discrete Mathematics and
Theoretical Computer Science (DIMACS) at Rutgers University have begun to focus on the possibilities in this
subject (DIMACS 2004). At the University of North Texas, Sangeeta Venkatachalam and Armin Mikler have
created a simulation using cellular automata, modified to accommodate spatial interactions (Venkatachalam
and Mikler 2005).

1.6
Joshua Epstein and others from the Brookings Institute's Center on Social and Economic Dynamics have
developed agent-based simulations using their in-house Java API, Ascape, and other tools. Their purpose is
to study vaccination and containment strategies in the event of bioterrorist attack involving smallpox or other
infectious diseases (Epstein, Cummings et al. 2002).

1.7
Catherine Dibble, Assistant Professor of Geography at the University of Maryland, has developed simulations
using the GeoGraphs agent-based computational laboratory built upon RePast. Her research team developed
GeoGraphs to "conduct theory-driven explorations of distributed dynamic processes on richly-structured
landscapes" (Dibble 2004). Specifically she has been exploring agent-based epidemiological models using
GeoGraphs along with genetic algorithms to explore parameter space. Her simulations incorporate realistic
geographic landscapes as well as small-world and scale-free networks (Dibble and Feldman 2004).

1.8
Richard Crandall, the director of the Center for Advanced Computation at Reed College, and his students have
developed a simulation system called Conflagrator to study epidemics with nonlinear techniques in both
continuum and discrete models. Along with members of the Oregon Bioterror Taskforce, the Reed group has
been carrying out research on epidemics and exploring preferential vaccination strategies. He and his
students have been exploring ways to combine cellular automata models with interaction networks (Dworkin
2004).

Simulation Framework

1.9
Ling Bian proposed a simulation framework which addresses four major assumptions implicit in the classical
differential equations model. Bian's framework is based on the following assumptions: individuals are
different; individuals interact locally; individuals are mobile; and the interactions are heterogeneous. Her
framework combines agent-based modeling with homogenous interaction networks over a spatial domain



(Bian 2004) and is similar to the work being done by Epstein, Dibble, and others. However, other types of
models mentioned earlier (subpopulation, social network, simple spatial models, etc) have addressed some of
these assumptions, but never all at one time.

1.10
Heterogeneous interactions are demonstrated in Bian's paper through a two-layered interaction network. One
layer consists of homes and the other layer of workplaces. Contact structures and intimacy of contact differ
between the two layers, which is an important insight from her paper. Humans have somewhat predictable
interactions which can be modeled in this way. Figure 2, taken from Bian's paper, illustrates this two-layered
network.

Figure 2. Two-layered network (Bian 2004)

The MASON Toolkit

1.11
The MASON toolkit is a set of libraries in Java, developed to support discrete multiagent simulations. MASON
was developed at George Mason University as a joint effort of the Evolutionary Computation Laboratory and
the Center for Social Complexity (Luke, Cioffi-Revilla et al. 2004). A feature of MASON which influenced the
decision to use it for this project is its ability to decouple the simulation from real-time visualization, which
makes running long batches of simulations much faster. MASON has no graphical capabilities built in, but
output files can be created in formats easy to import into third-party analysis packages.

System Implementation

Java Classes and Agent Types

2.1
The author implemented this simulation system with five Java classes:

SIS- the main class, which sets up the simulation and schedules the agents. Despite its name, this class
handles all models: SIS, SIR, SEIS, and SEIR.
SISWithUI- an optional wrapper for SIS. It handles the visualization and allows for real-time change of
simulation parameters. Figure 3 shows a screenshot of the simulation window during an SEIR simulation
demo.
Agent- a base class from which specific agents in the simulation inherit, in this case Humans.
Human- contains all behavior for agents representing humans in the simulation and inherits from the
Agent class. Human behavior includes both conscious decision-making and biological processes.
Location- a very simple class representing positions of homes and workplaces on a 2-dimensional
field.

