Abstract

The beer production-distribution game, in short "The Beer Game", is a multiplayer board game, where each individual player acts as an independent agent. The game is widely used in management education aiming to give an experience to the participants about the potential dynamic problems that can be encountered in supply chain management, such as oscillations and amplification of oscillations as one moves from downstream towards upstream echelons. The game is also used in numerous scientific studies. In this paper, we construct a mathematical model that is an exact one-to-one replica of the original board version of The Beer Game. We apply model replication principles and discuss the difficulties we faced in the process of constructing the mathematical model. Accordingly, the model is presented in full precision including necessary assumptions, explanations, and units for all parameters and variables. In addition, the adjustable parameters are stated, the equations governing the artificial agents’ decision making processes are mentioned, and an R code of the model is provided. We also shortly discuss how the R code can be used in experimentation and how it can also be used to create a single-player or multi-player beer game on a computer. Our code can produce the exact same benchmark cost values reported by Sterman (1989) verifying that it is correctly implemented. The mathematical model and the R code presented in this paper aims to facilitate potential future studies based on The Beer Game.

Keywords:
Acquisition Lag, Artificial Agents, Beer Game, Mathematical Model, Replication, System Dynamics

Introduction

1.1 The beer production-distribution game, in short "The Beer Game", is a multiplayer board game, where each individual player acts as an independent agent. It was first introduced by Jay Forrester's System Dynamics (SD) research group of the Sloan School of Management at the Massachusetts Institute of Technology in the 1960s. The Beer Game is an application of SD modeling and simulation methodology, which is widely used in management education and aims to give an experience to the participants about the potential dynamic problems that can be encountered in supply chain management, such as oscillations and amplification of oscillations as one moves from downstream towards upstream echelons. The game is also used in numerous scientific studies. In this paper, we construct a mathematical model that is an exact one-to-one replica of the original board version of The Beer Game. We apply model replication principles and discuss the difficulties we faced in the process of constructing the mathematical model. Accordingly, the model is presented in full precision including necessary assumptions, explanations, and units for all parameters and variables. In addition, the adjustable parameters are stated, the equations governing the artificial agents’ decision making processes are mentioned, and an R code of the model is provided. We also shortly discuss how the R code can be used in experimentation and how it can also be used to create a single-player or multi-player beer game on a computer. Our code can produce the exact same benchmark cost values reported by Sterman (1989) verifying that it is correctly implemented. The mathematical model and the R code presented in this paper aims to facilitate potential future studies based on The Beer Game.

1.2 The Beer Game is a four echelon supply chain consisting of a retailer, wholesaler, distributor, and factory, where each one of these echelons is managed by an independent agent. In this multi-agent game, there is an inventory control problem for each one of these echelons. During the game, each human agent in a team of four is responsible for one of the four echelons and manages the associated inventory by placing orders. The orders flow from downstream echelons towards upstream echelons and cases of beer flow in the opposite direction. The aim of the game is to minimize the accumulated total cost obtained by the participants of a team managing each echelon. The accumulated cost generated by each individual echelon is calculated at the end of the game by adding up all inventory holding and backlog costs obtained at the end of each simulated week (Sterman 1989).

1.3 At the beginning of an ongoing research study, a mathematical model that is an exact one-to-one replica of the original board version of The Beer Game, was needed. Moreover, we decided to use a model that had equations organized and executed in exactly the same order as the five steps of the board game. We believed that such a model would facilitate the verification of our results and also potentially contribute to the analysis and understanding of the board game. We were not able to find a computer model in the literature that provided such an exact replica of the board game. Therefore, we first constructed a mathematical model that is independent from programming languages based on the descriptions of the The Beer Game provided in Sterman (1989). Later, we coded this model in R\(^1\). The mathematical model is given in full detail in the section named “Mathematical model of the beer game”.

