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s"*"Abstract

We present an agent-based model with the aim of studying how macro-level dynamics of
spatial distances among interacting individuals in a closed space emerge from micro-level
dyadic and local interactions. Our agents moved on a lattice (referred to as a room) using a
model implemented in a computer program called P-Space in order to minimize their
dissatisfaction, defined as a function of the discrepancy between the real distance and the
ideal, or desired, distance between agents. Ideal distances evolved in accordance with the
agent's personal and social space, which changed throughout the dynamics of the
interactions among the agents. In the first set of simulations we studied the effects of the
parameters of the function that generated ideal distances, and in a second set we explored
how group macro-level behavior depended on model parameters and other variables. We
learned that certain parameter values yielded consistent patterns in the agents' personal
and social spaces, which in turn led to avoidance and approaching behaviors in the agents.
We also found that the spatial behavior of the group of agents as a whole was influenced
by the values of the model parameters, as well as by other variables such as the number of
agents. Our work demonstrates that the bottom-up approach is a useful way of explaining
macro-level spatial behavior. The proposed model is also shown to be a powerful tool for
simulating the spatial behavior of groups of interacting individuals.

Keywords:
Spatial Behavior, Proxemics, Agent-Based Modeling, Minimum Dissatisfaction Model,
Small Groups, Social Interaction

» i
@' Introduction

1.1
The concepts of personal space and spatial distances between interacting individuals have
been common topics addressed by social spatial behavior research since the 1950s.
Proxemics, as introduced by Hall (1966), has become a key field of interest for social
scientists, such as anthropologists, sociologists, and environmental and social
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psychologists. For example, proxemics provides a background for environmental
psychologists because personal space is related to crowding and territoriality (Cassidy
1997). However, research done in these social sciences usually focuses on macro-level
behaviors. Although it is possible to obtain accurate descriptions of this phenomena, it is
difficult to explain the behavior observed. For example, although it is possible to identify a
great many of the variables that affect spatial distances and personal space from a macro-
level point of view, such as age, gender, personality, cultural differences and so on (for a
review of these variables, see Hayduk 1983), it is difficult to come up with general rules,
and whenever a general rule is formulated, a number of exceptions to it quickly crop up.

1.2
Suppose you are observing a group of people interacting in a situation such as a cocktail
party. If you (or a camcorder) had a bird's eye view of a room where a party was going on,
you would clearly detect certain patterns in the dynamics of spatial behavior: people move
from one group to another, people come together to form groups, one person sits alone in a
corner, some people move very close to others as they interact, while others prefer to keep
their distance, and so on. However, the real problem begins when you try to formulate rules
to explain the spatial behavior you have observed. You could begin by stating, "After a
certain length of time, a group of people talking together tends to break up". But you would
probably quickly find exceptions to this general rule: "After a certain length of time, a group
of people talking together tends to break up, unless a new person joins the group". You
would also find exceptions to the exceptions: "After a certain length of time, a group of
people talking together tends to break up, unless a new person joins the group and no one
in the group dislikes that new person". And so on. In short, it is very difficult to come up with
even one simple general rule.

1.3
However, a different strategy can be used to explain complex social behavior: analyzing

the macro-level behaviors that emergel!l from micro-level relationships instead of focusing
on the macro-level itself. Complex social behavior can then be explained as a
consequence of simple rules of interaction, and models can be built from the bottom up.
Though bottom-up models are not common in human social-behavior research, there was a
time when such proposals were made. Quite some time ago, Schelling (1969) proposed a
model in which some people (called agents) were located in cells on a line and individuals
moved to the left or right in accordance with certain rules. Sakoda (1971) developed a
model in which agents moved on a checkerboard. The agents had positive, neutral or
negative attitudes towards one another, and used them to move to empty cells on a lattice
in accordance with an established rule: each agent could move to a cell in its Moore
neighborhood (defined as a 3-cell by 3-cell square with the agent's current location in the
center) where the sum of attitude values was maximized. Nowak, Szamrej, & Latané (1990)
developed a bottom-up computational model of attitude change and social impact. Cellular
automata theory was also used to explain the social macro-level effects of micro-level
behavior (Hegselmann 1996; Hegselmann & Flache 1998); likewise, pedestrian behavior
has been modeled using cellular automata and agent-based models (Schreckenberg &
Sharma 2002).