The Human agent class handles the various behaviors and biological processes of the humans being
modeled. In this version of the simulation, it includes physical movement between home and work, decision-
making with regard to taking sick days, and simplified biological processes involved in the infection.

2.2
The agent class could be extended to create derived agents other than the human agents. Animal agents
might share biological processes and some movement rules with humans, while another type of agent (such
as a plant) would have biological processes but no movement rules. An inanimate object might also be
modeled as an agent in some cases. For example, in simulating a disease which spreads through fomites,
contaminated linens and other items might be modeled as agents, with rules to govern the rate of decrease in
infectiousness.



Figure 3. Simulation display window. Susceptible agents are shown in green, exposed in blue, infected in
red, and removed in black

Parameters

2.3
This simulation has several parameters that the user can vary. For example, NUM_INFECTED, NUM_REMOVED,
and NUM_EXPOSED control the initial number of humans in each of these states. A combination of the
NUM_HUMANS parameter with the four display size parameters can be used to set up a specific population
density for the simulation. A detailed description of the simulation parameters is shown in the following three
tables. Table 1 displays the parameters for the landscape and population of the simulation and their default
values. The default values were chosen so that a first-time user can see a simple, understandable
demonstration.

Table 1: Basic simulation parameters

Parameter Default Value Description
XMIN 0 Controls display size and shape
XMAX 800 Controls display size and shape
YMIN 0 Controls display size and shape
YMAX 600 Controls display size and shape
DIAMETER 8 Physical size of agents
NUM_HUMANS 40 Total humans in simulation
NUM_INFECTED 5 Number of humans initially infected
NUM_REMOVED 0 Number of humans initially removed
NUM_EXPOSED 0 Number of humans initially exposed
DAY_LENGTH 500 Number of time steps per simulation day

2.4
A second set of parameters is specific to the disease being modeled. Users can choose the type of model (SIS,
SIR, SEIS, or SEIR epidemic), the infection distance, length of exposed and infection periods, and infectivity
rates for both the exposed and infected states (parameters referring to exposed periods are ignored when the
simulation has no exposed period). Parameters whose names end in "DAYS" are then divided by the
DAY_LENGTH parameter to obtain per-time-step values used in calculations.



2.5
Infected and exposed periods can be set in two ways: a constant length, or a length drawn from a
distribution. The constant-length version is set by setting the MIN, MAX, and MEAN variables to the same
values. When the MIN and MAX parameters are not equal, the lengths are drawn from a truncated normal
distribution with given MEAN parameter. These parameters are outlined in Table 2.

Table 2: Disease-specific simulation parameters

Parameter Default
Value

Description

SIR_MODEL True Flag to indicate inclusion of removed
state.

SEIR_MODEL False Flag to indicate inclusion of
exposed/latent state.

INFECTION_DISTANCE 20 Radius of infectiousness
MEAN_INFECTED_TIME_DAYS 1.0
MAX_INFECTED_TIME_DAYS 1.0
MIN_INFECTED_TIME_DAYS 1.0
MEAN_EXPOSED_TIME_DAYS 1.0
MAX_EXPOSED_TIME_DAYS 1.0
MIN_EXPOSED_TIME_DAYS 1.0
INFECTIVITY_RATE_EXPOSED_DAYS 0.75
INFECTIVITY_RATE_DAYS 0.5

2.6
The final parameters are societal and personal parameters (Table 3). A variable representing personal health
is calculated for each human at simulation start, which is drawn from a modified normal distribution (mean
0.5, standard deviation 0.5, with values truncated to the range [0, 1]. 0 indicates severe immunodeficiency.)
Health affects both the likelihood of infection as well as infection duration when variable infection lengths are
being modeled. Another parameter which affects human agent behaviors is the Acceptance parameter, which
reflects how likely individuals are to accept that they are sick and stay home from work; the parameter is
shared by all human agents. Mean and standard deviation of home and workplace sizes are also society-wide
parameters, which should be updated depending on the society being modeled. By default, home size and
standard deviation are based on US Census Bureau (2000) statistics. Default workplace mean size and
standard deviation, however, are based on best guesses, as relevant statistics were not as readily available.