1.4 Axelrod (1997, pp. 20-21) noted that: “Replication is one of the hallmarks of cumulative science. It is needed to confirm whether the claimed results of a given simulation are reliable in the sense that they can be reproduced by someone starting from scratch.” There are many other researchers who also emphasize the importance of replication as a validation approach (see for example, Edmonds & Hailes 2003, 2005; Miodownik et al. 2010; Wilesley & Rand 2007). Model replication requires a significant effort because complex dynamic models are highly sensitive to the implementation details (Morielle et al. 2008). In this paper entitled “Advancing the Art of Simulation in the Social Sciences”, Axelrod (1997) reports problems that were encountered in replicating simulation models described in other published work. According to Axelrod, some of the replication problems are caused by ambiguities, gaps, and errors in the model descriptions. Despite all the details provided by Sterman (1989), a significant effort was required to obtain a one-to-one mathematical replica of the board version of the game, and we experienced difficulties similar to the ones experienced by Axelrod (1997): (1) Sterman provided equations for the general stock management task, which can form a basis in obtaining The Beer Game model. However, the exact equations for The Beer Game are not present in Sterman’s paper, except for the ordering equation. (2) There is an ambiguity in the tie-breaking rule used in rounding the values of the orders. Hence, we are forced to assume a tie-breaking rule in rounding the values. (3) Expectation formation is assumed to be performed informally by a human participant in his mind and, therefore, is not listed among the five steps of The Beer Game. However, in the mathematical model, the decision making process is also captured as a part of the model and, therefore, we have to determine its place among the steps of the game. (4) There is an error regarding the conceptualization of the delay durations. In the section named “A discussion on acquisition lags”, we explained the misconceptualization of the duration of acquisition lags that are present in the game and the error that can potentially be caused by it. Note that North and Macal (2002) also reported difficulties that they faced in their Beer Game modeling process.

1.5 Although The Beer Game is an application of SD methodology, a one-to-one SD model of the game cannot be directly obtained because the order of calculations followed in the game and the order of calculations followed in SD methodology will not match unless the order of calculations in the corresponding SD model is carefully altered by introducing additional variables to the model. This mismatch also contributes to the difficulty in obtaining a complete mathematical model of the game. North and Macal (2002) implemented The Beer Game using three different platforms and they reported subtle differences in the outputs of those three different implementations, which we think those differences could only be eliminated by substantial amount of additional effort.

1.6 In the section named “R code of the mathematical model as an experimental platform”, we provide an R code\(^2\) (R Core Team 2013) of the mathematical model presented in this paper to ease the simulation replication of our model. In the same section, we also shortly discuss how the code can be used in experimentation and how it can be used to create a single-player or multi-player beer game on a computer.

1.7 In Sterman (1989), the anchor-and-adjust heuristic formulation that is suggested to be used in decision making and the anchor-and-adjust heuristic formulation that is used in modeling the participant behavior are slightly different. In the section named “Verification of the mathematical model”, we examine the differences between the two formulations, provide a different set of equations for the anchor-and-adjust heuristic formulation that is used in modeling the participant behavior, execute the corresponding R code\(^2\) with the optimum benchmark parameter values given by Sterman, and obtain the exact same benchmark cost values also presented by him. This process verifies that our R code is correctly implemented and it also validates that our model is a correct and exact representation of the board version of The Beer Game.

Mathematical model of the beer game

1.1 To conduct this research, we first constructed a mathematical model of The Beer Game based on a figure of the board game (see Figure in this paper), equations, the five steps of the game, and descriptions given in Sterman (1989).
The Beer Game represents a supply chain with different echelons: retailer, wholesaler, distributor, and factory. Each echelon makes decisions based on their own inventory levels and incoming orders. The decision variables (equations 8, 9, 11–14, 47–50, 54–57, and 63–68) define how the artificial agents make decisions. The different sets of values for these parameters will not make the mathematical model diverge from being an exact one-to-one replica of the original board version of The Beer Game.