14
We suggest that the spatial behavior of a group as a whole (macro-level behavior) can be
explained as a process emerging from the dyadic interaction rules governing the spatial
distances between the members of the group (micro-level behavior). Therefore, the main
objective of this paper is to show that macro-level dynamics observed in spatial behavior in
a closed room emerge from the spatial interactions between the agents occurring at the
micro level.

'h'
<« Model
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21
Quera, Beltran, Solanas, Salafranca, & Herrando (2000) and Quera, Solanas, Salafranca,
Beltran, & Herrando (2000) presented an agent-based model to explain the dynamics of
spatial behavior of a small group of people interacting in a closed space (for instance, in a
room at an indoor event). This model, called the minimum-dissatisfaction (MD) model,
establishes how distances between agents change through time as a consequence of
modifications in micro-level features. In accordance with the MD model, at each time unit,
an agent moves to the location within its current neighborhood that minimizes its social
dissatisfaction, defined as a function of the discrepancy between the real distances it
actually keeps from the other agents and the ideal distances it wants to keep from them.
Agent /'s dissatisfaction at time tis defined as:

> w (6)-|d (t) =D, (1)
(.]g(f) = (1)

m Z w, (1)

J."'_:Z.a'

where Z; is the subset of agents perceived at time t by agent i and from which agent j keeps

non-neutral ideal distances; mis the maximum possible real distance, given the
dimensions of the room, and is used to rank dissatisfaction between 0 and 1; w;(f) weighs

the discrepancy between the real and ideal distance; djjf) is the current real distance
between agents i and j at time £, and D;(t) is the ideal distance agent / wants to keep from
agentj at time t (for details, see Quera, Beltran, Solanas, Salafranca, & Herrando 2000).

2.2
The ideal distance agent i wants to keep from agentj can vary in accordance with some
rules (or functions) that are applied whenever a behavioral event or combination of events
occurs during the interaction. For the purposes of this paper, we used a function that
generated ideal distances between agents as a consequence of changes in their personal
and social spaces. We defined the personal (Pj(f)) and social (S(t)) distances of agent i

with respect to agent; at time t as the lower and upper limits, respectively, for the ideal
distance agent j wanted to keep from agent; at time t. Personal and social distances were
the diameters of two concentric circles whose center was agent i's current location. In
accordance with our model, the ideal distance varied as a function of both the personal and
social distances, which changed as a function of real distance, which in turn was ultimately
determined by the agent's dissatisfaction (U((f)).

23
Initially, P;(0) and S;(0) were assigned specific values: P;(0) was equal to the diameter of

the agent's neighborhood; and S;(0) was equal to 3P;(0) because, according to proxemics,

the social-space distance is approximately three times greater than the personal-space
distance (Hall 1966). As the simulation progressed (t =1, 2, ...) and while dj(t) > S;(0),

agent i's movements were not a product of its real distance from agent j, and Pi(f) and Sj(t)

kept their initial values. During this period the agent moved randomly. The first time its real
distance from agentj reached a value that was lower than or equal to its social distance
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from that agent, i.e., d(f) = S;0), the ideal distance that agent / wanted to keep from agent j

changed to one of the following values: (a) if the real distance was less than the personal
distance, i.e., d,-j(t) < P,-j(t), then the ideal distance was set equal to the personal distance,

Djf(t) = Pt); or (b) if the real distance was greater than the social distance, i.e., dj(f) > S(t),
then the ideal distance was set equal to the social distance Dj(t) = Sf); or (c) if the real
distance was between the personal and social distances, i.e., Pj(t) < dj(f) < Si({), then the
ideal distance was set equal to the real distance, Dj(t) = dj({).

24
Three different time counters were updated when each of these conditions occurred: tp, t,

and {5, which were cumulative times for conditions (a), (b), and (c), respectively. Pj;and S;

were also updated depending on which condition applied, and as a function of the
corresponding time-counter value, provided it was greater than the given critical adaptation
time T. When condition (a) applied, i.e., when the real distance was less than the personal
distance, the personal distance was updated in accordance with the following formula:

Pj(t+1) = Pyt) + rk-T2It, 2)