Table 3: Societal and personal simulation parameters

Parameter Default Value Description
health_factor Between 0 and 1 Index of a human''s general health
ACCEPTANCE 0.5 Likelihood of taking a sick day when ill
HOME_MEAN 2.59 Mean home size
HOME_SD 1.42 Standard deviation of home size
WORK_MEAN 10 Mean workplace size
WORK_SD 3.5 Standard deviation of workplace size

Input

2.7
There are two methods which can be used to input simulation parameters: via the console and via input files.
Additionally, default values for each parameter are automatically loaded when the simulation is started
without a specified input file.

2.8
The simulation console, which is only visible when the simulation is run in GUI mode, shows a set of
modifiable parameters under the "mode" tab. In GUI mode, the parameters are slightly simplified to facilitate
demonstration. Figure 4 displays these parameters. In addition, individual agents can also have their status
(infected, removed, etc.) changed on the fly using the display console.



Figure 4. The simulation console

Alternatively, simulation parameters can be specified using an input file. Using the input file allows control
over the full set of parameters, including setting maximum and minimum exposed and infection lengths to
allow variable lengths for these phases. Home and workplace size distributions can also be varied using input
files.

Output

2.9
Output is captured in the form of aggregate statistics: the number of individuals in each of the possible states
(S, E, I or R) at every nth time step. This information is written to a comma-delimited text file. This format is
viewable with a standard text editor and readable by humans, and is interpretable by spreadsheet and
database programs such as Microsoft Excel and Access. Because MASON does not have any graphing or
output processing capabilities built in, this simple file format is ideal for use with third-party analysis
packages. The design of the simulation makes it easy to modify the format of the output files as needed.

Initialization

2.10
When the simulation starts, the first step is to apply the parameters to set up its agents and locations. First,
the environment is created. This simply means setting up the simulation area based on the four display size
parameters from table 1.

2.11
Next, the human agents are created, and health factors for each agent are generated according to a normal
distribution, as discussed above. Agents are chosen at random to fill the required numbers of initially
infected, exposed, and removed agents specified. All other agents are initially set as susceptible to infection.
The agents are initially placed randomly across the landscape.

2.12
Then the locations are created and humans are each assigned to a home and a workplace. Sizes of each
home and workplace are drawn from a normal distribution, which can be modified to mirror various home
and workplace size distributions. Homes are placed randomly across the simulation area, while workplaces
are confined to the top left quadrant to approximate an "urban center". Now the simulation is ready for the
scheduler to take over. The scheduler steps the simulation through time, allowing any agents to perform their
tasks.

Agent Rules

2.13
The humans in this simulation lead fairly humdrum lives: they travel between work and home. Epoch in this
simulation can be thought of as 8 AM. At this moment, all humans begin traveling toward their assigned
workplaces. Once they get sufficiently close to their work locations, the human agents each start an internal



timer. When an individual human's timer reaches 1/3 of the day length, it leaves work and travels home.
Agents have variable distances to travel, and so arrive at (and leave) work at staggered times.

2.14
The human agents move in a straight line toward their target location (home or work, depending on time of
day) at a constant speed based on distance to target. The day length parameter is also taken into account, so
that an agent in a simulation with a fine time-scale will spend the same proportion of the day traveling the
same distance as an agent in a temporally coarser-grained simulation. The velocity at which the agents move
can be adjusted in the code.

2.15
As mentioned in the initialization section, the agents are initially placed over the landscape at random.
However, as the agents' routines of commuting to and from work are established, the agents travel relatively
regular paths.

2.16
If a human is infected (symptomatic) at epoch, that agent must decide whether to take a sick day and stay
home from work. A random Boolean generator is employed as a coin flip weighted by the simulation's
Acceptance parameter. Figure 5 outlines these simple behaviors.