Where $\alpha(t)$ stands for the stock adjustment time, $md(t)$ stands for the making delay time, $st(t)$ for the shipment time, and $pt(t)$ for the production lead time. $R, W, D,$ and F stand respectively, for the retailer, wholesaler, distributor, and factory echelons (Figure 1). Note that $sat, sat, \beta,$ and γ are the decision parameters (equations 1, 5, 6, and 10). The different sets of values of these parameters represent the different instances of the anchor-and-adjust ordering policy and, together with the decision making variables (equations 8, 9, 11–14, 47–50, 54–57, and 63–68), they define how the artificial agents make decisions. Note that the different sets of values for these parameters will not make the mathematical model diverge from being an exact one-to-one replica of the original board version of The Beer Game.

$$\text{ENNCD}_i = \begin{cases} 4, & t < 5 \\ 8, & t \geq 5 \end{cases} \text{ [case/week]}$$

In the equation above, ENNCD_i stands for the end-customer demand. To save space, the unit case is used to represent a case of beer.

$$\text{EEO}_0, 0 = 4 \text{ [case/week]} \text{ for } i = R, W, D$$

$\text{EEO}_0, 0$ represents expected orders calculated by the retailer. EO_i represents expected orders calculated by the wholesaler, distributor, and factory echelons based on the orders they receive from their respective customers (i.e., the retailer’s orders received by the wholesaler, the wholesaler’s orders received by the distributor, and the distributor’s orders received by the factory).

$$i_0 = 0 \text{ [case]} \text{ for } i = R, W, D, F$$

$$\text{SL}_R, 0 = \text{EEO}_0, 0 \cdot (mdt + stp) \text{ [case]}$$

$$\text{SL}_W, 0 = \text{EO}_0, 0 \cdot (mdt + stp) \text{ [case]}$$

$$\text{SL}_D, 0 = \text{EO}_0, 0 \cdot (mdt + stp) \text{ [case]}$$

$$\text{SL}_F, 0 = \text{EO}_0, 0 \cdot pt \text{ [case]}$$

γ represents the desired inventory, and SL_i stands for the desired supply line.

$$B_0 = 0 \text{ [case]} \text{ for } i = R, W, D, F$$

$$i_0 = 12 \text{ [case]} \text{ for } i = R, W, D, F$$

$$\text{ITI}_0, 0 = 4 \text{ [case]} \text{ for } i = R, W, D$$

$$\text{WPI}_0 = 4 \text{ [case]}$$

$$\text{ITI}_2, 0 = 4 \text{ [case]} \text{ for } i = R, W, D$$

$$\text{WPI}_2 = 4 \text{ [case]}$$

2.3 The equations 15 through 20 represent initial backlogs, initial inventories, and initial in-transit inventories (i.e., the values of the state variables at week zero). ITI_2 (in-transit inventory) represents the shipping delay box just before the inventory box, and ITI_1 (in-transit inventory) represents the shipping delay box before that (see Figure 1). The value of ITI_1 belonging to an echelon is shifted to ITI_2 of the same echelon after one simulated week. ITI_2 is added to the inventory (δ) or subtracted from the backlog (δ) after a week. Likewise, WPI_1 and WPI_2 stand for work-in-process inventories. WPI_1 is the work-in-process inventory of the factory that will be shifted to WPI_2 after a week and that will eventually reach to the factory’s inventory. WPI_2 is the work-in-process inventory that will be added to the factory’s inventory (γ) or subtracted from the backlog (δ) after a week.

$$\text{O}_i, 0 = 4 \text{ [case/week]} \text{ for } i = R, W, D$$

$$\text{PSR}_i = 4 \text{ [case/week]}$$

$$\text{O}_i, 0 = 4 \text{ [case/week]} \text{ for } i = R, W, D, F$$

C_i stands for orders that are placed by echelon (retailer, wholesaler, and distributor). PSR_i stands for the production start rate, which is the production order given by the factory itself. O_i stands for the incoming orders (the box right to the box of orders placed in Figure 1) that are received by echelon i. The purchase orders (O) placed by the retailer, wholesaler, and distributor and the production orders (PSR) given by the factory at week ($t + 1$) by the retailer, wholesaler, and distributor become the incoming orders (O), respectively, for the wholesaler, distributor, and factory at week ($t + 2$). Therefore, the end-customer demand (ENNCD), which is given by Equation 7, orders (O), and production start rate (PSR) have no value at week zero, but they are assigned a value for the first time at week 1.
2.8 The remaining model equations are given in an order based on the steps of the game presented in Sterman (1989). This sequence should strictly be followed while performing calculations to ensure an accurate representation of the board version of The Beer Game (Figure 1).