2.5
If tp =n-T(n=1,2,...),r=-1; otherwise r=+1. Parameter k was equal to a non-null value

that was less than the neighborhood diameter. Thus, while agentj was at a distance of less
than P(), agent i reacted by increasing that personal distance by small amounts, and

subsequently made its ideal distance with respect to agentj equal to its personal distance.
In other words, agent i reacted to agent j's approaches by trying to avoid agentj, because
agent j perceived agent;j as an invader of its personal space. However, as the cumulative
time at a specific personal distance increased and reached values equalto T, 2T, 3-T, etc.,
agent i became progressively more used to agent; being at that distance, and decreased
its personal distance with respect to agentj; as a result, its ideal distance from agentj
decreased as well. In other words, agent i could not run away from agentj and adapted to
the new situation. Subsequent increases and decreases in personal distance became
progressively smaller, and therefore that distance tended towards equilibrium.

2.6
When condition (b) applied, i.e., when the real distance was greater than the social
distance, the social distance was updated in the following way:

Sy(t+1) = Syt) + r-k- T2ty (3)

27
Ift,=nT(n=1,2,...),r=+1; otherwise, r=-1. While agent j was at a distance from agent i
that was greater than agent /'s social distance with respect to agentj, agent reacted by
decreasing that social distance by small amounts, and making its ideal distance equal to its
social distance. In other words, it reacted to non-approaches from agentj by trying to
approach it. Still, as £, increased and reached values equalto T, 2:T, 3T, etc., agent /

became progressively more tired of agent being at that distance, and increased its social
distance substantially; as a result, its ideal distance increased as well. As subsequent
changes became progressively smaller, the social distance tended towards equilibrium.

238
Finally, when condition (c) applied, i.e., when the real distance was greater than the
personal distance and less than the social distance, these distances were updated as
follows:
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Pj(t+1) = P(t) + rk-T?lts Sj(t+1) = Sy(t) + rk- T2t 4)

29
Ifts=n-T(n=1,2,...),r=-1; otherwise, r= +1. In other words, agent i/ reacted by increasing
both its personal and social distances by small amounts; therefore, agent i responded to an
almost steady situation by trying to avoid agent . However, as {5 increased and reached

values equal to T, 2-T, 3-T, etc., agent i became progressively more used to the situation
and decreased both its personal and social distances with respect to agent j; consequently,
its ideal distance decreased as well. As before, subsequent increases and decreases in
personal and social distances became progressively smaller.

210
In this paper, we will systematically explore how the agents' personal and social distances
evolved, depending on different parameter values (k and T) of the function that generated
the ideal distances Dj;, as described above.

& Method

3.1
The MD model was implemented as an agent-based computer program called P-Space
written in Borland C language (Quera, Beltran, Solanas, Salafranca, & Herrando 2000;
Quera, Solanas, Salafranca, Beltran, & Herrando 2000) in accordance with the following
assumptions: (a) agents move in a lattice, called a room, occupying one cell ata time (i.e.,
time and space are measured in discrete units); (b) a cell cannot be occupied by two or
more agents simultaneously; (c) at each time unit, agents decide to move within their
respective neighborhoods simultaneously; and (d) agents make their decisions
independently from the other agents. Figure 1 shows the interface screen of P-Space. The
software and the user manual can be downloaded from
http://www.ub.es/comporta/gcai/Paginas/gcai_Downloads.htm.
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Figure 1. Interface screen of P-Space. A room with five agents is shown in the upper left
section. The lower left plot shows the agents' dissatisfactions as a function of time. Ideal
and real distances between agents as a function of time are shown in the lower right 5 x 5
grid. The upper right section of the screen displays the room to scale, where frequency of
occupation is represented using color codes in a real screen. Also, different colors are
used for identifying agents and their trajectories.

3.2
Agents have individual features: (a) initial orientation or heading, subsequent headings
being defined by the direction of the agent's movement from time ¢ to time t+1; (b) attention
scope, a circular sector which is defined as an area within the room to which the agent
"pays attention" at time {, so that only other agents within that area are considered when the
agent computes its dissatisfaction at that time; (c) initial position within the room; and (d) the
diameter and type of neighborhood, which are the same for all agents in a given simulation.