Figure 5. Human behavior rules

2.17
The rules for Human behavior in this simulation include rules, which govern the unconscious biological
process of disease spread. If an infectious agent (whether in the exposed or infected states) passes within the
INFECTION_DISTANCE of a susceptible agent, a calculation is performed to determine if that agent will
become infected (or exposed, in the case of an SEIR or SEIS simulation). This process is summarized in Figure
6. While most infections will be passed while the agents are at their home or work locations, the agents also
come in contact during their "commutes" between the two locations and can pass the infection at that time.
This approximates the shorter contacts humans in society have while riding public transportation, buying a
cup of coffee and a newspaper, or picking up groceries on the way home. Timers, which can be set to variable
latent and infected lengths chosen from a distribution, keep track of when an individual human will move on
to the next state. Figure 7 shows an agent's progression through the epidemiological phases.



Figure 6. Infection behaviors

Figure 7. Movement through the infection phases

Example Runs

3.1
To demonstrate the simulation system, three sets of sample runs, representing influenza, RSV and Lassa,
have been completed and averaged over 20 runs. Influenza was chosen because of its prevalence and recent
concerns over vaccine shortage and new recombinant strains. RSV was chosen because of three interesting
characteristics: incomplete or nonexistent acquired immunity, prevalence among children, and lack of definite
diagnosis in many cases. Lassa, a viral hemorrhagic fever, was chosen to show a completely different type of
infection: an exotic disease that has been suggested as a biological weapon and certainly has the ability to
induce terror in those familiar with its symptoms.

Influenza

3.2
Influenza (or "the flu") is a commonly known respiratory infection throughout the world. The flu is highly
infectious and can be life-threatening to the elderly and those with chronic illness or immunodeficiency
(Hawker, Begg et al. 2001). It is of great interest to health authorities almost every winter, and especially this
past year because of a shortage of vaccines.

3.3
The first simulation provides a rough outline of a flu-like epidemic. Table 4 displays some of the parameter
values used. To model this type of epidemic, the model was set up in SEIR mode. Realistic values for the
range of exposed and infected times were used. A relatively high infection rate for both phases of the disease
were used, while an acceptance value of 0.5 indicates that symptomatic individuals only have a 50% likelihood
of staying home.

Table 4: Some parameters used for influenza-like epidemic demonstration

INFECTION_DISTANCE =20
DAY_LENGTH =1000
MEAN_INFECTED_TIME_DAYS=5.0
MAX_INFECTED_TIME_DAYS=6.0
MIN_INFECTED_TIME_DAYS=4.0
INFECTIVITY_RATE_DAYS=0.2f 
MEAN_TIME_EXPOSED_DAYS=2.0
MAX_TIME_EXPOSED_DAYS=5.0
MIN_TIME_EXPOSED_DAYS=1.0
INFECTIVITY_RATE_EXPOSED_DAYS=0.3f
NUM_HUMANS =100
NUM_INFECTED =0
NUM_REMOVED =0
NUM_EXPOSED =2
ACCEPTANCE =0.5f 



SIR_MODEL =1
SEIR_MODEL =1

3.4
The average of 20 runs with these parameters is displayed in figure 8. The epidemic has a steep infection
curve, which dies down by about day 15, by which time, only 10% of the population has never been infected.
This follows the same trends as a real influenza epidemic, although faster and more prevalent. Once the
model has been properly parameterized, the infection curves could be compared and contrasted with other
model types.

Figure 8. Flu-like epidemic

RSV

3.5
Respiratory syncytial virus (RSV) causes upper and lower respiratory infections. It can cause serious outbreaks,
especially among children, the elderly, and the immunocompromised. However, most cases are not
specifically diagnosed as RSV (Hawker, Begg et al. 2001). RSV infection leaves the individual with little or no
immunity to future RSV infections, so it is best modeled as an SEIS epidemic.