2.9 The remaining model equations are given in an order based on the steps of the game presented in Sterman (1989). This sequence should strictly be followed while performing calculations to ensure an accurate representation of the board version of The Beer Game (Figure 1).

2.10 After filling orders, participants either count their inventories if they have chips representing the cases of beer in their inventory boxes or calculate the backlogs if they fail to satisfy the total demand of their customers. They record the inventory or backlog on their record sheet. This is represented by the equations below:

\[B_{R,t+1} = B_{R,t} + \text{shipment} \]
\[B_{W,t+1} = B_{W,t} + \text{shipment} \]
\[B_{D,t+1} = B_{D,t} + \text{shipment} \]
\[B_{F,t+1} = B_{F,t} + \text{shipment} \]
\[l_{R,t+1} = l_{R,t} - \text{shipment} \]
\[l_{W,t+1} = l_{W,t} - \text{shipment} \]
\[l_{D,t+1} = l_{D,t} - \text{shipment} \]
\[l_{F,t+1} = l_{F,t} - \text{shipment} \]

In this study, the equality sign is used in assigning values to parameters and variables, and it does not imply a mathematical equality. Therefore, the same variable can appear on left and right sides of the same equation (see, for example, equations 43–46).

Expectation formation

2.11 Expectation formation is assumed to be performed informally by a participant in his mind and, therefore, is not listed among the five steps of The Beer Game. Sterman (1989) modeled the expectation formation process using the simple exponential smoothing method (see Equation 9 in Sterman 1989). This process is reflected by the equations given below:

\[EEO_{DCO,t+1} = \alpha EEO_{DCO,t} + (1 - \alpha) \text{shipment} \]
\[EEO_{W,t+1} = \alpha EEO_{W,t} + (1 - \alpha) \text{shipment} \]
\[EEO_{D,t+1} = \alpha EEO_{D,t} + (1 - \alpha) \text{shipment} \]
\[EEO_{F,t+1} = \alpha EEO_{F,t} + (1 - \alpha) \text{shipment} \]

http://jasss.soc.surrey.ac.uk/17/4/2.html

19/10/2015
The Beer Game.

After the change, it can immediately execute the code to obtain the corresponding cost values. The weekly values of any variable can be easily displayed by simply typing the name of that variable in R console. In this way, the code serves as an experimental platform. One can also generate graphical outputs using the code.

R code of the mathematical model as an experimental platform

1. The R code \(^\text{(7)}\) (R Core Team 2013) of the mathematical model is ready to be executed; one needs to simply copy the code from the text file into and paste it to R console in order to execute it. As mentioned before, equations 1, 5, 6, and 10 are the decision parameters \((\text{sat, wsl, wpsr})\) that describe the decision-making processes of the artificial agents, and their different values represent different instances of the anchor-and-adjust decision policy. Hence, one can change the values of these parameters in the code without making the mathematical model diverge from being an exact one-to-one replica of the original board version of The Beer Game. After the change, one can re-execute the code to obtain the corresponding cost values. The weekly values of any variable can be easily displayed by simply typing the name of that variable in R console.
Figure 2. An example of Inventory Dynamics

Inventory Dynamics

Figure 3. An example of Backlog Dynamics

Backlog Dynamics

Dynamics of Orders

Figure 4. An example of Dynamics of Orders
To create different settings for a simulation experiment without altering the model structure, one can change the end customer demand pattern given by Equation 7 and play with the initial values of the stock variables, but those changes will imply a diversion from the original setting of The Beer Game. The model structure can also be altered. For example, one can change the delay times model (mailing delay time, at (shipment time), or p (production lead time). However, such a change would imply an increase or decrease in the number of the associated variables. For instance, if one wants to increase the shipping time of an echelon from two weeks to three weeks, he must introduce one more in-transit inventory variable (i.e., \(I \)). Another example could be the addition of production capacity to Equation 68 or the addition of shipment capacities to equations 33–36.