3.3
The general procedure for the simulations was as follows: First, the diameter of the
neighborhood was set at 3 cells, making initial values for personal and social distances 3
and 9, respectively. Some preliminary simulations showed that the size of the room, the
attention scope, and the type of neighborhood yielded no effects on Dj;, so in all the

simulations these parameters were assigned constant values of 80 cells x 70 cells, 360°
and a Moore neighborhood, respectively. The program saved values for P and S;; for each

agent at each time unit, as well as real and ideal distances. Thus, the dynamics of P;; and
S,-j over time can be observed. Moreover, when the simulation was running, the computer

screen showed the room and the position of the agents in the room at each time unit. The
total time units of each simulation varied depending on the time needed for Pj;;and S;;to

reach equilibrium. The procedure of the simulation as carried out by program P-Space is
outlined in the pseudocode shown in Figure 2.
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Else increases P and &
Lec ID = D

Figure 2. Pseudocode of program P-Space, indicating how ideal, personal, and social
distances are updated according to changes in real distance between the agents

3.4
Two sets of simulations were carried out with P-Space: (a) a first set systematically tested
the effects of critical adaptation time T and incremental parameter k on the evolution of
personal and social distances; and (b) a second set of simulations tried to identify macro-
level spatial-behavior patterns that might emerge as a function of parameters T and k, as
well as other variables.

First set of simulations: Effects of parameters T and k

3.5
Values for parameters T and k were varied systematically in order to observe the effects on
the evolution of Pj;and Sj; over time. Only two agents were defined: Agent 1 acted in

accordance with the rules that generated ideal, personal, and social distances, while Agent
2 was immobile and neutral, i.e., it did not move and did not react to Agent 1. When the
simulation started (=0), Agents 1 and 2 were located in the center of the room, one facing
the other (i.e., their headings were opposite). Agent 1's values for parameters T and k were
varied using four simulation conditions obtained from previous exploratory simulations (see
Table 1). P4oand S, values were recorded during the simulation.

Table 1: Parameter T and k values used in the simulation

Condition Parameter T Parameter k
A 100 0.5
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100
10
10

0.05
0.5
0.05

3.6

The results show that under condition A, P4, and S, values become higher than the
dimensions of the room; whereas, under conditions B, C, and D, P4,, Sy, and d4, reached
steady values after a variable number of time units (see Figure 3). Given that D4, was equal
to ds» when d4, was between P4, and S¢,, D4, also reached equilibrium under conditions

B, C, and D. Therefore, the ideal distance agent /i wanted to keep from agent j remained
constant when P4, and S4, reached equilibrium. Figure 3 also shows that under conditions

B and C, social distance S, tended to be higher than under condition D (about 25 cells vs.
about 8 cells). Also, under conditions C and D, personal distance P4, was lower than under

condition B (about 2 cells vs. about 15 cells).

Distance
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B-condition: T=100, k=0.05
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D-condition: T=10, k= 0.05
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Figure 3. Evolution of personal, social, and real distances over time under simulation
conditions A, B, C, and D. Distances for Agent 1 were governed by parameters T and k,
which are shown in the figure. Agent 2 was immobile and neutral

3.7
A second series of simulations was carried out in order to obtain the equilibrium values for

P4, and Sy, when Agent 2 was neutral with respect to Agent 1, but moved randomly; the

neutral agent had no ideal distances with respect to the other agent, and therefore did not
experience dissatisfaction. At t=0, Agents 1 and 2 were located in the center of the room
and their headings were opposite. Parameters T and k for Agent 1 were varied in
accordance with the A, B, C, and D simulation conditions described above. The results are
shown in Figure 4. For all conditions, P4, and S, values were approximately the same as

those found in the first simulation series, although the evolution of P4, and Sy, over time
was more irregular, especially under condition B.

A-condition: T=100,k=0.5

180 4
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120 - i

©
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5 f

60
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20 4
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B-condition: T=100, k=0.05

30
25 -
20

15 -

— Pearsonal
— Social

Distance

10

b

D T T T T T T T T T T T T T T T T T T T

200 400 o600 &00 1000 1200 1400 1600 1800
Time

=1

C-condition: T=10,k=0.5

30

25 S

— Personal

15 A
e — Social
10

u T T T T T T T T T T T
0 200 400 600 800 1000 1200 71400 71600 11800
Time

Distance

http://jasss.soc.surrey.ac.uk/9/3/5.html 11 07/09/2013



3.8

3.9
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Figure 4. Evolution of personal and social distances over time for conditions A, B, C, and
D. Distances for Agent 1 were governed by parameters T and k, which are shown in the
figure. Agent 2 was neutral and moved randomly