3.6
Table 5 shows some of the parameters used in modeling this type of epidemic. Three states are allowed in
this model: susceptible, exposed, and infected, after which the individual returns to the susceptible pool and
may become infected again. Because of the acute character of RSV and its prevalence among children, the
higher acceptance value of 0.7 was used here.

Table 5: Some parameters used for RSV-like epidemic demonstration

INFECTION_DISTANCE =20
DAY_LENGTH =1000
MEAN_INFECTED_TIME_DAYS=8.0
MAX_INFECTED_TIME_DAYS=10.0
MIN_INFECTED_TIME_DAYS=6.0
INFECTIVITY_RATE_DAYS=0.25f
MEAN_TIME_EXPOSED_DAYS=5.0
MAX_TIME_EXPOSED_DAYS=8.0
MIN_TIME_EXPOSED_DAYS=2.0
INFECTIVITY_RATE_EXPOSED_DAYS=0.25f
NUM_HUMANS =100
NUM_INFECTED =0
NUM_REMOVED =0
NUM_EXPOSED =2
ACCEPTANCE =0.7f
SIR_MODEL =0
SEIR_MODEL =1



3.7
Figure 9, the average over 20 simulations, shows the periodic character of a disease like RSV, although at a
lower time scale and higher prevalence.

Figure 9. RSV-like epidemic

Lassa Virus

3.8
Lassa virus is a viral hemorrhagic fever, a severe infection with high mortality rate. The most famous of this
type of infection is Ebola, the "flesh eating virus." This type of infection is uncommon outside of the endemic
areas. For Lassa, this area is rural West Africa, where the virus is carried by rats (Hawker, Begg et al. 2001).
However, Lassa and other hemorrhagic fevers have been suggested as possible biological weapons, and
therefore are timely for study and simulation.

3.9
Lassa was modeled as an SEIR infection, and its parameters are shown in Table 6. One interesting change is in
the infection distance parameter. Unlike respiratory infections, where coughing can spray an aerosol of
infectious material, Lassa is usually transmitted by closer contact. After symptoms have emerged,
transmission will also be lower, because the acuteness of the disease will be impossible to ignore. This also
accounts for the maximum acceptance value of 1.0, meaning that once symptoms have emerged, the
individual is unlikely to be moving around in public. The infectivity rate during the exposed period has been
set to what is probably an unrealistically high value, but this can be explored upon further research.

Table 6: Some parameters used for Lassa-like epidemic demonstration

INFECTION_DISTANCE =10
DAY_LENGTH =1000
MEAN_INFECTED_TIME_DAYS=10.0
MAX_INFECTED_TIME_DAYS=20.0
MIN_INFECTED_TIME_DAYS=5.0
INFECTIVITY_RATE_DAYS=0.15f 
MEAN_TIME_EXPOSED_DAYS=10
MAX_TIME_EXPOSED_DAYS=21.0
MIN_TIME_EXPOSED_DAYS=6.0
INFECTIVITY_RATE_EXPOSED_DAYS=0.35f
NUM_HUMANS =100
NUM_INFECTED =0
NUM_REMOVED =0
NUM_EXPOSED =2
ACCEPTANCE =1.0f 
SIR_MODEL =1 
SEIR_MODEL =1



3.10
Figure 10 displays the average results over 20 runs with these parameters. This graph has a similar character
to the influenza simulation shown in Figure 7, although this epidemic has a longer duration, only starting to
settle down at the end of 50 days. This gives health officials more time to react to this epidemic and slow its
spread. If a similar trend is preserved after further refinement, this may indicate that Lassa and other viral
hemorrhagic fevers are not ideal biological weapons, despite their terrifying symptoms.

