JASSS logo

6 articles matched your search for the keywords:
Schelling Model, Ethnic Segregation, Minority-Majority Relations

The Schelling Model of Ethnic Residential Dynamics: Beyond the Integrated - Segregated Dichotomy of Patterns

Erez Hatna and Itzhak Benenson
Journal of Artificial Societies and Social Simulation 15 (1) 6

Kyeywords: Schelling Model, Ethnic Segregation, Minority-Majority Relations
Abstract: The Schelling model of segregation is an agent-based model that illustrates how individual tendencies regarding neighbors can lead to segregation. The model is especially useful for the study of residential segregation of ethnic groups where agents represent householders who relocate in the city. In the model, each agent belongs to one of two groups and aims to reside within a neighborhood where the fraction of 'friends' is sufficiently high: above a predefined tolerance threshold value F. It is known that depending on F, for groups of equal size, Schelling's residential pattern converges to either complete integration (a random-like pattern) or segregation. The study of high-resolution ethnic residential patterns of Israeli cities reveals that reality is more complicated than this simple integration-segregation dichotomy: some neighborhoods are ethnically homogeneous while others are populated by both groups in varying ratios. In this study, we explore whether the Schelling model can reproduce such patterns. We investigate the model's dynamics in terms of dependence on group-specific tolerance thresholds and on the ratio of the size of the two groups. We reveal new type of model pattern in which a portion of one group segregates while another portion remains integrated with the second group. We compare the characteristics of these new patterns to the pattern of real cities and discuss the differences.

Thomas C. Schelling and the Computer: Some Notes on Schelling's Essay "On Letting a Computer Help with the Work"

Rainer Hegselmann
Journal of Artificial Societies and Social Simulation 15 (4) 9

Kyeywords: Schelling Model, Segregation, Configuration Game, History of Computational Social Science, Agent Based Modeling
Abstract: Today the Schelling model is a standard component in introductory courses to agent-based modelling and simulation. When Schelling presented his model in the years between 1969 and 1978, his own analysis was based on manual table top exercises. Even more, Schelling explicitly warned against using computers for the analysis of his model. That is puzzling. A resolution to that puzzle can be found in an essay that Schelling wrote as teaching material for his students. That essay is now published by Schelling in JASSS, exactly 40 years after it was written. In his essay, Schelling gives a guided tour of a computer implementation of his model he himself implemented, de-spite his warnings. On this tour, though more in passing, Schelling gives hints to an extremely generalised version of his model. My article explains why we find the gen-eralised version of Schelling's model on the tour through his computer program rather than in his published articles.

From Schelling to Schools: A Comparison of a Model of Residential Segregation with a Model of School Segregation

Victor Ionut Stoica and Andreas Flache
Journal of Artificial Societies and Social Simulation 17 (1) 5

Kyeywords: Schelling Model, Ethnic Segregation, School Segregation, Model Alignment
Abstract: We address theoretically whether and under what conditions Schelling’s celebrated result of ‘self-organized’ unintended residential segregation may also apply to school segregation. We propose here a computational model of school segregation that is aligned with a corresponding Schelling-type model of residential segregation. To adapt the model for application to school segregation, we move beyond previous work by combining two preference arguments in modeling parents’ school choice, preferences for the ethnic composition of a school and preferences for minimizing the travelling distance to the school. In a set of computational experiments we assessed the effects of population composition and distance preferences in the school model. We found that a preference for nearby schools can suppress the trend towards self-organized segregation obtained in a baseline condition where parents were indifferent towards distance. We then investigated the joint effects of the variation of agents’ “tolerance” for out-group members and distance preference. We found that integrated distributions were preserved under a much broader range of conditions than in the absence of a preference for nearby schools. We conclude that parents’ preferences for nearby schools may be an important factor in tempering for school choice the segregation dynamics known from models of residential segregation.

Combining Segregation and Integration: Schelling Model Dynamics for Heterogeneous Population

Erez Hatna and Itzhak Benenson
Journal of Artificial Societies and Social Simulation 18 (4) 15

Kyeywords: Schelling Model, Ethnic Segregation, Residential Dynamics, Heterogeneous Agents
Abstract: The Schelling model is a simple agent-based model that demonstrates how individuals’ relocation decisions can generate residential segregation in cities. Agents belong to one of two groups and occupy cells of rectangular space. Agents react to the fraction of agents of their own group within the neighborhood around their cell. Agents stay put when this fraction is above a given tolerance threshold but seek a new location if the fraction is below the threshold. The model is well-known for its tipping point behavior: an initially random (integrated) pattern remains integrated when the tolerance threshold is below 1/3 but becomes segregated when the tolerance threshold is above 1/3. In this paper, we demonstrate that the variety of the Schelling model’s steady patterns is richer than the segregation–integration dichotomy and contains patterns that consist of segregated patches of each of the two groups, alongside areas where both groups are spatially integrated. We obtain such patterns by considering a general version of the model in which the mechanisms of the agents' interactions remain the same, but the tolerance threshold varies between the agents of both groups. We show that the model produces patterns of mixed integration and segregation when the tolerance threshold of an essential fraction of agents is either low, below 1/5, or high, above 2/3. The emerging mixed patterns are relatively insensitive to the model’s other parameters.

Axiomatic Theory and Simulation: A Philosophy of Science Perspective on Schelling's Segregation Model

Klaus G. Troitzsch
Journal of Artificial Societies and Social Simulation 20 (1) 10

Kyeywords: Theory Reconstruction, Non-Statement View, Schelling Model, Segregation, Axiom
Abstract: The paper uses Schelling’s famous segregation model and a number of extensions to show how a reconstruction of the theory behind these models along the lines of the ‘non-statement view’ on empirical science can contribute to a better understanding of these models and a more straightforward implementation. A short introduction to the procedure of reconstructing a theory is given, using an extremely simple theory from mechanics. The same procedure is then applied to Schelling’s segregation theory. A number of extensions to Schelling’s model are analysed that relax the original idealisations, such as adding dierent tolerance levels between the two subpopulations, assuming inhomogeneous subpopulations and heterogeneous experiences of neighbourhoods, among others. Finally, it is argued that a ‘non-statement view’ reconstruction of a mental model or a verbally expressed theory are relevant for a useful specification for a simulation model.

Common Dynamics of Identity and Immigration: The Roles of Mobility and Democracy

Nicolas Houy
Journal of Artificial Societies and Social Simulation 22 (4) 4

Kyeywords: Identity, Immigration, Democracy, Mobility, Schelling Model, Agent-Based Model
Abstract: We look at the dynamics of identity and immigration in a setting in which political decisions regarding immigration are made by a majoritarian democratic process and location is endogenous. We introduced an agent-based model that allowed us to explain the following facts: When individuals are not allowed to choose their own location, the ratio of immigrants in the population is close to optimal and assimilation works well. On the contrary, when individuals are allowed to move, clusters of different types of populations form. This has the following consequences: assimilation becomes more difficult by formation of closed communities and therefore the native identity can only survive if a large level of immigration is supported by individuals protected from its consequences and vote with local information or consideration. Even in the latter case, temporary outbursts of anti-immigration policy can occur. These results should be understood in the recent context of increasing salience of identity concerns and the following positive electoral results for the so-called populist movements in Western countries.