Simulation experiments can also be conducted in another programming environment by rewriting the code using that programming language. One can also develop a multi-player beer game using a programming environment that supports user interface creation. In that case, the respective order equations describing the artificial agents’ decision making processes should be removed from the code and four human agents would be asked to insert values for orders of the four echelons. Alternatively, a single-player version of the game can be constructed. In this case, a human agent would give orders for one of the four echelons and the three artificial agents would control the orders of the remaining echelons.

A discussion on acquisition lags

4.1 In The Beer Game, the acquisition lag is the summation of the mailing delay time and shipment time for the retailer, wholesaler, and distributor, and it is directly equal to the production lead time for the factory. In the game, orders placed by an echelon (i.e., the retailer, wholesaler, or distributor) at week \(w \) will reach the inventory of that echelon at week \(w + 4 \) if the supplier of that echelon has sufficient inventory to fulfill the order. For the factory, orders given at week \(w \) will be received at week \(w + 3 \). Therefore, Sterman (1989) states many times in his paper that the acquisition lag for the retailer, wholesaler, and distributor is at least 4 weeks, and it is always 3 weeks for the factory. However, we claim that orders placed at Step 5 of week \(w \) are rare for week \(w + 1 \) (see equations 21, 22, 65–68, and 72–75). Therefore, slightly changing the game, by placing orders at the beginning of Step 1 of week \(w + 1 \) instead of placing them at the end of Step 5 of week \(w \), will make no difference. Accordingly, in our mathematical model, the acquisition lags used in calculating the values of the desired supply\(W \) are 3, 3, 3, and 2 weeks for the retailer, wholesaler, distributor, and factory, respectively (see equations 2–4, 11–14, and 54–57). In the desired supply line equations (11–14 and 54–57), which correspond to Equation 7 in Sterman (1989), using acquisition lag equations 4 weeks (for the retailer, wholesaler, and distributor) and 3 weeks (for the factory) instead of 3 weeks (for the retailer, wholesaler, and distributor) and 2 weeks (for the factory) will create a steady-state error in the dynamics.

Verification of the mathematical model

5.1 After constructing a one-to-one model of The Beer Game, we entered the optimal decision parameter values suggested by Sterman (1989) into our model. These parameter values are \(0, 1, \) and 1 for \(d \) (smoothing factor) also \(d \) given in Sterman (1989), \(a \) (stock adjustment time), \(t \) \(d \) (in Sterman 1989), and \(w \) (weight of supply/\(W \)) (in Sterman 1989), respectively, for all echelons. The other decision parameter given by Sterman is \(S_t \) which is defined as \(S' \) in Sterman (1989) plus \(w \) (time) \(SL \) (desired supply/\(W \)). In Sterman (1989), see Equation 71 and the unnumbered \(S' \) equation in Sterman (1989, p. 334). Sterman gives the optimal values of \(S' \) as 28, 28, 28, and 20 for the retailer, wholesaler, distributor, and factory echelons, respectively.

\[
S' = \left(\frac{1}{w} \cdot w \right) \cdot SL - S' \quad \text{for } i = R, W, D, F
\]

(71)

5.2 In our mathematical model, the \(SL \) values are dynamically updated as the expected orders from the customers change. Thus, \(S' \) should also be a variable. However, Sterman uses constant \(SL \) and \(S' \) values. If the \(S' \) value is used instead of separate \(S' \) and \(SL \) values and if it is a constant, the order equations 65–68 become as follows:

\[
O_{R, t+1} = \begin{cases}
4, & \text{max} \left(0, \frac{\left(S' \cdot E_{R, t} - w_{R, t} \cdot SL_{R, t} \right)}{sat_{R}} \right), \quad t < 5, \quad \text{case week} \\
4, & \text{max} \left(0, \frac{\left(S' \cdot E_{R, t} + w_{R, t} \cdot SL_{R, t} \right)}{sat_{R}} \right), \quad t \geq 5, \quad \text{case week}
\end{cases}
\]