Figure 10. Lassa-like epidemic demonstration

Infection Push vs. Infection Pull

4.1
In this simulation, infectious agents search for susceptible agents within a specified radius of their current
position and "push" the infection onto the susceptible population with a certain probability. This is not an
accurate representation of reality, but neither is the opposite situation: susceptible agents finding infectious
agents within a radius and "pulling" the infection into themselves with a certain probability. However, for the
purposes of this simulation, a reasonable method is needed to spread the infection. In the previous sample
runs, an infection pushing algorithm was used. For comparison, the flu-like epidemic runs were repeated
using the infection pulling algorithm. Figure 11 can be compared with Figure 8 to see that this produces
comparable output.

Figure 11. Flu-like epidemic using infection pull instead of push



5. Intervention Policies

5.1
Two unique aspects of this model are useful for demonstrating intervention policies. The first is the
acceptance parameter, which gives the likelihood that an infected human will stay home instead of going to
work when the next day begins. By varying this parameter, effects of closing schools and workplaces as well
as the possible effects of a public service campaign ("Just Stay Home") can be studied.

5.2
The second unique feature is part of the MASON toolkit. When running the simulation in interactive mode
(with visualization), individual agents can be selected, and their health status can be changed by toggling the
checked boxes under the Inspectors tab on the console window. This can be used for a variety of interesting
explorations, such as choosing on the fly which agents will be infected (a terrorist cell decides which of its
agents is positioned to do the greatest damage if infected) or carefully determining which agents will be
vaccinated (setting particular agents to Removed). Of course, random vaccination at varying coverage can also
be studied by starting the simulation with some number of agents set as removed.

6. Conclusion

6.1
The simulation described in this paper has been implemented using the MASON multiagent toolkit. It has
been demonstrated on 3 diverse diseases, and provides an excellent base for further investigation. The
MASON toolkit was sufficient to implement a simulation with all the required elements, as described by Ling
Bian (2004). While the results of the example runs are meant as demonstrations, the infection curves created
are a qualitative match to real-world epidemic data. With proper parameterization, this model could be used
for realistic simulations.

Future Work

6.2
This simulation is a flexible framework, which can be extended to accommodate many additional ideas and
avenues of research. Ling Bian mentions some examples in her framework paper, including modeling
weekend population interactions, incorporating realistic landscapes, and modeling vector-borne diseases
such as those carried by rats and mosquitoes (Bian 2004). Non-human animals such as these could be
implemented as a class which inherits from the general class Agents, with different behaviors from human
agents.

6.3
While the example results presented in this paper have been simulated using the algorithm presented above
(Figure 6) for determining when the infection will be passed, a change to the code allows for the R0 estimation
proposed by (Lipsitch et al 2003): instead of determining the infection status of the individual, then using a
stochastic coin flip to determine whether the infection will be passed to the susceptible agent, perform the
stochastic step first, then determine whether the receiving agent is susceptible (see Figure 12.)

Figure 12. Revised infection flowchart



6.4
Groundbreaking research by Albert-Laszlo Barabasi indicates that the social network, the links between
individuals in human society, is most likely a scale-free network, which is characterized by a very specific
type of skewed distribution (Barabasi 2002). This type of network allows for specific emergent behavior which
is not possible with other configurations, for example the emergence of superspreaders in a population. An
easy extension to this simulation would be to implement functions to create other distributions such as the
power-law distribution needed to create scale-free characteristics.

6.5
Another extension would also strengthen the support for network research. The author envisions adding an
additional visualization window which would show the agents in a network layout, and would add links
dynamically for agents which came within infection distance while traveling between locations. Tools for
starting the simulation with a specified interaction network and for saving the network information created by
the simulation would be highly useful future extensions. Varying the distributions used in different areas of
the simulation would be a fruitful topic in social network research.

6.6
Further parameterization of the simulation for specific diseases is a vital next step before using the
simulation to model a realistic epidemic. Once parameterization is complete, validation can proceed.

6.7
Other future enhancements include adding more personal characteristics and behaviors to differentiate
individual humans and additional important environmental characteristics such as weather. For infections
which can be passed through surface contacts and fomites, a fading trail of contamination could be
implemented which follows infectious individuals. Each of these enhancements should be possible using the
MASON toolkit.
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