Under condition B, an interesting emergent effect occurred. The perception gained from
watching the computer screen while the simulation was running was that sometimes Agent
2 (which was neutral and moved randomly) was chasing Agent 1, and sometimes Agent 1
was chasing Agent 2. This behavior was obviously not the result of an order telling agents
to chase each other alternately, and can be explained by Agent 1's high personal and
social distance values under condition B. While moving randomly, Agent 2 invaded Agent
1's personal space, making D4, increase, which in turn prompted Agent 1's avoidance

behavior; likewise, Agent 2 moved far from Agent 1's social space, making D4, decrease,

which in turn prompted Agent 1's approach behavior. Thus, to an outside observer, the
overall spatial dynamics of the two agents was perceived as "Agent 1 and Agent 2 are
chasing each other alternately”.

A third simulation series was carried out in order to determine whether the evolution
patterns of personal and social distances found previously remained the same if the two
agents were not neutral but acted in accordance with different values of parameters T and
k. Two agents were defined: Agent 1 with T=100 and k = 0.05 (which corresponded to
condition B in the previous simulation series) and Agent 2 with T =10 and k = 0.05 (which
corresponded to condition D).

07/09/2013



Agent1: T=100,k=0.05 Agent2: T=10,k=0.05
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Figure 5. Evolution of personal and social distances between Agents 1 and 2 over time
during the simulation

3.10
Figure 5 shows that the personal and social distances between the two agents (P45, Sy,

P54, and S,) tended to reach equilibrium very much like those found under conditions B
and C of the previous simulation; equilibrium values were P4, =24 and Sy, =12 (as under
condition B), and P,y =2 and S,4 =9 (as under condition C). In summary, equilibrium

values of personal and social distances for a given agent were not influenced by the other
agents' values for parameters T and k, and were consistent only with the agent's own T and
k parameters.

3.1
In a fourth series of simulations, we compared Pjand S,-j equilibrium values when the

agents that interacted had identical values for T and k, and when they had different T and k
values. Three agents were defined with T and k values as shown in Table 2. For instance,
Agent 1 (row 1) behaved towards Agent 2 (column 2) with the parameter values
corresponding to condition B (7=100 and k = 0.05), and Agent 2 (row 2) behaved towards
Agent (column 1) in accordance with those same values. On the other hand, Agent 1 (row
1) behaved towards Agent 3 in accordance with the parameters of condition C (T =10 and
k =0.5) (column 3), while Agent 3 (row 3) behaved towards Agent 1 (column 1) in
accordance with the parameters of condition D (T =10 and k = 0.05).

Table 2: Values of parameters T and k. The ideal distances for each
agent (rows) towards each other agent (columns) was computed in
accordance with T and k values under conditions B, C, and D (for more
details, see Table 1)

Agent
1 2 3
1 - B C
Agent 2 B - C
3 D B -

http://jasss.soc.surrey.ac.uk/9/3/5.html 13 07/09/2013



3.12
The results show that Pj;and S; equilibrium values were as expected for all conditions (B,

C, and D), regardless of the fact that T and k were identical or different for the two specific
agents that interacted. When Agent 1 interacted with Agent 2, P, and S, had the same

equilibrium values as those corresponding to condition B; the same occurred when Agent 2
interacted with Agent 1. Furthermore, when Agent 1 interacted with Agent 3, Agent 1's
personal and social distances reached equilibrium values identical to those corresponding
to condition C, whereas when Agent 3 interacted with Agent 1, Agent 3's personal and
social distances reached values like those for condition D.

3.13
In conclusion, when equilibrium was reached, the agents' personal, social, and ideal
distances depended on their own values for parameters T and k, which defined a trend for
that agent. Furthermore, an emergent behavior that was observed under one of the
conditions in the second simulation series, i.e., an agent with T=100 and k=0.05 plus a
neutral agent, can be explained by the trend of the first agent.

Second set of simulations: Macro-level spatial behavior

3.14
We explored the agents' macro-level spatial behavior as a function of their parameter
values while paying special attention to emergent group phenomena. To that end, we
carried out a first simulation series with from 3 to 20 agents with the parameter values for
conditions B, C, and D corresponding to those of the previous set of simulations. The
results again show that the personal and social distances for each individual agent at
equilibrium agreed with those anticipated in accordance with the agent's trend, i.e., the
characteristic pattern values of personal and social distances were the same under the
different conditions as those obtained in the first set of simulations. Agents behaving in
accordance with the parameter values of condition B developed greater personal distances
than the other agents, which produced avoidance behavior in the agents behaving in
accordance with condition-B parameter values; conversely, agents behaving in accordance
with the parameter values of conditions C and D developed smaller personal distances and
thus tended to remain closer to the other agents. These different global patterns were very
clear to an observer looking at the computer screen while the simulations were running.