(72)

\[
O_{W, t+1} = \begin{cases}
4, & \text{max} \left(0, \frac{\left(S' \cdot E_{W, t} - w_{W, t} \cdot SL_{W, t} \right)}{sat_{W}} \right), \quad t < 5, \quad \text{case week} \\
4, & \text{max} \left(0, \frac{\left(S' \cdot E_{W, t} + w_{W, t} \cdot SL_{W, t} \right)}{sat_{W}} \right), \quad t \geq 5, \quad \text{case week}
\end{cases}
\]

(73)

\[
O_{D, t+1} = \begin{cases}
4, & \text{max} \left(0, \frac{\left(S' \cdot E_{D, t} - w_{D, t} \cdot SL_{D, t} \right)}{sat_{D}} \right), \quad t < 5, \quad \text{case week} \\
4, & \text{max} \left(0, \frac{\left(S' \cdot E_{D, t} + w_{D, t} \cdot SL_{D, t} \right)}{sat_{D}} \right), \quad t \geq 5, \quad \text{case week}
\end{cases}
\]

(74)

\[
P_{SR, t+1} = \begin{cases}
4, & \text{max} \left(0, \frac{\left(S' \cdot E_{D, t} - w_{D, t} \cdot SL_{D, t} \right)}{sat_{D}} \right), \quad t < 5, \quad \text{case week} \\
4, & \text{max} \left(0, \frac{\left(S' \cdot E_{D, t} + w_{D, t} \cdot SL_{D, t} \right)}{sat_{D}} \right), \quad t \geq 5, \quad \text{case week}
\end{cases}
\]

(75)

5.3 After simulating our model with the optimum \(d \), \(a \), \(w \), and \(S' \) values using the order equations 72–75, we obtained the exact same benchmark cost values reported by Sterman, which supports our claim that our model is an exact representation of The Beer Game. Note that the conceptual error regarding the acquisition lags has no effect on the model used by Sterman in optimizing the parameters because \(S' \) is a constant, it is not dynamically calculated during the optimization runs. The R code of the mathematical model that is modified with and for the ordering equations 72–75 is also provided\(^2\). In this version of the R code, \(d \), \(a \), \(w \), and \(S' \) are the decision parameters (equations 1, 5, 6, and 71). The different sets of values of these parameters represent the different instances of the anchor-and-adjust ordering policy and, together with the decision making variables (equations 8, 9, 47–50, and 72–75), they define how the artificial agents make decisions.

5.4 As a final step in verification of the mathematical model, we first remove the ordering equations from the R code\(^4\) and instead, insert pseudo-random orders into the code. We also play the board version of the game with the same pseudo-random orders. The dynamics obtained from the R code and the board version of the game exactly match.

Conclusions

6.1 In this study, we constructed a detailed mathematical model that represents and replicates the exact execution order of the steps of the original board version of The Beer Game. As a part of the introduction section, we also state the difficulties that we faced in the construction process of such an exact one-to-one replica. One of the main difficulties is an error regarding the conceptualization of the delay durations as explained in detail in the section named “A discussion on acquisition lags.” We present the constructed model in full precision including necessary assumptions, explanations, and units for all parameters and variables in the section named “Mathematical model of the beer game”.

6.2 According to Axelrod (1997), internal validity (i.e., verification), usability, and extendibility are the three goals of the programming of a simulation model. To increase the usability of the model presented in this paper, we stated the adjustable parameters, mentioned the equations governing the artificial agents’ decision making processes, and wrote an R code\(^5\) of the model. For extendibility, in the section named “R code of the
Acknowledgements

The authors thank Dr. Yaman Barlas, Dr. Nigel Gilbert, Dr. Gönenç Yücel, and the second referee of this article for their valuable suggestions.

This research is supported by a Marie Curie International Reintegration Grant within the 7th European Community Framework Programme (grant agreement number: PIRG07-0A-2010-298272) and also by Bogazici University Research Fund (grant no: 6924-13A03P1).

Notes

1 The R code of the mathematical model can be found at: http://www.openabm.org/model/4161/version/1/view
2 The R code of the modified mathematical model can be found at: http://www.openabm.org/model/4163/version/1/view
3 The R code of the mathematical model (code for graphical output added) can be found at: http://www.webcitation.org/6LUrLLIVQ

References