3.15
Moreover, the results of the first series of simulations showed that the mobility of the group
(i.e., the number of time units during which the agents were moving around the room before
the group reached equilibrium) was influenced by the length of time the agents remained
neutral before interaction started. According to our model, in the beginning, an agent (i)
remained neutral until it encountered another agent (j), i.e., when djjf) = S;(0) for the first

time; therefore, agents did not interact during a variable number of time units after the
simulation started. If an agent's first encounter was delayed with respect to the first
encounter of the other agents, the first agent's time counter was different from the other
agents', making it take longer for the group to reach equilibrium. As a result, the overall
dynamics observed on the computer screen was of greater group mobility. Moreover,
delayed agents moved randomly during the first time units of the simulation, while the other
agents did not. Therefore, the delayed agents tended to invade the other agents' personal
space, which produced two kinds of behavior: avoidance (as observed in the emergent
chase behavior in the second simulation) or approach (when the delayed agents left the
other agents' social space, which provoked approaching behavior in the other agents). This
process delayed overall equilibrium. Finally, we also found that the greater the number of
agents making up the group, the faster the agents reached equilibrium.
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3.16
In a second series of simulations, we focused on the effects of the T and k parameters on
the mobility of the group. We defined a group of four agents, two of which behaved in
accordance with the parameter values of condition B (Agent 1 and Agent 2) and the other
two in accordance with the parameter values of condition C (Agent 3 and Agent 4), and
then observed the number of time units the agents moved around the room before the group
reached equilibrium. More simulations were carried out varying the agents' parameters,
which we found produced variations in the group's mobility: (a) when the T parameter was
changed from T=100 to 7=10 for Agent 1, Agent 2 or both of them, overall mobility
decreased; (b) when the T parameter was changed from T=10 to T=100 for Agent 3, Agent
4 or for both of them, overall mobility increased; (c) when all the agents were assigned the
values k=0.05 and T = 80, 100, 120, and 140, overall mobility increased as T increased.
Hence, overall mobility clearly depended on the values of parameters T and k.

3.17
In summary, in the second set of simulations we observed that the parameters of the
agents, i.e., the trend of each agent with respect to the other agents, determined the group's
observed dynamics at the macro-level behavior, and provoked the emergence of avoidance
and approach behaviors. Also, the group's mobility increased the longer the agents
remained neutral during the early time units of the simulation. Mobility also increased the
higher the values of parameters T and k, and when the number of agents was lowered.

3.18
Moreover, compared with the first set of simulations (in which only two agents were
present), more complex group behavior was observed when a larger group of agents was
defined; their global behavior, as observed on the computer screen while the simulation
was running, was more diverse, as each agent reacted to several agents at the same time.

» .
@' Conclusions

4.1
The main objective of this paper was to demonstrate that our model could be used to
explain the behavior observed in a group of people interacting in a closed space (such as a
cocktail party), based on dyadic and local interactions using a bottom-up approach. We
have briefly discussed the minimum-dissatisfaction model (MD) and used it to define the
dynamics of the spatial behavior of the group. In our simulations, we explored the effects of
the critical adaptation time (T) and the incremental parameter (k) on the function generating
Djjand, based on that, we observed the dynamics of the macro-level spatial behavior. The

two sets of simulation results show that several agents interacting with the function
generating D;; in the MD model leads to the emergence of unexpected overall behavior

similar to that of a group of individuals in a closed space. As discussed in the introduction,
this behavior can be described but not explained from a macro-level point of view, i.e., no
general rules can be stated using a classic top-down approach. In this paper, we show that
itis more advantageous to describe spatial processes using a bottom-up approach, and to
define the spatial behavior in a closed room as an emergent process resulting from the
function governing the evolution of the personal space of each agent at the micro level.

o
“"Notes

T An observed global phenomenon is called emergent when it arises from the nonlinear
parallel interactions of a larger set of simpler elements. For a definition of emergence, see
Darley (1994).
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